Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Application of Stem Cell Therapy During the Treatment of HIV/AIDS and Duchenne Muscular Dystrophy

Author(s): Lorraine Chitena, Keletso Masisi, Kabo Masisi, Tebogo E. Kwape and Goabaone Gaobotse*

Volume 17, Issue 7, 2022

Published on: 10 August, 2021

Page: [633 - 647] Pages: 15

DOI: 10.2174/1574888X16666210810104445

Price: $65

Abstract

Treating diseases such as Muscular Dystrophy (MD) and HIV/AIDS pose several challenges to the rapidly evolving field of regenerative medicine. Previously, stem cell therapy has been said to affect the clinical courses of HIV/AIDS and MD, but, in practice, eradication or control of these diseases was not achievable. The introduction of gene editing into stem cell therapy has stimulated HIV/AIDS and MD cell therapy research studies substantially. Here, we review current methods of treating HIV/AIDS and MD using stem cell therapy. This review also details the use of different types of cells and methods in cell therapy and the modeling of new cell-based therapies to treat Duchenne muscular dystrophy. We speculate that the effective use of stem cell therapy in conjunction with other treatment therapies , such as steroids and rehabilitation , could improve livelihood.

Keywords: High active antiretroviral therapy, C-C chemokine receptor 5, antiretroviral treatment, pre-exposure prophylaxis, hematopoietic stem cells, induced pluripotent stem cells, muscular dystrophy, duchenne muscular dystrophy, melancholy stem cells.

Graphical Abstract

[1]
Rodríguez-Mora S, De Wit F, García-Perez J, et al. The mutation of Transportin 3 gene that causes limb girdle muscular dystrophy 1F induces protection against HIV-1 infection. PLoS Pathog 2019; 15(8): e1007958.
[http://dx.doi.org/10.1371/journal.ppat.1007958] [PMID: 31465518]
[2]
Crisafulli S, Sultana J, Fontana A, Salvo F, Messina S, Trifirò G. Global epidemiology of Duchenne muscular dystrophy: An updated systematic review and meta-analysis. Orphanet J Rare Dis 2020; 15(1): 141.
[http://dx.doi.org/10.1186/s13023-020-01430-8] [PMID: 32503598]
[3]
UNAIDS. Global HIV and AIDS statistics-2019 fact sheet. 2019. Available from: https://www.unaids.org/en/resources/fact-sheet. (Accessed on: February 17, 2020).
[4]
Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol 2019; 9(69): 69.
[http://dx.doi.org/10.3389/fcimb.2019.00069] [PMID: 30968001]
[5]
Hütter G. Stem cell transplantation in strategies for curing HIV/AIDS. AIDS Res Ther 2016; 13(1): 31.
[http://dx.doi.org/10.1186/s12981-016-0114-y] [PMID: 27625700]
[6]
Hütter G, Bodor J, Ledger S, et al. CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses 2015; 7(8): 4186-203.
[http://dx.doi.org/10.3390/v7082816] [PMID: 26225991]
[7]
Soriano V. Hot news: Gene therapy with CRISPR/Cas9 coming to age for HIV cure. AIDS Rev 2017; 19(3): 167-72.
[PMID: 29019352]
[8]
Gupta RK, Abdul-Jawad S, McCoy LE, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 2019; 568(7751): 244-8.
[http://dx.doi.org/10.1038/s41586-019-1027-4] [PMID: 30836379]
[9]
Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci 2014; 111(31): 11461-6.
[http://dx.doi.org/10.1073/pnas.1405186111] [PMID: 25049410]
[10]
Kitchen SG, Levin BR, Bristol G, et al. In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. PLoS Pathog 2012; 8(4): e1002649.
[http://dx.doi.org/10.1371/journal.ppat.1002649] [PMID: 22511873]
[11]
Wang CX, Cannon PM. Clinical applications of genome editing to HIV cure. AIDS Patient Care STDS 2016; 30(12): 539-44.
[http://dx.doi.org/10.1089/apc.2016.0233] [PMID: 27854119]
[12]
Romitti PA, Zhu Y, Puzhankara S, et al. Prevalence of duchenne and becker muscular dystrophies in the united states. Pediatrics 2015; 135(3): 513-21.
[http://dx.doi.org/10.1542/peds.2014-2044] [PMID: 25687144]
[13]
Lim KRQ, Yoon C, Yokota T. Applications of CRISPR/Cas9 for the treatment of Duchenne muscular dystrophy. J Pers Med 2018; 8(4): 38-44.
[http://dx.doi.org/10.3390/jpm8040038] [PMID: 30477208]
[14]
Pane M, Lombardo ME, Alfieri P, et al. Attention deficit hyperactivity disorder and cognitive function in Duchenne muscular dystrophy: Phenotype-genotype correlation. J Pediatr 2012; 161(4): 705-9.e1.
[http://dx.doi.org/10.1016/j.jpeds.2012.03.020] [PMID: 22560791]
[15]
Pane M, Scalise R, Berardinelli A, et al. Early neurodevelopmental assessment in Duchenne muscular dystrophy. Neuromuscul Disord 2013; 23(6): 451-5.
[http://dx.doi.org/10.1016/j.nmd.2013.02.012] [PMID: 23535446]
[16]
Sacco A, Mourkioti F, Tran R, et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 2010; 143(7): 1059-71.
[http://dx.doi.org/10.1016/j.cell.2010.11.039] [PMID: 21145579]
[17]
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin disrupts skeletal muscle signalling: Roles of Ca2+, reactive oxygen species, and nitric oxide in the development of Muscular dystrophy. Physiol Rev 2016; 96(1): 253-305.
[http://dx.doi.org/10.1152/physrev.00007.2015] [PMID: 26676145]
[18]
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in skeletal muscle myogenesis, growth, and regeneration in myotonic dystrophy. Front Neurol 2018; 9: 368.
[http://dx.doi.org/10.3389/fneur.2018.00368] [PMID: 29892259]
[19]
Mavrogeni S, Markousis-Mavrogenis G, Papavasiliou A, Kolovou G. Cardiac involvement in Duchenne and Becker muscular dystrophy. World J Cardiol 2015; 7(7): 410-4.
[http://dx.doi.org/10.4330/wjc.v7.i7.410] [PMID: 26225202]
[20]
Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: Regenerative potential of skeletal muscle stem cells. J Clin Invest 2010; 120(1): 11-9.
[http://dx.doi.org/10.1172/JCI40373] [PMID: 20051632]
[21]
Inchingolo F, Tatullo M, Marrelli M, et al. Clinical trial with bromelain in third molar exodontia. Eur Rev Med Pharmacol Sci 2010; 14(9): 771-4.
[PMID: 21061836]
[22]
Inchingolo F, Tatullo M, Marrelli M, et al. Regenerative surgery performed with platelet-rich plasma used in sinus lift elevation before dental implant surgery: An useful aid in healing and regeneration of bone tissue. Eur Rev Med Pharmacol Sci 2012; 16(9): 1222-6.
[PMID: 23047506]
[23]
Konieczny P, Swiderski K, Chamberlain JS. Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve 2013; 47(5): 649-63.
[http://dx.doi.org/10.1002/mus.23738] [PMID: 23553671]
[24]
Meulendyke KA, Croteau JD, Zink MC. HIV life cycle, innate immunity and autophagy in the central nervous system. Curr Opin HIV AIDS 2014; 9(6): 565-71.
[http://dx.doi.org/10.1097/COH.0000000000000106] [PMID: 25203639]
[25]
Freer G, Matteucci D. Influence of dendritic cells on viral pathogenicity. PLoS Pathog 2009; 5(7): e1000384.
[http://dx.doi.org/10.1371/journal.ppat.1000384] [PMID: 19649323]
[26]
Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol 2014; 35(3): 114-22.
[http://dx.doi.org/10.1016/j.it.2013.10.003] [PMID: 24246474]
[27]
Falkenhagen A, Ameli M, Asad S, Read SE, Joshi S. A novel gene therapy strategy using secreted multifunctional anti-HIV proteins to confer protection to gene-modified and unmodified target cells. Gene Ther 2014; 21(2): 175-87.
[http://dx.doi.org/10.1038/gt.2013.70] [PMID: 24305417]
[28]
Pierson T, McArthur J, Siliciano RF. Reservoirs for HIV-1: Mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 2000; 18(1): 665-708.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.665] [PMID: 10837072]
[29]
Nisole S, Saïb A. Early steps of retrovirus replicative cycle. Retrovirology 2004; 1: 9-14.
[http://dx.doi.org/10.1186/1742-4690-1-9] [PMID: 15169567]
[30]
Mohammadi P, Desfarges S, Bartha I, et al. 24 hours in the life of HIV-1 in a T cell line. PLoS Pathog 2013; 9(1): e1003161.
[http://dx.doi.org/10.1371/journal.ppat.1003161] [PMID: 23382686]
[31]
Dubrocq G, Rakhmanina N. Antiretroviral therapy interruptions: Impact on HIV treatment and transmission. HIV AIDS 2018; 10: 91-101.
[http://dx.doi.org/10.2147/HIV.S141965] [PMID: 29942160]
[32]
Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med 2012; 2(4): a007161.
[http://dx.doi.org/10.1101/cshperspect.a007161] [PMID: 22474613]
[33]
Pai HH, Chen WC, Peng CF. Isolation of bacteria with antibiotic resistance from household cockroaches (Periplaneta americana and Blattella germanica). Acta Trop 2005; 93(3): 259-65.
[http://dx.doi.org/10.1016/j.actatropica.2004.11.006] [PMID: 15716054]
[34]
Pau AK, George JM. Antiretroviral therapy: Current drugs. Infect Dis Clin North Am 2014; 28(3): 371-402.
[http://dx.doi.org/10.1016/j.idc.2014.06.001] [PMID: 25151562]
[35]
Haynes BF, Burton DR, Mascola JR. Multiple roles for HIV broadly neutralizing antibodies. Sci Transl Med 2019; 11(516): 1-4.
[http://dx.doi.org/10.1126/scitranslmed.aaz2686] [PMID: 31666399]
[36]
Hawkins T. Understanding and managing the adverse effects of antiretroviral therapy. Antiviral Res 2010; 85(1): 201-9.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.016] [PMID: 19857521]
[37]
Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nat Biotechnol 2007; 25(12): 1444-54.
[http://dx.doi.org/10.1038/nbt1367] [PMID: 18066041]
[38]
Falkenhagen A, Joshi S. Genetic Strategies for HIV treatment and prevention. Mol Ther Nucleic Acids 2018; 13: 514-33.
[http://dx.doi.org/10.1016/j.omtn.2018.09.018] [PMID: 30388625]
[39]
Pernet O, Yadav SS, An DS. Stem cell-based therapies for HIV/AIDS. Adv Drug Deliv Rev 2016; 103: 187-201.
[http://dx.doi.org/10.1016/j.addr.2016.04.027] [PMID: 27151309]
[40]
Desai M, Iyer G, Dikshit RK. Antiretroviral drugs: Critical issues and recent advances. Indian J Pharmacol 2012; 44(3): 288-98.
[http://dx.doi.org/10.4103/0253-7613.96296] [PMID: 22701234]
[41]
Gaobotse G. Stem cell research in Africa: Legislation & challenges. J Regen Med 2018; 7(1): 1-3.
[http://dx.doi.org/10.4172/2325-9620.1000142]
[42]
Liu YP, Seçkin H, Izci Y, Du ZW, Yan YP, Başkaya MK. Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2009; 29(4): 780-91.
[http://dx.doi.org/10.1038/jcbfm.2009.1] [PMID: 19209181]
[43]
Wilschut KJ, Ling VB, Bernstein HS, Bernstein HS. Concise review: Stem cell therapy for muscular dystrophies. Stem Cells Transl Med 2012; 1(11): 833-42.
[http://dx.doi.org/10.5966/sctm.2012-0071] [PMID: 23197695]
[44]
Tamaki T, Akatsuka A, Ando K, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 2002; 157(4): 571-7.
[http://dx.doi.org/10.1083/jcb.200112106] [PMID: 11994315]
[45]
Darabi R, Arpke RW, Irion S, et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 2012; 10(5): 610-9.
[http://dx.doi.org/10.1016/j.stem.2012.02.015] [PMID: 22560081]
[46]
Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA. Myogenic specification of side population cells in skeletal muscle. J Cell Biol 2002; 159(1): 123-34.
[http://dx.doi.org/10.1083/jcb.200202092] [PMID: 12379804]
[47]
Payne TR, Oshima H, Sakai T, et al. Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther 2005; 12(16): 1264-74.
[http://dx.doi.org/10.1038/sj.gt.3302521] [PMID: 15843810]
[48]
Sienkiewicz D, Kulak W, Okurowska-Zawada B, Paszko-Patej G, Kawnik K. Duchenne muscular dystrophy: Current cell therapies. Ther Adv Neurol Disorder 2015; 8(4): 166-77.
[http://dx.doi.org/10.1177/1756285615586123] [PMID: 26136844]
[49]
Sharma A, Sane H, Badhe P, et al. A clinical study shows safety and efficacy of autologous bone marrow mononuclear cell therapy to improve quality of life in muscular dystrophy patients. Cell Transplant 2013; 22(1): S127-38.
[http://dx.doi.org/10.3727/096368913X672136] [PMID: 24070109]
[50]
Maclean S, Khan WS, Malik AA, Anand S, Snow M. The potential of stem cells in the treatment of skeletal muscle injury and disease. Stem Cells Int 2012; 2012: 282348.
[http://dx.doi.org/10.1155/2012/282348] [PMID: 22220178]
[51]
Ichim TE, Alexandrescu DT, Solano F, et al. Mesenchymal stem cells as anti-inflammatories: Implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260(2): 75-82.
[http://dx.doi.org/10.1016/j.cellimm.2009.10.006] [PMID: 19917503]
[52]
Danisovic L, Culenova M, Csobonyeiova M. Induced pluripotent stem cells for Duchenne muscular dystrophy modelling and therapy. Cells 2018; 7(12): 253-64.
[http://dx.doi.org/10.3390/cells7120253] [PMID: 30544588]
[53]
Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008; 322(5903): 945-9.
[http://dx.doi.org/10.1126/science.1162494] [PMID: 18818365]
[54]
Polanco A, Kuang B, Yoon S. Bioprocess technologies that preserve the quality of ipscs. Trends Biotechnol 2020; 38(10): 1128-40.
[http://dx.doi.org/10.1016/j.tibtech.2020.03.006] [PMID: 32941792]
[55]
Pappas JJ, Yang PC. Human ESC vs. iPSC-pros and cons. J Cardiovasc Transl Res 2008; 1(2): 96-9.
[http://dx.doi.org/10.1007/s12265-008-9032-2] [PMID: 20559900]
[56]
Deng XY, Wang H, Wang T, et al. Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr Stem Cell Res Ther 2015; 10(2): 153-8.
[http://dx.doi.org/10.2174/1574888X09666140923101914] [PMID: 25248676]
[57]
Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019; 10(1): 87-96.
[http://dx.doi.org/10.1186/s13287-019-1185-1] [PMID: 30867069]
[58]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[59]
Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 2015; 3: 2.
[http://dx.doi.org/10.3389/fcell.2015.00002] [PMID: 25699255]
[60]
Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol 2013; 997: 23-33.
[http://dx.doi.org/10.1007/978-1-62703-348-0_3] [PMID: 23546745]
[61]
Tatullo M, Spagnuolo G, Codispoti B, et al. PLA-based mineral-doped scaffolds seeded with human periapical cyst-derived mscs: A promising tool for regenerative healing in dentistry. Materials 2019; 12(4): 597.
[http://dx.doi.org/10.3390/ma12040597] [PMID: 30781537]
[62]
Marrelli M, Codispoti B, Shelton RM, et al. Dental pulp stem cell mechanoresponsiveness: Effects of mechanical stimuli on dental pulp stem cell behavior. Front Physiol 2018; 9: 1685-91.
[http://dx.doi.org/10.3389/fphys.2018.01685] [PMID: 30534086]
[63]
Han M-J, Seo Y-K, Yoon H-H, Song K-Y, Park J-K. Upregulation of bone-like extracellular matrix expression in human dental pulp stem cells by mechanical strain. Biotechnol Bioprocess Eng; BBE 2010; 15: 572-9.
[http://dx.doi.org/10.1007/s12257-009-0102-3]
[64]
Hata M, Naruse K, Ozawa S, et al. Mechanical stretch increases the proliferation while inhibiting the osteogenic differentiation in dental pulp stem cells. Tissue Eng Part A 2013; 19(5-6): 625-33.
[http://dx.doi.org/10.1089/ten.tea.2012.0099] [PMID: 23153222]
[65]
Ballini A, Boccaccio A, Saini R, Van Pham P, Tatullo M. Dental-derived stem cells and their secretome and interactions with bioscaffolds/biomaterials in regenerative medicine: From the in vitro research to translational applications. Stem Cells Int 2017; 2017: 6975251.
[http://dx.doi.org/10.1155/2017/6975251] [PMID: 29445404]
[66]
Law PK, Goodwin TG, Fang Q, et al. Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant 1992; 1(2-3): 235-44.
[http://dx.doi.org/10.1177/0963689792001002-305] [PMID: 1344295]
[67]
Gussoni E, Pavlath GK, Lanctot AM, et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992; 356(6368): 435-8.
[http://dx.doi.org/10.1038/356435a0] [PMID: 1557125]
[68]
Sharma A, Badhe P, Sane H, Gokulchandran N, Paranjape A. Role of stem cell therapy in treatment of muscular dystrophy. 2016. Available from: https://smjournals.com/ebooks/Muscular-Dystrophy/chapters/MDYS-16-02.pdf
[69]
Dastur DK, Razzak ZA. Possible neurogenic factor in muscular dystrophy: Its similarity to denervation atrophy. J Neurol Neurosurg Psychiatry 1973; 36(3): 399-410.
[http://dx.doi.org/10.1136/jnnp.36.3.399] [PMID: 4714102]
[70]
Kazuki Y, Hiratsuka M, Takiguchi M, et al. Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol Ther 2010; 18(2): 386-93.
[http://dx.doi.org/10.1038/mt.2009.274] [PMID: 19997091]
[71]
Mendell JR, Goemans N, Lowes LP, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016; 79(2): 257-71.
[http://dx.doi.org/10.1002/ana.24555] [PMID: 26573217]
[72]
Hafner P, Bonati U, Klein A, et al. Effect of combination l-citrulline and metformin treatment on motor function in patients with duchenne muscular dystrophy: A randomized clinical trial. JAMA Netw Open 2019; 2(10): e1914171.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.14171] [PMID: 31664444]
[73]
Young CS, Hicks MR, Ermolova NV, et al. A single crispr-cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 2016; 18(4): 533-40.
[http://dx.doi.org/10.1016/j.stem.2016.01.021] [PMID: 26877224]
[74]
Siemionow M, Cwykiel J, Heydemann A, et al. Dystrophin expressing chimeric (DEC) human cells provide a potential therapy for Duchenne muscular dystrophy. Stem Cell Rev Rep 2018; 14(3): 370-84.
[http://dx.doi.org/10.1007/s12015-018-9807-z] [PMID: 29546607]
[75]
Pai M, Zacharoulis D, Milicevic MN, et al. Autologous infusion of expanded mobilized adult bone marrow-derived CD34+ cells into patients with alcoholic liver cirrhosis. Am J Gastroenterol 2008; 103(8): 1952-8.
[http://dx.doi.org/10.1111/j.1572-0241.2008.01993.x] [PMID: 18637092]
[76]
Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 2006; 24(10): 2292-8.
[http://dx.doi.org/10.1634/stemcells.2005-0542] [PMID: 16778155]
[77]
de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ. Intracoronary stem cell infusion after acute myocardial infarction: A meta-analysis and update on clinical trials. Circ Cardiovasc Interv 2014; 7(2): 156-67.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.113.001009] [PMID: 24668227]
[78]
Salama H, Zekri A-RN, Medhat E, et al. Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res Ther 2014; 5(3): 70-7.
[http://dx.doi.org/10.1186/scrt459] [PMID: 24886681]
[79]
Park EH, Lim HS, Lee S, et al. Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in rheumatoid arthritis: A phase Ia clinical trial. Stem Cells Transl Med 2018; 7(9): 636-42.
[http://dx.doi.org/10.1002/sctm.18-0031] [PMID: 30112846]
[80]
Lin Q, Liu X, Han L, et al. Autologous hematopoietic stem cell infusion for sustained myelosuppression after BCMA-CAR-T therapy in patient with relapsed myeloma. Bone Marrow Transplant 2020; 55(6): 1203-5.
[http://dx.doi.org/10.1038/s41409-019-0674-2] [PMID: 31537902]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy