Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation

Author(s): Sajad Fakhri*, Sana Piri, Seyed Zachariah Moradi and Haroon Khan*

Volume 20, Issue 5, 2022

Published on: 07 March, 2022

Page: [836 - 856] Pages: 21

DOI: 10.2174/1570159X19666210809103346

Price: $65

Abstract

The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and Parkinson’s disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.

Keywords: Neurodegeneration, polyphenols, phytochemicals, radiation, oxidative stress, inflammation, apoptosis.

Graphical Abstract

[1]
Nordvig, A.S.; Rimmer, K.T.; Willey, J.Z.; Thakur, K.T.; Boehme, A.K.; Vargas, W.S.; Smith, C.J.; Elkind, M.S. Potential neurological manifestations of COVID-19. Neurol. Clin. Pract., 2020.
[PMID: 33842082]
[2]
Megha, K.; Deshmukh, P.S.; Banerjee, B.D.; Tripathi, A.K.; Ahmed, R.; Abegaonkar, M.P. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology, 2015, 51, 158-165.
[http://dx.doi.org/10.1016/j.neuro.2015.10.009] [PMID: 26511840]
[3]
Kruman, I.; Bruce-Keller, A.J.; Bredesen, D.; Waeg, G.; Mattson, M.P. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci., 1997, 17(13), 5089-5100.
[http://dx.doi.org/10.1523/JNEUROSCI.17-13-05089.1997] [PMID: 9185546]
[4]
Belikov, A.V. Age-related diseases as vicious cycles. Ageing Res. Rev., 2019, 49, 11-26.
[http://dx.doi.org/10.1016/j.arr.2018.11.002] [PMID: 30458244]
[5]
Hao, Y-H.; Zhao, L.; Peng, R-Y. Effects of microwave radiation on brain energy metabolism and related mechanisms. Mil. Med. Res., 2014, 4, 9.
[PMID: 26000171]
[6]
Fishman, K.; Baure, J.; Zou, Y.; Huang, T-T.; Andres-Mach, M.; Rola, R.; Suarez, T.; Acharya, M.; Limoli, C.L.; Lamborn, K.R.; Fike, J.R. Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radic. Biol. Med., 2009, 47(10), 1459-1467.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.08.016] [PMID: 19703553]
[7]
Mulinacci, N.; Valletta, A.; Pasqualetti, V.; Innocenti, M.; Giuliani, C.; Bellumori, M.; De Angelis, G.; Carnevale, A.; Locato, V.; Di Venanzio, C.; De Gara, L.; Pasqua, G. Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Nat. Prod. Res., 2019, 33(8), 1106-1114.
[http://dx.doi.org/10.1080/14786419.2018.1457663] [PMID: 29607691]
[8]
Eriksson, D.; Stigbrand, T. Radiation-induced cell death mechanisms. Tumour Biol., 2010, 31(4), 363-372.
[http://dx.doi.org/10.1007/s13277-010-0042-8] [PMID: 20490962]
[9]
Szumiel, I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria. Int. J. Radiat. Biol., 2015, 91(1), 1-12.
[http://dx.doi.org/10.3109/09553002.2014.934929] [PMID: 24937368]
[10]
Greene-Schloesser, D.; Robbins, M.E.; Peiffer, A.M.; Shaw, E.G.; Wheeler, K.T.; Chan, M.D. Radiation-induced brain injury: A review. Front. Oncol., 2012, 2, 73.
[http://dx.doi.org/10.3389/fonc.2012.00073] [PMID: 22833841]
[11]
Greene-Schloesser, D.; Robbins, M.E. Radiation-induced cognitive impairment--from bench to bedside. Neuro-oncol., 2012, 14(Suppl. 4), iv37-iv44.
[http://dx.doi.org/10.1093/neuonc/nos196] [PMID: 23095829]
[12]
Babini, G.; Morini, J.; Baiocco, G.; Mariotti, L.; Ottolenghi, A. In vitro &-ray-induced inflammatory response is dominated by culturing conditions rather than radiation exposures. Sci. Rep., 2015, 5, 9343.
[http://dx.doi.org/10.1038/srep09343] [PMID: 25791775]
[13]
Avci, B.; Akar, A.; Bilgici, B.; Tunçel, Ö.K. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int. J. Radiat. Biol., 2012, 88(11), 799-805.
[http://dx.doi.org/10.3109/09553002.2012.711504] [PMID: 22788526]
[14]
Battino, M.; Giampieri, F.; Cianciosi, D.; Ansary, J.; Chen, X.; Zhang, D.; Gil, E.; Forbes-Hernández, T. The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. Phytomedicine, 2021, 86, 153170.
[http://dx.doi.org/10.1016/j.phymed.2020.153170] [PMID: 31980299]
[15]
Abbaszadeh, F.; Fakhri, S.; Khan, H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol. Res., 2020, 160, 105069.
[http://dx.doi.org/10.1016/j.phrs.2020.105069] [PMID: 32652198]
[16]
Fakhri, S.; Khodamorady, M.; Naseri, M.; Farzaei, M.H.; Khan, H. The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol. Res., 2020, 159, 104895.
[17]
Smith, T.A.; Kirkpatrick, D.R.; Smith, S.; Smith, T.K.; Pearson, T.; Kailasam, A.; Herrmann, K.Z.; Schubert, J.; Agrawal, D.K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med., 2017, 15(1), 232.
[http://dx.doi.org/10.1186/s12967-017-1338-x] [PMID: 29121966]
[18]
Peng, X.C.; Huang, J.R.; Wang, S.W.; Liu, L.; Liu, Z.Z.; Sethi, G.; Ren, B.X.; Tang, F.R. Traditional chinese medicine in neuroprotection after brain insults with special reference to radioprotection. Evid. Based Complement. Alternat. Med., 2018, 2018, 2767208.
[http://dx.doi.org/10.1155/2018/2767208] [PMID: 30598683]
[19]
Calabrese, E.J.; Mattson, M.P.; Dhawan, G.; Kapoor, R.; Calabrese, V.; Giordano, J. Hormesis: A potential strategic approach to the treatment of neurodegenerative disease. Int. Rev. Neurobiol., 2020, 155, 271-301.
[http://dx.doi.org/10.1016/bs.irn.2020.03.024] [PMID: 32854857]
[20]
Calabrese, E.J. Converging concepts: adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis. Ageing Res. Rev., 2008, 7(1), 8-20.
[http://dx.doi.org/10.1016/j.arr.2007.07.001] [PMID: 17768095]
[21]
Zhang, C.; Chen, S.; Bao, J.; Zhang, Y.; Huang, B.; Jia, X.; Chen, M.; Wan, J-B.; Su, H.; Wang, Y.; He, C. Low doses of camptothecin induced hormetic and neuroprotective effects in PC12 cells. Dose Response, 2015, 13(2), 1559325815592606.
[http://dx.doi.org/10.1177/1559325815592606] [PMID: 26674066]
[22]
Dirnagl, U.; Meisel, A. Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology, 2008, 55(3), 334-344.
[http://dx.doi.org/10.1016/j.neuropharm.2008.02.017] [PMID: 18402985]
[23]
Calabrese, E.J.; Bachmann, K.A.; Bailer, A.J.; Bolger, P.M.; Borak, J.; Cai, L.; Cedergreen, N.; Cherian, M.G.; Chiueh, C.C.; Clarkson, T.W.; Cook, R.R.; Diamond, D.M.; Doolittle, D.J.; Dorato, M.A.; Duke, S.O.; Feinendegen, L.; Gardner, D.E.; Hart, R.W.; Hastings, K.L.; Hayes, A.W.; Hoffmann, G.R.; Ives, J.A.; Jaworowski, Z.; Johnson, T.E.; Jonas, W.B.; Kaminski, N.E.; Keller, J.G.; Klaunig, J.E.; Knudsen, T.B.; Kozumbo, W.J.; Lettieri, T.; Liu, S.Z.; Maisseu, A.; Maynard, K.I.; Masoro, E.J.; McClellan, R.O.; Mehendale, H.M.; Mothersill, C.; Newlin, D.B.; Nigg, H.N.; Oehme, F.W.; Phalen, R.F.; Philbert, M.A.; Rattan, S.I.; Riviere, J.E.; Rodricks, J.; Sapolsky, R.M.; Scott, B.R.; Seymour, C.; Sinclair, D.A.; Smith-Sonneborn, J.; Snow, E.T.; Spear, L.; Stevenson, D.E.; Thomas, Y.; Tubiana, M.; Williams, G.M.; Mattson, M.P. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl. Pharmacol., 2007, 222(1), 122-128.
[http://dx.doi.org/10.1016/j.taap.2007.02.015] [PMID: 17459441]
[24]
Holtzclaw, W.D.; Dinkova-Kostova, A.T.; Talalay, P. Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Adv. Enzyme Regul., 2004, 44(1), 335-367.
[http://dx.doi.org/10.1016/j.advenzreg.2003.11.013] [PMID: 15581500]
[25]
Hyun, D.H.; Hunt, N.D.; Emerson, S.S.; Hernandez, J.O.; Mattson, M.P.; de Cabo, R. Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. J. Neurochem., 2007, 100(5), 1364-1374.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04411.x] [PMID: 17250676]
[26]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[27]
Calabrese, E.J.; Calabrese, V.; Giordano, J. Demonstrated hormetic mechanisms putatively subserve riluzole-induced effects in neuroprotection against amyotrophic lateral sclerosis (ALS): Implications for research and clinical practice. Ageing Res. Rev., 2021, 67, 101273.
[http://dx.doi.org/10.1016/j.arr.2021.101273] [PMID: 33571705]
[28]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants, 2020, 9(9), 824.
[http://dx.doi.org/10.3390/antiox9090824] [PMID: 32899274]
[29]
Calabrese, V.; Renis, M.; Calderone, A.; Russo, A.; Barcellona, M.L.; Rizza, V. Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat. Free Radic. Biol. Med., 1996, 20(3), 391-397.
[http://dx.doi.org/10.1016/0891-5849(95)02095-0] [PMID: 8720910]
[30]
Ragusa, N.; Sfogliano, L.; Calabrese, V.; Rizza, V. Effects of multivitamin treatment on the activity of rat liver tryptophan pyrrolase during ethanol administration. Acta Vitaminol. Enzymol., 1981, 3(4), 199-204.
[PMID: 6214164]
[31]
Limoli, C.L.; Giedzinski, E.; Rola, R.; Otsuka, S.; Palmer, T.D.; Fike, J.R. Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat. Res., 2004, 161(1), 17-27.
[http://dx.doi.org/10.1667/RR3112] [PMID: 14680400]
[32]
Dent, P.; Yacoub, A.; Contessa, J.; Caron, R.; Amorino, G.; Valerie, K.; Hagan, M.P.; Grant, S.; Schmidt-Ullrich, R. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat. Res., 2003, 159(3), 283-300.
[http://dx.doi.org/10.1667/0033-7587(2003)159[0283:SARIAO]2.0.CO;2] [PMID: 12600231]
[33]
Cartee, L.; Vrana, J.A.; Wang, Z.; Park, J.S.; Birrer, M.; Fisher, P.B.; Grant, S.; Dent, P. Inhibition of the mitogen activated protein kinase pathway potentiates radiation-induced cell killing via cell cycle arrest at the G2/M transition and independently of increased signaling by the JNK/c-Jun pathway. Int. J. Oncol., 2000, 16(2), 413-422.
[http://dx.doi.org/10.3892/ijo.16.2.413] [PMID: 10639586]
[34]
Amundson, S.A.; Bittner, M.; Meltzer, P.; Trent, J.; Fornace, A.J., Jr Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat. Res., 2001, 156(5 Pt 2), 657-661.
[http://dx.doi.org/10.1667/0033-7587(2001)156[0657:IOGEAA]2.0.CO;2] [PMID: 11604088]
[35]
Mazière, C.; Conte, M-A.; Leborgne, L.; Levade, T.; Hornebeck, W.; Santus, R.; Mazière, J-C. UVA radiation stimulates ceramide production: relationship to oxidative stress and potential role in ERK, JNK, and p38 activation. Biochem. Biophys. Res. Commun., 2001, 281(2), 289-294.
[http://dx.doi.org/10.1006/bbrc.2001.4348] [PMID: 11181043]
[36]
Aroun, A.; Zhong, J.L.; Tyrrell, R.M.; Pourzand, C. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem. Photobiol. Sci., 2012, 11(1), 118-134.
[http://dx.doi.org/10.1039/C1PP05204G] [PMID: 21986918]
[37]
Bilgici, B.; Akar, A.; Avci, B.; Tuncel, O.K. Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum. Electromagn. Biol. Med., 2013, 32(1), 20-29.
[http://dx.doi.org/10.3109/15368378.2012.699012] [PMID: 23301880]
[38]
Heinloth, A.N.; Shackelford, R.E.; Innes, C.L.; Bennett, L.; Li, L.; Amin, R.P.; Sieber, S.O.; Flores, K.G.; Bushel, P.R.; Paules, R.S. Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation. Mol. Carcinog., 2003, 37(2), 65-82.
[http://dx.doi.org/10.1002/mc.10122] [PMID: 12766906]
[39]
Birch-Machin, M.A.; Russell, E.V.; Latimer, J.A. Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress. Br. J. Dermatol., 2013, 169(Suppl. 2), 9-14.
[http://dx.doi.org/10.1111/bjd.12207] [PMID: 23786615]
[40]
Paunesku, T.; Mittal, S. Proti& M.; Oryhon, J.; Korolev, S.V.; Joachimiak, A.; Woloschak, G.E. Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int. J. Radiat. Biol., 2001, 77(10), 1007-1021.
[http://dx.doi.org/10.1080/09553000110069335] [PMID: 11682006]
[41]
Lee, S.A.; Dritschilo, A.; Jung, M. Role of ATM in oxidative stress-mediated c-Jun phosphorylation in response to ionizing radiation and CdCl2. J. Biol. Chem., 2001, 276(15), 11783-11790.
[http://dx.doi.org/10.1074/jbc.M004517200] [PMID: 11278277]
[42]
Robbins, M.E.; Zhao, W. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int. J. Radiat. Biol., 2004, 80(4), 251-259.
[http://dx.doi.org/10.1080/09553000410001692726] [PMID: 15204702]
[43]
Antal, O.; Hackler, L., Jr; Shen, J.; Mán, I.; Hideghéty, K.; Kitajka, K.; Puskás, L.G. Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis. Lipids Health Dis., 2014, 13(1), 142.
[http://dx.doi.org/10.1186/1476-511X-13-142] [PMID: 25182732]
[44]
Morgan, J.L.; Ritchie, L.E.; Crucian, B.E.; Theriot, C.; Wu, H.; Sams, C.; Smith, S.M.; Turner, N.D.; Zwart, S.R. Increased dietary iron and radiation in rats promote oxidative stress, induce localized and systemic immune system responses, and alter colon mucosal environment. FASEB J., 2014, 28(3), 1486-1498.
[http://dx.doi.org/10.1096/fj.13-239418] [PMID: 24334706]
[45]
Spitz, D.R.; Azzam, E.I.; Li, J.J.; Gius, D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev., 2004, 23(3-4), 311-322.
[http://dx.doi.org/10.1023/B:CANC.0000031769.14728.bc] [PMID: 15197331]
[46]
Fukuda, A.; Tomikawa, J.; Miura, T.; Hata, K.; Nakabayashi, K.; Eggan, K.; Akutsu, H.; Umezawa, A. The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nat. Commun., 2014, 5(1), 5464.
[http://dx.doi.org/10.1038/ncomms6464] [PMID: 25394724]
[47]
Nazıroglu, M.; Akman, H. Effects of Cellular Phone-and Wi-Fi- Induced Electromagnetic Radiation on Oxidative Stress and Molecular Pathways in Brain. In: Systems biology of free radicals and antioxidants; Springer, 2014.
[48]
Tharmalingam, S.; Sreetharan, S.; Kulesza, A.V.; Boreham, D.R.; Tai, T. Low-dose ionizing radiation exposure, oxidative stress and epigenetic programing of health and disease. Radiat. Res., 2017, 188(4), 525-538.
[http://dx.doi.org/10.1667/RR14587.1]
[49]
Xu, S.; Zhou, Z.; Zhang, L.; Yu, Z.; Zhang, W.; Wang, Y.; Wang, X.; Li, M.; Chen, Y.; Chen, C.; He, M.; Zhang, G.; Zhong, M. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res., 2010, 1311, 189-196.
[http://dx.doi.org/10.1016/j.brainres.2009.10.062] [PMID: 19879861]
[50]
Weyemi, U.; Redon, C.E.; Aziz, T.; Choudhuri, R.; Maeda, D.; Parekh, P.R.; Bonner, M.Y.; Arbiser, J.L.; Bonner, W.M. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat. Res., 2015, 183(3), 262-270.
[http://dx.doi.org/10.1667/RR13799.1] [PMID: 25706776]
[51]
Simone, N.L.; Soule, B.P.; Ly, D.; Saleh, A.D.; Savage, J.E.; Degraff, W.; Cook, J.; Harris, C.C.; Gius, D.; Mitchell, J.B. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One, 2009, 4(7), e6377.
[http://dx.doi.org/10.1371/journal.pone.0006377] [PMID: 19633716]
[52]
Schieven, G.L.; Ledbetter, J.A. Activation of tyrosine kinase signal pathways by radiation and oxidative stress. Trends Endocrinol. Metab., 1994, 5(9), 383-388.
[http://dx.doi.org/10.1016/1043-2760(94)90106-6] [PMID: 18407234]
[53]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[54]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 2105607.
[http://dx.doi.org/10.1155/2019/2105607]
[55]
Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother., 2015, 74, 101-110.
[http://dx.doi.org/10.1016/j.biopha.2015.07.025] [PMID: 26349970]
[56]
Sochocka, M.; Koutsouraki, E.S.; Gasiorowski, K.; Leszek, J. Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer’s disease: a new approach to therapy. CNS Neurol. Disord. Drug Targets, 2013, 12(6), 870-881.
[http://dx.doi.org/10.2174/18715273113129990072] [PMID: 23469836]
[57]
Begum, N.; Wang, B.; Mori, M.; Vares, G. Does ionizing radiation influence Alzheimer’s disease risk? J. Radiat. Res. (Tokyo), 2012, 53(6), 815-822.
[http://dx.doi.org/10.1093/jrr/rrs036] [PMID: 22872779]
[58]
Mancuso, C.; Bates, T.E.; Butterfield, D.A.; Calafato, S.; Cornelius, C.; De Lorenzo, A.; Dinkova Kostova, A.T.; Calabrese, V. Natural antioxidants in Alzheimer’s disease. Expert Opin. Investig. Drugs, 2007, 16(12), 1921-1931.
[http://dx.doi.org/10.1517/13543784.16.12.1921] [PMID: 18042001]
[59]
Rodgers, C.C. Low-dose X-ray imaging may increase the risk of neurodegenerative diseases. Med. Hypotheses, 2020, 142, 109726.
[http://dx.doi.org/10.1016/j.mehy.2020.109726] [PMID: 32361669]
[60]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017, 2525967.
[http://dx.doi.org/10.1155/2017/2525967]
[61]
Sobel, E.; Davanipour, Z. Electromagnetic field exposure may cause increased production of amyloid beta and eventually lead to Alzheimer’s disease. Neurology, 1996, 47(6), 1594-1600.
[http://dx.doi.org/10.1212/WNL.47.6.1594] [PMID: 8960756]
[62]
Wang, X.; Su, B.; Perry, G.; Smith, M.A.; Zhu, X. Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer disease. Free Radic. Biol. Med., 2007, 43(12), 1569-1573.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.09.007] [PMID: 18037122]
[63]
Cherry, J.D.; Liu, B.; Frost, J.L.; Lemere, C.A.; Williams, J.P.; Olschowka, J.A.; O’Banion, M.K. Galactic cosmic radiation leads to cognitive impairment and increased a& plaque accumulation in a mouse model of Alzheimer’s disease. PLoS One, 2012, 7(12), e53275.
[http://dx.doi.org/10.1371/journal.pone.0053275] [PMID: 23300905]
[64]
Li, L.; Wang, W.; Welford, S.; Zhang, T.; Wang, X.; Zhu, X. Ionizing radiation causes increased tau phosphorylation in primary neurons. J. Neurochem., 2014, 131(1), 86-93.
[http://dx.doi.org/10.1111/jnc.12769] [PMID: 24861936]
[65]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[66]
Meiser, J.; Weindl, D.; Hiller, K. Complexity of dopamine metabolism. Cell Commun. Signal., 2013, 11(1), 34.
[http://dx.doi.org/10.1186/1478-811X-11-34] [PMID: 23683503]
[67]
Sharma, N.K.; Sharma, R.; Mathur, D.; Sharad, S.; Minhas, G.; Bhatia, K.; Anand, A.; Ghosh, S.P. Role of ionizing radiation in neurodegenerative diseases. Front. Aging Neurosci., 2018, 10, 134.
[http://dx.doi.org/10.3389/fnagi.2018.00134] [PMID: 29867445]
[68]
Tseng, B.P.; Giedzinski, E.; Izadi, A.; Suarez, T.; Lan, M.L.; Tran, K.K.; Acharya, M.M.; Nelson, G.A.; Raber, J.; Parihar, V.K.; Limoli, C.L. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid. Redox Signal., 2014, 20(9), 1410-1422.
[http://dx.doi.org/10.1089/ars.2012.5134] [PMID: 23802883]
[69]
Kempf, S.J.; Azimzadeh, O.; Atkinson, M.J.; Tapio, S. Long-term effects of ionising radiation on the brain: cause for concern? Radiat. Environ. Biophys., 2013, 52(1), 5-16.
[http://dx.doi.org/10.1007/s00411-012-0436-7] [PMID: 23100112]
[70]
Wei, J.; Wang, B.; Wang, H.; Meng, L.; Zhao, Q.; Li, X.; Xin, Y.; Jiang, X. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid. Med. Cell. Longev., 2019, 2019, 3010342.
[http://dx.doi.org/10.1155/2019/3010342] [PMID: 31781332]
[71]
Acharya, M.M.; Baddour, A.A.; Kawashita, T.; Allen, B.D.; Syage, A.R.; Nguyen, T.H.; Yoon, N.; Giedzinski, E.; Yu, L.; Parihar, V.K.; Baulch, J.E. Epigenetic determinants of space radiation-induced cognitive dysfunction. Sci. Rep., 2017, 7, 42885.
[http://dx.doi.org/10.1038/srep42885] [PMID: 28220892]
[72]
Hampel, H.; Prvulovic, D.; Teipel, S.; Jessen, F.; Luckhaus, C.; Frölich, L.; Riepe, M.W.; Dodel, R.; Leyhe, T.; Bertram, L.; Hoffmann, W.; Faltraco, F. The future of Alzheimer’s disease: the next 10 years. Prog. Neurobiol., 2011, 95(4), 718-728.
[http://dx.doi.org/10.1016/j.pneurobio.2011.11.008] [PMID: 22137045]
[73]
Bertram, L.; McQueen, M.B.; Mullin, K.; Blacker, D.; Tanzi, R.E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet., 2007, 39(1), 17-23.
[http://dx.doi.org/10.1038/ng1934] [PMID: 17192785]
[74]
Hollingworth, P.; Harold, D.; Sims, R.; Gerrish, A.; Lambert, J.C.; Carrasquillo, M.M.; Abraham, R.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; Dowzell, K.; Jones, N.; Stretton, A.; Thomas, C.; Richards, A.; Ivanov, D.; Widdowson, C.; Chapman, J.; Lovestone, S.; Powell, J.; Proitsi, P.; Lupton, M.K.; Brayne, C.; Rubinsztein, D.C.; Gill, M.; Lawlor, B.; Lynch, A.; Brown, K.S.; Passmore, P.A.; Craig, D.; McGuinness, B.; Todd, S.; Holmes, C.; Mann, D.; Smith, A.D.; Beaumont, H.; Warden, D.; Wilcock, G.; Love, S.; Kehoe, P.G.; Hooper, N.M.; Vardy, E.R.; Hardy, J.; Mead, S.; Fox, N.C.; Rossor, M.; Collinge, J.; Maier, W.; Jessen, F.; Rüther, E.; Schürmann, B.; Heun, R.; Kölsch, H.; van den Bussche, H.; Heuser, I.; Kornhuber, J.; Wiltfang, J.; Dichgans, M.; Frölich, L.; Hampel, H.; Gallacher, J.; Hüll, M.; Rujescu, D.; Giegling, I.; Goate, A.M.; Kauwe, J.S.; Cruchaga, C.; Nowotny, P.; Morris, J.C.; Mayo, K.; Sleegers, K.; Bettens, K.; Engelborghs, S.; De Deyn, P.P.; Van Broeckhoven, C.; Livingston, G.; Bass, N.J.; Gurling, H.; McQuillin, A.; Gwilliam, R.; Deloukas, P.; Al-Chalabi, A.; Shaw, C.E.; Tsolaki, M.; Singleton, A.B.; Guerreiro, R.; Mühleisen, T.W.; Nöthen, M.M.; Moebus, S.; Jöckel, K.H.; Klopp, N.; Wichmann, H.E.; Pankratz, V.S.; Sando, S.B.; Aasly, J.O.; Barcikowska, M.; Wszolek, Z.K.; Dickson, D.W.; Graff-Radford, N.R.; Petersen, R.C.; van Duijn, C.M.; Breteler, M.M.; Ikram, M.A.; DeStefano, A.L.; Fitzpatrick, A.L.; Lopez, O.; Launer, L.J.; Seshadri, S.; Berr, C.; Campion, D.; Epelbaum, J.; Dartigues, J.F.; Tzourio, C.; Alpérovitch, A.; Lathrop, M.; Feulner, T.M.; Friedrich, P.; Riehle, C.; Krawczak, M.; Schreiber, S.; Mayhaus, M.; Nicolhaus, S.; Wagenpfeil, S.; Steinberg, S.; Stefansson, H.; Stefansson, K.; Snaedal, J.; Björnsson, S.; Jonsson, P.V.; Chouraki, V.; Genier-Boley, B.; Hiltunen, M.; Soininen, H.; Combarros, O.; Zelenika, D.; Delepine, M.; Bullido, M.J.; Pasquier, F.; Mateo, I.; Frank-Garcia, A.; Porcellini, E.; Hanon, O.; Coto, E.; Alvarez, V.; Bosco, P.; Siciliano, G.; Mancuso, M.; Panza, F.; Solfrizzi, V.; Nacmias, B.; Sorbi, S.; Bossù, P.; Piccardi, P.; Arosio, B.; Annoni, G.; Seripa, D.; Pilotto, A.; Scarpini, E.; Galimberti, D.; Brice, A.; Hannequin, D.; Licastro, F.; Jones, L.; Holmans, P.A.; Jonsson, T.; Riemenschneider, M.; Morgan, K.; Younkin, S.G.; Owen, M.J.; O’Donovan, M.; Amouyel, P.; Williams, J. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet., 2011, 43(5), 429-435.
[http://dx.doi.org/10.1038/ng.803] [PMID: 21460840]
[75]
Naj, A.C.; Jun, G.; Beecham, G.W.; Wang, L.S.; Vardarajan, B.N.; Buros, J.; Gallins, P.J.; Buxbaum, J.D.; Jarvik, G.P.; Crane, P.K.; Larson, E.B.; Bird, T.D.; Boeve, B.F.; Graff-Radford, N.R.; De Jager, P.L.; Evans, D.; Schneider, J.A.; Carrasquillo, M.M.; Ertekin-Taner, N.; Younkin, S.G.; Cruchaga, C.; Kauwe, J.S.; Nowotny, P.; Kramer, P.; Hardy, J.; Huentelman, M.J.; Myers, A.J.; Barmada, M.M.; Demirci, F.Y.; Baldwin, C.T.; Green, R.C.; Rogaeva, E.; St George-Hyslop, P.; Arnold, S.E.; Barber, R.; Beach, T.; Bigio, E.H.; Bowen, J.D.; Boxer, A.; Burke, J.R.; Cairns, N.J.; Carlson, C.S.; Carney, R.M.; Carroll, S.L.; Chui, H.C.; Clark, D.G.; Corneveaux, J.; Cotman, C.W.; Cummings, J.L.; DeCarli, C.; DeKosky, S.T.; Diaz-Arrastia, R.; Dick, M.; Dickson, D.W.; Ellis, W.G.; Faber, K.M.; Fallon, K.B.; Farlow, M.R.; Ferris, S.; Frosch, M.P.; Galasko, D.R.; Ganguli, M.; Gearing, M.; Geschwind, D.H.; Ghetti, B.; Gilbert, J.R.; Gilman, S.; Giordani, B.; Glass, J.D.; Growdon, J.H.; Hamilton, R.L.; Harrell, L.E.; Head, E.; Honig, L.S.; Hulette, C.M.; Hyman, B.T.; Jicha, G.A.; Jin, L.W.; Johnson, N.; Karlawish, J.; Karydas, A.; Kaye, J.A.; Kim, R.; Koo, E.H.; Kowall, N.W.; Lah, J.J.; Levey, A.I.; Lieberman, A.P.; Lopez, O.L.; Mack, W.J.; Marson, D.C.; Martiniuk, F.; Mash, D.C.; Masliah, E.; McCormick, W.C.; McCurry, S.M.; McDavid, A.N.; McKee, A.C.; Mesulam, M.; Miller, B.L.; Miller, C.A.; Miller, J.W.; Parisi, J.E.; Perl, D.P.; Peskind, E.; Petersen, R.C.; Poon, W.W.; Quinn, J.F.; Rajbhandary, R.A.; Raskind, M.; Reisberg, B.; Ringman, J.M.; Roberson, E.D.; Rosenberg, R.N.; Sano, M.; Schneider, L.S.; Seeley, W.; Shelanski, M.L.; Slifer, M.A.; Smith, C.D.; Sonnen, J.A.; Spina, S.; Stern, R.A.; Tanzi, R.E.; Trojanowski, J.Q.; Troncoso, J.C.; Van Deerlin, V.M.; Vinters, H.V.; Vonsattel, J.P.; Weintraub, S.; Welsh-Bohmer, K.A.; Williamson, J.; Woltjer, R.L.; Cantwell, L.B.; Dombroski, B.A.; Beekly, D.; Lunetta, K.L.; Martin, E.R.; Kamboh, M.I.; Saykin, A.J.; Reiman, E.M.; Bennett, D.A.; Morris, J.C.; Montine, T.J.; Goate, A.M.; Blacker, D.; Tsuang, D.W.; Hakonarson, H.; Kukull, W.A.; Foroud, T.M.; Haines, J.L.; Mayeux, R.; Pericak-Vance, M.A.; Farrer, L.A.; Schellenberg, G.D. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet., 2011, 43(5), 436-441.
[http://dx.doi.org/10.1038/ng.801] [PMID: 21460841]
[76]
Lowe, X.R.; Marchetti, F.; Lu, X.; Wyrobek, A.J. Molecular stress response in the CNS of mice after systemic exposure to interferon-alpha, ionizing radiation and ketamine. Neurotoxicology, 2009, 30(2), 261-268.
[http://dx.doi.org/10.1016/j.neuro.2008.12.012] [PMID: 19162068]
[77]
Rolyan, H.; Scheffold, A.; Heinrich, A.; Begus-Nahrmann, Y.; Langkopf, B.H.; Hölter, S.M.; Vogt-Weisenhorn, D.M.; Liss, B.; Wurst, W.; Lie, D.C.; Thal, D.R.; Biber, K.; Rudolph, K.L. Telomere shortening reduces Alzheimer’s disease amyloid pathology in mice. Brain, 2011, 134(Pt 7), 2044-2056.
[http://dx.doi.org/10.1093/brain/awr133] [PMID: 21672962]
[78]
Gamez, J.; Corbera-Bellalta, M.; Nogales, G.; Raguer, N.; García-Arumí, E.; Badia-Canto, M.; Lladó-Carbó, E.; Alvarez-Sabín, J. Mutational analysis of the Cu/Zn superoxide dismutase gene in a Catalan ALS population: should all sporadic ALS cases also be screened for SOD1? J. Neurol. Sci., 2006, 247(1), 21-28.
[http://dx.doi.org/10.1016/j.jns.2006.03.006] [PMID: 16674979]
[79]
Saccon, R.A.; Bunton-Stasyshyn, R.K.; Fisher, E.M.; Fratta, P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain, 2013, 136(Pt 8), 2342-2358.
[http://dx.doi.org/10.1093/brain/awt097] [PMID: 23687121]
[80]
Du&i& T.; Stamenkovi& S.; Lai, B.; Andjus, P.; Lu&i& V. Multimodal synchrotron radiation microscopy of intact astrocytes from the hSOD1 G93A rat model of amyotrophic lateral sclerosis. Anal. Chem., 2019, 91(2), 1460-1471.
[http://dx.doi.org/10.1021/acs.analchem.8b04273] [PMID: 30571081]
[81]
Bevelacqua, J.J.; Mortazavi, S.M.J. Alzheimer 's disease: possible mechanisms behind neurohormesis induced by exposure to low doses of ionizing radiation. J. Biomed. Phys. Eng., 2018, 8(2), 153-156.
[http://dx.doi.org/10.31661/jbpe.v8i2.919] [PMID: 29951441]
[82]
Belka, C.; Budach, W.; Kortmann, R.D.; Bamberg, M. Radiation induced CNS toxicity--molecular and cellular mechanisms. Br. J. Cancer, 2001, 85(9), 1233-1239.
[http://dx.doi.org/10.1054/bjoc.2001.2100] [PMID: 11720454]
[83]
Kobashigawa, S.; Suzuki, K.; Yamashita, S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem. Biophys. Res. Commun., 2011, 414(4), 795-800.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.006] [PMID: 22005465]
[84]
El-Missiry, M.A.; Othman, A.I.; El-Sawy, M.R.; Lebede, M.F. Neuroprotective effect of epigallocatechin-3-gallate (EGCG) on radiation-induced damage and apoptosis in the rat hippocampus. Int. J. Radiat. Biol., 2018, 94(9), 798-808.
[http://dx.doi.org/10.1080/09553002.2018.1492755] [PMID: 29939076]
[85]
Rödel, C.; Haas, J.; Groth, A.; Grabenbauer, G.G.; Sauer, R.; Rödel, F. Spontaneous and radiation-induced apoptosis in colorectal carcinoma cells with different intrinsic radiosensitivities: survivin as a radioresistance factor. Int. J. Radiat. Oncol. Biol. Phys., 2003, 55(5), 1341-1347.
[http://dx.doi.org/10.1016/S0360-3016(02)04618-7] [PMID: 12654446]
[86]
Asanuma, K.; Moriai, R.; Yajima, T.; Yagihashi, A.; Yamada, M.; Kobayashi, D.; Watanabe, N. Survivin as a radioresistance factor in pancreatic cancer. Jpn. J. Cancer Res., 2000, 91(11), 1204-1209.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb00906.x] [PMID: 11092988]
[87]
Philipp, J.; Azimzadeh, O.; Subramanian, V.; Merl-Pham, J.; Lowe, D.; Hladik, D.; Erbeldinger, N.; Ktitareva, S.; Fournier, C.; Atkinson, M.J.; Raj, K.; Tapio, S. Radiation-induced endothelial inflammation is transferred via the secretome to recipient cells in a STAT-Mediated Process. J. Proteome Res., 2017, 16(10), 3903-3916.
[http://dx.doi.org/10.1021/acs.jproteome.7b00536] [PMID: 28849662]
[88]
François, A.; Milliat, F.; Guipaud, O.; Benderitter, M. Inflammation and immunity in radiation damage to the gut mucosa. BioMed Res. Int., 2013, 2013, 123241.
[http://dx.doi.org/10.1155/2013/123241]
[89]
Blirando, K.; Milliat, F.; Martelly, I.; Sabourin, J-C.; Benderitter, M.; François, A. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am. J. Pathol., 2011, 178(2), 640-651.
[http://dx.doi.org/10.1016/j.ajpath.2010.10.003] [PMID: 21281796]
[90]
Boström, M.; Kalm, M.; Eriksson, Y.; Bull, C.; Ståhlberg, A.; Björk-Eriksson, T.; Hellström Erkenstam, N.; Blomgren, K. A role for endothelial cells in radiation-induced inflammation. Int. J. Radiat. Biol., 2018, 94(3), 259-271.
[http://dx.doi.org/10.1080/09553002.2018.1431699] [PMID: 29359989]
[91]
Mollà, M.; Gironella, M.; Salas, A.; Closa, D.; Biete, A.; Gimeno, M.; Coronel, P.; Piqué, J.M.; Panés, J. Protective effect of superoxide dismutase in radiation-induced intestinal inflammation. Int. J. Radiat. Oncol. Biol. Phys., 2005, 61(4), 1159-1166.
[http://dx.doi.org/10.1016/j.ijrobp.2004.11.010] [PMID: 15752897]
[92]
Denning, M.F.; Wang, Y.; Tibudan, S.; Alkan, S.; Nickoloff, B.J.; Qin, J.Z. Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C. Cell Death Differ., 2002, 9(1), 40-52.
[http://dx.doi.org/10.1038/sj.cdd.4400929] [PMID: 11803373]
[93]
Ferrer, I. Role of caspases in ionizing radiation-induced apoptosis in the developing cerebellum. J. Neurobiol., 1999, 41(4), 549-558.
[http://dx.doi.org/10.1002/(SICI)1097-4695(199912)41:4<549:AID-NEU10>3.0.CO;2-G] [PMID: 10590178]
[94]
Ahmed, M.M. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors. Curr. Cancer Drug Targets, 2004, 4(1), 43-52.
[http://dx.doi.org/10.2174/1568009043481704] [PMID: 14965266]
[95]
Ahmed, M.M.; Sells, S.F.; Venkatasubbarao, K.; Fruitwala, S.M.; Muthukkumar, S.; Harp, C.; Mohiuddin, M.; Rangnekar, V.M. Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J. Biol. Chem., 1997, 272(52), 33056-33061.
[http://dx.doi.org/10.1074/jbc.272.52.33056] [PMID: 9407088]
[96]
Bulavin, D.V.; Saito, S.; Hollander, M.C.; Sakaguchi, K.; Anderson, C.W.; Appella, E.; Fornace, A.J. Jr Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J., 1999, 18(23), 6845-6854.
[http://dx.doi.org/10.1093/emboj/18.23.6845] [PMID: 10581258]
[97]
Ko, L.J.; Shieh, S-Y.; Chen, X.; Jayaraman, L.; Tamai, K.; Taya, Y.; Prives, C.; Pan, Z-Q. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol. Cell. Biol., 1997, 17(12), 7220-7229.
[http://dx.doi.org/10.1128/MCB.17.12.7220] [PMID: 9372954]
[98]
Unger, T.; Juven-Gershon, T.; Moallem, E.; Berger, M.; Vogt Sionov, R.; Lozano, G.; Oren, M.; Haupt, Y. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J., 1999, 18(7), 1805-1814.
[http://dx.doi.org/10.1093/emboj/18.7.1805] [PMID: 10202144]
[99]
Lambert, P.F.; Kashanchi, F.; Radonovich, M.F.; Shiekhattar, R.; Brady, J.N. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem., 1998, 273(49), 33048-33053.
[http://dx.doi.org/10.1074/jbc.273.49.33048] [PMID: 9830059]
[100]
Chen, C.H.; Zhang, J.; Ling, C.C. Transfected c-myc and c-Ha-ras modulate radiation-induced apoptosis in rat embryo cells. Radiat. Res., 1994, 139(3), 307-315.
[http://dx.doi.org/10.2307/3578828] [PMID: 8073113]
[101]
Hekim, N.; Cetin, Z.; Nikitaki, Z.; Cort, A.; Saygili, E.I. Radiation triggering immune response and inflammation. Cancer Lett., 2015, 368(2), 156-163.
[http://dx.doi.org/10.1016/j.canlet.2015.04.016] [PMID: 25911239]
[102]
Ivanov, V.N.; Hei, T.K. A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis, 2014, 19(3), 399-413.
[http://dx.doi.org/10.1007/s10495-013-0925-4] [PMID: 24158598]
[103]
Yahyapour, R.; Motevaseli, E.; Rezaeyan, A.; Abdollahi, H.; Farhood, B.; Cheki, M.; Rezapoor, S.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Villa, V. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin. Transl. Oncol., 2018, 20(8), 975-988.
[http://dx.doi.org/10.1007/s12094-017-1828-6] [PMID: 29318449]
[104]
Jelonek, K.; Pietrowska, M.; Widlak, P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int. J. Radiat. Biol., 2017, 93(7), 683-696.
[http://dx.doi.org/10.1080/09553002.2017.1304590] [PMID: 28281355]
[105]
Kanzawa, T.; Iwado, E.; Aoki, H.; Iwamaru, A.; Hollingsworth, E.F.; Sawaya, R.; Kondo, S.; Kondo, Y. Ionizing radiation induces apoptosis and inhibits neuronal differentiation in rat neural stem cells via the c-Jun NH2-terminal kinase (JNK) pathway. Oncogene, 2006, 25(26), 3638-3648.
[http://dx.doi.org/10.1038/sj.onc.1209414] [PMID: 16491125]
[106]
Kulms, D.; Zeise, E.; Pöppelmann, B.; Schwarz, T. DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogene, 2002, 21(38), 5844-5851.
[http://dx.doi.org/10.1038/sj.onc.1205743] [PMID: 12185583]
[107]
Lu, F.G.; Wong, C.S. Radiation-induced apoptosis of oligodendrocytes and its association with increased ceramide and down-regulated protein kinase B/Akt activity. Int. J. Radiat. Biol., 2004, 80(1), 39-51.
[http://dx.doi.org/10.1080/09553000310001642876] [PMID: 14761849]
[108]
Verheij, M.; Ruiter, G.A.; Zerp, S.F.; van Blitterswijk, W.J.; Fuks, Z.; Haimovitz-Friedman, A.; Bartelink, H. The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis. Radiother. Oncol., 1998, 47(3), 225-232.
[http://dx.doi.org/10.1016/S0167-8140(98)00007-3] [PMID: 9681884]
[109]
Willaime, S.; Vanhoutte, P.; Caboche, J.; Lemaigre-Dubreuil, Y.; Mariani, J.; Brugg, B. Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur. J. Neurosci., 2001, 13(11), 2037-2046.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01581.x] [PMID: 11422444]
[110]
Lee, J.Y.; Hannun, Y.A.; Obeid, L.M. Ceramide inactivates cellular protein kinase Calpha. J. Biol. Chem., 1996, 271(22), 13169-13174.
[http://dx.doi.org/10.1074/jbc.271.22.13169] [PMID: 8662781]
[111]
Lucas, K.; Maes, M. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol. Neurobiol., 2013, 48(1), 190-204.
[http://dx.doi.org/10.1007/s12035-013-8425-7] [PMID: 23436141]
[112]
Shan, Y.X.; Jin, S.Z.; Liu, X.D.; Liu, Y.; Liu, S.Z. Ionizing radiation stimulates secretion of pro-inflammatory cytokines: dose-response relationship, mechanisms and implications. Radiat. Environ. Biophys., 2007, 46(1), 21-29.
[http://dx.doi.org/10.1007/s00411-006-0076-x] [PMID: 17072632]
[113]
Porter, L.A.; Singh, G.; Lee, J.M. Abundance of cyclin B1 regulates gamma-radiation-induced apoptosis. Blood, 2000, 95(8), 2645-2650.
[http://dx.doi.org/10.1182/blood.V95.8.2645] [PMID: 10753846]
[114]
Assefa, Z.; Van Laethem, A.; Garmyn, M.; Agostinis, P. Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim. Biophys. Acta, 2005, 1755(2), 90-106.
[PMID: 15964692]
[115]
Bode, A.M.; Dong, Z. Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci. STKE, 2003, 2003(167), RE2.
[PMID: 12554854]
[116]
Kyrkanides, S.; Moore, A.H.; Olschowka, J.A.; Daeschner, J.C.; Williams, J.P.; Hansen, J.T.; Kerry O’Banion, M. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res. Mol. Brain Res., 2002, 104(2), 159-169.
[http://dx.doi.org/10.1016/S0169-328X(02)00353-4] [PMID: 12225870]
[117]
Sayama, K.; Hanakawa, Y.; Shirakata, Y.; Yamasaki, K.; Sawada, Y.; Sun, L.; Yamanishi, K.; Ichijo, H.; Hashimoto, K. Apoptosis signal-regulating kinase 1 (ASK1) is an intracellular inducer of keratinocyte differentiation. J. Biol. Chem., 2001, 276(2), 999-1004.
[http://dx.doi.org/10.1074/jbc.M003425200] [PMID: 11029458]
[118]
Lindgren, T.; Stigbrand, T.; Riklund, K.; Johansson, L.; Eriksson, D. Gene expression profiling in MOLT-4 cells during gamma-radiation-induced apoptosis. Tumour Biol., 2012, 33(3), 689-700.
[http://dx.doi.org/10.1007/s13277-012-0329-z] [PMID: 22322922]
[119]
Yang, J-Y.; Xia, W.; Hu, M.C-T. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int. J. Oncol., 2006, 29(3), 643-648.
[http://dx.doi.org/10.3892/ijo.29.3.643] [PMID: 16865280]
[120]
Kang, K.A.; Lee, I.K.; Zhang, R.; Piao, M.J.; Kim, K.C.; Kim, S.Y.; Shin, T.; Kim, B.J.; Lee, N.H.; Hyun, J.W. Radioprotective effect of geraniin via the inhibition of apoptosis triggered by γ-radiation-induced oxidative stress. Cell Biol. Toxicol., 2011, 27(2), 83-94.
[http://dx.doi.org/10.1007/s10565-010-9172-4] [PMID: 20680428]
[121]
Georgakilas, A.G.; Pavlopoulou, A.; Louka, M.; Nikitaki, Z.; Vorgias, C.E.; Bagos, P.G.; Michalopoulos, I. Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett., 2015, 368(2), 164-172.
[http://dx.doi.org/10.1016/j.canlet.2015.03.021] [PMID: 25841996]
[122]
Di Maggio, F.M.; Minafra, L.; Forte, G.I.; Cammarata, F.P.; Lio, D.; Messa, C.; Gilardi, M.C.; Bravatà, V. Portrait of inflammatory response to ionizing radiation treatment. J. Inflamm. (Lond.), 2015, 12(1), 14.
[http://dx.doi.org/10.1186/s12950-015-0058-3] [PMID: 25705130]
[123]
Andrade, S.; Ramalho, M.J.; Pereira, M.D.C.; Loureiro, J.A. Resveratrol brain delivery for neurological disorders prevention and treatment. Front. Pharmacol., 2018, 9, 1261.
[http://dx.doi.org/10.3389/fphar.2018.01261] [PMID: 30524273]
[124]
Liu, W.; Ding, I.; Chen, K.; Olschowka, J.; Xu, J.; Hu, D.; Morrow, G.R.; Okunieff, P. Interleukin 1β (IL1B) signaling is a critical component of radiation-induced skin fibrosis. Radiat. Res., 2006, 165(2), 181-191.
[http://dx.doi.org/10.1667/RR3478.1] [PMID: 16435917]
[125]
Fakhri, S.; Kiani, A.; Jalili, C.; Abbaszadeh, F.; Piri, S.; Farzaei, M.H.; Rastegari-Pouyani, M.; Mohammadi-Noori, E.; Khan, H. Intrathecal administration of melatonin ameliorates the neuroinflammation-mediated sensory and motor dysfunction in a rat model of compression spinal cord injury. Curr. Mol. Pharmacol., 2020.
[http://dx.doi.org/10.2174/1874467213666201230101811] [PMID: 33380311]
[126]
Heneka, M.T.; O’Banion, M.K. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol., 2007, 184(1-2), 69-91.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.017] [PMID: 17222916]
[127]
Tansey, M.G.; McCoy, M.K.; Frank-Cannon, T.C. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol., 2007, 208(1), 1-25.
[http://dx.doi.org/10.1016/j.expneurol.2007.07.004] [PMID: 17720159]
[128]
Ma, T.; Tan, M-S.; Yu, J-T.; Tan, L. Resveratrol as a therapeutic agent for Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 350516.
[http://dx.doi.org/10.1155/2014/350516]
[129]
Liu, B.; Hong, J-S. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther., 2003, 304(1), 1-7.
[http://dx.doi.org/10.1124/jpet.102.035048] [PMID: 12490568]
[130]
Ghavami, S. Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoffersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H.; Hashemi, M.; Owji, A.A.; Łos, M.J. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol., 2014, 112, 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004] [PMID: 24211851]
[131]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[132]
Gelders, G.; Baekelandt, V.; Van der Perren, A. Linking Neuroinflammation and Neurodegeneration in Parkinson’s Disease. J. Immunol. Res., 2018, 2018, 4784268.
[http://dx.doi.org/10.1155/2018/4784268] [PMID: 29850629]
[133]
McGeer, P.L.; Itagaki, S.; Boyes, B.E.; McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 1988, 38(8), 1285-1291.
[http://dx.doi.org/10.1212/WNL.38.8.1285] [PMID: 3399080]
[134]
Cassarino, D.S.; Fall, C.P.; Swerdlow, R.H.; Smith, T.S.; Halvorsen, E.M.; Miller, S.W.; Parks, J.P.; Parker, W.D., Jr; Bennett, J.P. Jr Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim. Biophys. Acta, 1997, 1362(1), 77-86.
[http://dx.doi.org/10.1016/S0925-4439(97)00070-7] [PMID: 9434102]
[135]
Chao, C.C.; Hu, S.; Molitor, T.W.; Shaskan, E.G.; Peterson, P.K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol., 1992, 149(8), 2736-2741.
[PMID: 1383325]
[136]
Gao, H-M.; Hong, J-S.; Zhang, W.; Liu, B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci., 2002, 22(3), 782-790.
[http://dx.doi.org/10.1523/JNEUROSCI.22-03-00782.2002] [PMID: 11826108]
[137]
McGuire, S.O.; Ling, Z.D.; Lipton, J.W.; Sortwell, C.E.; Collier, T.J.; Carvey, P.M. Tumor necrosis factor α is toxic to embryonic mesencephalic dopamine neurons. Exp. Neurol., 2001, 169(2), 219-230.
[http://dx.doi.org/10.1006/exnr.2001.7688] [PMID: 11358437]
[138]
Wu, D.C.; Jackson-Lewis, V.; Vila, M.; Tieu, K.; Teismann, P.; Vadseth, C.; Choi, D.K.; Ischiropoulos, H.; Przedborski, S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci., 2002, 22(5), 1763-1771.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01763.2002] [PMID: 11880505]
[139]
Stone, D.K.; Reynolds, A.D.; Mosley, R.L.; Gendelman, H.E. Innate and adaptive immunity for the pathobiology of Parkinson’s disease. Antioxid. Redox Signal., 2009, 11(9), 2151-2166.
[http://dx.doi.org/10.1089/ars.2009.2460] [PMID: 19243239]
[140]
Fossati, S.; Ghiso, J.; Rostagno, A. Insights into caspase-mediated apoptotic pathways induced by amyloid-β; in cerebral microvascular endothelial cells. Neurodegener. Dis., 2012, 10(1-4), 324-328.
[http://dx.doi.org/10.1159/000332821] [PMID: 22156599]
[141]
Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 276.
[http://dx.doi.org/10.1186/s12974-018-1313-3] [PMID: 30249283]
[142]
Akundi, R.S.; Huang, Z.; Eason, J.; Pandya, J.D.; Zhi, L.; Cass, W.A.; Sullivan, P.G.; Büeler, H. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One, 2011, 6(1), e16038.
[http://dx.doi.org/10.1371/journal.pone.0016038] [PMID: 21249202]
[143]
Gandhi, S.; Wood-Kaczmar, A.; Yao, Z.; Plun-Favreau, H.; Deas, E.; Klupsch, K.; Downward, J.; Latchman, D.S.; Tabrizi, S.J.; Wood, N.W.; Duchen, M.R.; Abramov, A.Y. PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell, 2009, 33(5), 627-638.
[http://dx.doi.org/10.1016/j.molcel.2009.02.013] [PMID: 19285945]
[144]
Heeman, B.; Van den Haute, C.; Aelvoet, S.A.; Valsecchi, F.; Rodenburg, R.J.; Reumers, V.; Debyser, Z.; Callewaert, G.; Koopman, W.J.; Willems, P.H.; Baekelandt, V. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J. Cell Sci., 2011, 124(Pt 7), 1115-1125.
[http://dx.doi.org/10.1242/jcs.078303] [PMID: 21385841]
[145]
Marongiu, R.; Spencer, B.; Crews, L.; Adame, A.; Patrick, C.; Trejo, M.; Dallapiccola, B.; Valente, E.M.; Masliah, E. Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J. Neurochem., 2009, 108(6), 1561-1574.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05932.x] [PMID: 19166511]
[146]
Zhang, Q.S.; Heng, Y.; Yuan, Y.H.; Chen, N.H. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicol. Lett., 2017, 265, 30-37.
[http://dx.doi.org/10.1016/j.toxlet.2016.11.002] [PMID: 27865851]
[147]
Skaper, S.D.; Facci, L.; Zusso, M.; Giusti, P. An inflammation-centric view of neurological disease: Beyond the neuron. Front. Cell. Neurosci., 2018, 12(72), 72.
[http://dx.doi.org/10.3389/fncel.2018.00072] [PMID: 29618972]
[148]
Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol., 2018, 9(754), 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[149]
Luan, Y.Y.; Yao, Y.M. The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Front. Immunol., 2018, 9, 1302.
[http://dx.doi.org/10.3389/fimmu.2018.01302] [PMID: 29951057]
[150]
Atassi, N.; Xu, M.; Triantafyllou, C.; Keil, B.; Lawson, R.; Cernasov, P.; Ratti, E.; Long, C.J.; Paganoni, S.; Murphy, A.; Salibi, N.; Seethamraju, R.; Rosen, B.; Ratai, E.M. Ultra high-field (7tesla) magnetic resonance spectroscopy in Amyotrophic Lateral Sclerosis. PLoS One, 2017, 12(5), e0177680.
[http://dx.doi.org/10.1371/journal.pone.0177680] [PMID: 28498852]
[151]
Heath-Engel, H.M.; Chang, N.C.; Shore, G.C. The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene, 2008, 27(50), 6419-6433.
[http://dx.doi.org/10.1038/onc.2008.309] [PMID: 18955970]
[152]
Hetz, C.A. ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid. Redox Signal., 2007, 9(12), 2345-2355.
[http://dx.doi.org/10.1089/ars.2007.1793] [PMID: 17854276]
[153]
McGeer, P.L.; McGeer, E.G. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve, 2002, 26(4), 459-470.
[http://dx.doi.org/10.1002/mus.10191] [PMID: 12362410]
[154]
Morrice, J.R.; Gregory-Evans, C.Y.; Shaw, C.A. Necroptosis in amyotrophic lateral sclerosis and other neurological disorders. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 347-353.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.025] [PMID: 27902929]
[155]
Raoul, C.; Barthelemy, C.; Couzinet, A.; Hancock, D.; Pettmann, B.; Hueber, A.O. Expression of a dominant negative form of Daxx in vivo rescues motoneurons from Fas (CD95)-induced cell death. J. Neurobiol., 2005, 62(2), 178-188.
[http://dx.doi.org/10.1002/neu.20086] [PMID: 15459896]
[156]
Raoul, C.; Estévez, A.G.; Nishimune, H.; Cleveland, D.W.; deLapeyrière, O.; Henderson, C.E.; Haase, G.; Pettmann, B. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron, 2002, 35(6), 1067-1083.
[http://dx.doi.org/10.1016/S0896-6273(02)00905-4] [PMID: 12354397]
[157]
Oberst, A. Death in the fast lane: what’s next for necroptosis? FEBS J., 2016, 283(14), 2616-2625.
[http://dx.doi.org/10.1111/febs.13520] [PMID: 26395133]
[158]
Johann, S.; Heitzer, M.; Kanagaratnam, M.; Goswami, A.; Rizo, T.; Weis, J.; Troost, D.; Beyer, C. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia, 2015, 63(12), 2260-2273.
[http://dx.doi.org/10.1002/glia.22891] [PMID: 26200799]
[159]
Balentova, S.; Adamkov, M. Molecular, cellular and functional effects of radiation-induced brain injury: A review. Int. J. Mol. Sci., 2015, 16(11), 27796-27815.
[http://dx.doi.org/10.3390/ijms161126068] [PMID: 26610477]
[160]
Lumniczky, K.; Szatmári, T.; Sáfrány, G. Ionizing radiation-induced immune and inflammatory reactions in the brain. Front. Immunol., 2017, 8, 517.
[http://dx.doi.org/10.3389/fimmu.2017.00517] [PMID: 28529513]
[161]
Mattsson, M-O.; Simkó, M. Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology, 2012, 301(1-3), 1-12.
[http://dx.doi.org/10.1016/j.tox.2012.06.011] [PMID: 22750629]
[162]
Sun, A-M.; Li, C-G.; Han, Y-Q.; Liu, Q-L.; Xia, Q.; Yuan, Y-W. X-ray irradiation promotes apoptosis of hippocampal neurons through up-regulation of Cdk5 and p25. Cancer Cell Int., 2013, 13(1), 47.
[http://dx.doi.org/10.1186/1475-2867-13-47] [PMID: 23688022]
[163]
Zuo, H.; Lin, T.; Wang, D.; Peng, R.; Wang, S.; Gao, Y.; Xu, X.; Zhao, L.; Wang, S.; Su, Z. RKIP regulates neural cell apoptosis induced by exposure to microwave radiation partly through the MEK/ERK/CREB pathway. Mol. Neurobiol., 2014, 51.
[PMID: 25108669]
[164]
Su, Z.; Sheng, L.; Yu, P.; Ren, N.; Li, Y.; Qin, Z. Regulation of microRNAs by IRE1α in apoptosis: implications for the pathomechanism of neurodegenerative diseases. Int. J. Neurosci., 2020, 130(12), 1230-1236.
[http://dx.doi.org/10.1080/00207454.2020.1730833] [PMID: 32070174]
[165]
Mansour, S.Z.; Hanafi, N.; Noaman, E. Aluminium and gamma irradiation induced oxidative damage in brain tissue of male rats - protective role of ferulic acid. J. Radiat. Res. (Tokyo), 2011, 4(4A), 1163-1188.
[166]
Moradi, S.Z.; Momtaz, S.; Bayrami, Z.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front. Bioeng. Biotechnol., 2020, 8, 238.
[http://dx.doi.org/10.3389/fbioe.2020.00238] [PMID: 32318551]
[167]
Costa, R.P.O.; Lucena, L.F.; Silva, L.M.A.; Zocolo, G.J.; Herrera-Acevedo, C.; Scotti, L.; Da-Costa, F.B.; Ionov, N.; Poroikov, V.; Muratov, E.N.; Scotti, M.T. The SistematX web portal of natural products: An update. J. Chem. Inf. Model., 2021, 61(6), 2516-2522.
[http://dx.doi.org/10.1021/acs.jcim.1c00083] [PMID: 34014674]
[168]
Wang, J.; Song, Y.; Chen, Z.; Leng, S.X. Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases. Oxid. Med. Cell. Longev., 2018, 2018, 1972714.
[http://dx.doi.org/10.1155/2018/1972714] [PMID: 30402203]
[169]
Asl, J.F.; Goudarzi, M.; Shoghi, H. The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol. Rep., 2020, 72(4), 857-866.
[http://dx.doi.org/10.1007/s43440-020-00063-9] [PMID: 32128712]
[170]
Fakhri, S.; Moradi, S.Z.; Farzaei, M.H.; Bishayee, A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin. Cancer Biol.,, 2020, S1044- 579X(20), 30040-7.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.007] [PMID: 32081639]
[171]
Rane, J.S.; Bhaumik, P.; Panda, D. Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis., 2017, 60(3), 999-1014.
[http://dx.doi.org/10.3233/JAD-170351] [PMID: 28984591]
[172]
Desai, P.P.; Patravale, V.B. Curcumin cocrystal micelles-multifunctional nanocomposites for management of neurodegenerative ailments. J. Pharm. Sci., 2018, 107(4), 1143-1156.
[http://dx.doi.org/10.1016/j.xphs.2017.11.014] [PMID: 29183742]
[173]
Xiao, L.; Ding, M.; Fernandez, A.; Zhao, P.; Jin, L.; Li, X. Curcumin alleviates lumbar radiculopathy by reducing neuroinflammation, oxidative stress and nociceptive factors. Eur. Cell. Mater., 2017, 33, 279-293.
[http://dx.doi.org/10.22203/eCM.v033a21] [PMID: 28485773]
[174]
Xie, Y.; Zhao, Q.Y.; Li, H.Y.; Zhou, X.; Liu, Y.; Zhang, H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol. Biochem. Behav., 2014, 126, 181-186.
[http://dx.doi.org/10.1016/j.pbb.2014.08.005] [PMID: 25159739]
[175]
Shen, G.; Xu, C.; Hu, R.; Jain, M.R.; Gopalkrishnan, A.; Nair, S.; Huang, M.T.; Chan, J.Y.; Kong, A.N. Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Mol. Cancer Ther., 2006, 5(1), 39-51.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0293] [PMID: 16432161]
[176]
Verma, V. Relationship and interactions of curcumin with radiation therapy. World J. Clin. Oncol., 2016, 7(3), 275-283.
[http://dx.doi.org/10.5306/wjco.v7.i3.275] [PMID: 27298767]
[177]
Soltani, B.; Ghaemi, N.; Sadeghizadeh, M.; Najafi, F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol. Toxicol., 2016, 32(6), 543-561.
[http://dx.doi.org/10.1007/s10565-016-9354-9] [PMID: 27473378]
[178]
Okunieff, P.; Xu, J.; Hu, D.; Liu, W.; Zhang, L.; Morrow, G.; Pentland, A.; Ryan, J.L.; Ding, I. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int. J. Radiat. Oncol. Biol. Phys., 2006, 65(3), 890-898.
[http://dx.doi.org/10.1016/j.ijrobp.2006.03.025] [PMID: 16751071]
[179]
Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442.
[http://dx.doi.org/10.3233/JAD-170093] [PMID: 29036814]
[180]
Wang, J.; Song, Y.; Gao, M.; Bai, X.; Chen, Z. Neuroprotective effect of several phytochemicals and its potential application in the prevention of neurodegenerative diseases. Geriatrics (Basel), 2016, 1(4), 29.
[http://dx.doi.org/10.3390/geriatrics1040029] [PMID: 31022822]
[181]
Wang, H.; Jiang, T.; Li, W.; Gao, N.; Zhang, T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol. Lett., 2018, 282, 100-108.
[http://dx.doi.org/10.1016/j.toxlet.2017.10.021] [PMID: 29097221]
[182]
Prager, I.; Patties, I.; Himmelbach, K.; Kendzia, E.; Merz, F.; Müller, K.; Kortmann, R.D.; Glasow, A. Dose-dependent short- and long-term effects of ionizing irradiation on neural stem cells in murine hippocampal tissue cultures: neuroprotective potential of resveratrol. Brain Behav., 2016, 6(10), e00548.
[http://dx.doi.org/10.1002/brb3.548] [PMID: 27781151]
[183]
Pannu, N.; Bhatnagar, A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother., 2019, 109, 2237-2251.
[http://dx.doi.org/10.1016/j.biopha.2018.11.075] [PMID: 30551481]
[184]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[185]
Li, J.; Feng, L.; Xing, Y.; Wang, Y.; Du, L.; Xu, C.; Cao, J.; Wang, Q.; Fan, S.; Liu, Q.; Fan, F. Radioprotective and antioxidant effect of resveratrol in hippocampus by activating Sirt1. Int. J. Mol. Sci., 2014, 15(4), 5928-5939.
[http://dx.doi.org/10.3390/ijms15045928] [PMID: 24722566]
[186]
Lehrer, S.; Rheinstein, P.H.; Rosenzweig, K.E. Association of radon background and total background ionizing radiation with Alzheimer’s disease deaths in US states. J. Alzheimers Dis., 2017, 59(2), 737-741.
[http://dx.doi.org/10.3233/JAD-170308] [PMID: 28671130]
[187]
Arbo, B.D.; André-Miral, C.; Nasre-Nasser, R.G.; Schimith, L.E.; Santos, M.G.; Costa-Silva, D.; Muccillo-Baisch, A.L.; Hort, M.A. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 103.
[http://dx.doi.org/10.3389/fnagi.2020.00103] [PMID: 32362821]
[188]
Firouzi, F.; Khoei, S.; Mirzaei, H.R. Role of resveratrol on the cytotoxic effects and DNA damages of iododeoxyuridine and megavoltage radiation in spheroid culture of U87MG glioblastoma cell line. Gen. Physiol. Biophys., 2015, 34(1), 43-50.
[http://dx.doi.org/10.4149/gpb_2014023] [PMID: 25367760]
[189]
Wiciński, M.; Domanowska, A.; Wódkiewicz, E.; Malinowski, B. Neuroprotective properties of resveratrol and its derivatives-influence on potential mechanisms leading to the development of Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(8), 2749.
[http://dx.doi.org/10.3390/ijms21082749] [PMID: 32326620]
[190]
Xu, L.; Yang, X.; Cai, J.; Ma, J.; Cheng, H.; Zhao, K.; Yang, L.; Cao, Y.; Qin, Q.; Zhang, C.; Zhang, Q.; Sun, X. Resveratrol attenuates radiation-induced salivary gland dysfunction in mice. Laryngoscope, 2013, 123(11), E23-E29.
[http://dx.doi.org/10.1002/lary.24276] [PMID: 23794219]
[191]
Yin, H.; Si, J.; Xu, H.; Dong, J.; Zheng, D.; Lu, X.; Li, X. Resveratrol-loaded nanoparticles reduce oxidative stress induced by radiation or amyloid-beta in transgenic Caenorhabditis elegans. J. Biomed. Nanotechnol., 2014, 10(8), 1536-1544.
[http://dx.doi.org/10.1166/jbn.2014.1897] [PMID: 25016653]
[192]
Wang, W.; Wang, S.; Liu, T.; Ma, Y.; Huang, S.; Lei, L.; Wen, A.; Ding, Y. Resveratrol: Multi-targets mechanism on neurodegenerative diseases based on network pharmacology. Front. Pharmacol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphar.2020.00694] [PMID: 32477148]
[193]
Rifaai, R.A.; Mokhemer, S.A.; Saber, E.A.; El-Aleem, S.A.A.; El-Tahawy, N.F.G. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in alzheimer’s disease. J. Chem. Neuroanat., 2020, 107, 101795.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101795] [PMID: 32464160]
[194]
Kong, Y.; Li, K.; Fu, T.; Wan, C.; Zhang, D.; Song, H.; Zhang, Y.; Liu, N.; Gan, Z.; Yuan, L. Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression. Oncotarget, 2016, 7(42), 67716-67731.
[http://dx.doi.org/10.18632/oncotarget.11963] [PMID: 27626494]
[195]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[196]
Bagheri, H.; Ghasemi, F.; Barreto, G.E.; Rafiee, R.; Sathyapalan, T.; Sahebkar, A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors, 2020, 46(1), 5-20.
[http://dx.doi.org/10.1002/biof.1566] [PMID: 31580521]
[197]
Yu, X.; Li, Y.; Mu, X. Effect of Quercetin on PC12 Alzheimer’s Disease Cell Model Induced by Aβ25-35 and Its Mechanism Based on Sirtuin1/Nrf2/HO-1 Pathway. Biomed Res Int, 2020, 2020.
[198]
Kale, A. Pi&kin, Ö.; Ba& Y.; Aydin, B.G.; Can, M.; Elmas, Ö.; Büyükuysal, Ç. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J. Radiat. Res. (Tokyo), 2018, 59(4), 404-410.
[http://dx.doi.org/10.1093/jrr/rry032] [PMID: 29688418]
[199]
Chatterjee, J.; Langhnoja, J.; Pillai, P.P.; Mustak, M.S. Neuroprotective effect of quercetin against radiation-induced endoplasmic reticulum stress in neurons. J. Biochem. Mol. Toxicol., 2019, 33(2), e22242.
[http://dx.doi.org/10.1002/jbt.22242] [PMID: 30368985]
[200]
Picone, P.; Nuzzo, D.; Di Carlo, M. Ferulic acid: a natural antioxidant against oxidative stress induced by oligomeric A-beta on sea urchin embryo. Biol. Bull., 2013, 224(1), 18-28.
[http://dx.doi.org/10.1086/BBLv224n1p18] [PMID: 23493505]
[201]
Said, U.Z.; Saada, H.N.; Amin, A.M.; Abdalla, M.S.; Elsayed, E.M. Efficacy of hesperidin in modulating radiation-induced brain damage in rats. J. Radiat. Res. (Tokyo), 2012, 5(1), 71-85.
[202]
Said, U.Z.; Saada, H.N.; Abd-Alla, M.S.; Elsayed, M.E.; Amin, A.M. Hesperidin attenuates brain biochemical changes of irradiated rats. Int. J. Radiat. Biol., 2012, 88(8), 613-618.
[http://dx.doi.org/10.3109/09553002.2012.694008] [PMID: 22671307]
[203]
Kale, A. Pi&kin, Ö.; Ba& Y.; Ayd&n, B.G.; Can, M.; Elmas, Ö.; Büyükuysal, Ç. Ameliorative effects of Hesperidin on radiation induced brain injury in rats. Int. J. Radiat. Biol., 2019, 17(2), 229-236.
[204]
Thabet, N.M.; Moustafa, E.M. Protective effect of rutin against brain injury induced by acrylamide or gamma radiation: role of PI3K/AKT/GSK-3&/NRF-2 signalling pathway. Arch. Physiol. Biochem., 2018, 124(2), 185-193.
[http://dx.doi.org/10.1080/13813455.2017.1374978] [PMID: 28906145]
[205]
Sunada, S.; Fujisawa, H.; Cartwright, I.M.; Maeda, J.; Brents, C.A.; Mizuno, K.; Aizawa, Y.; Kato, T.A.; Uesaka, M. Monoglucosyl-rutin as a potential radioprotector in mammalian cells. Mol. Med. Rep., 2014, 10(1), 10-14.
[http://dx.doi.org/10.3892/mmr.2014.2181] [PMID: 24788331]
[206]
Fischer, N.; Seo, E-J.; Efferth, T. Prevention from radiation damage by natural products. Phytomedicine, 2018, 47, 192-200.
[http://dx.doi.org/10.1016/j.phymed.2017.11.005] [PMID: 30166104]
[207]
Patil, S.L.; Rao, N.B.; Somashekarappa, H.M.; Rajashekhar, K.P. Antigenotoxic potential of rutin and quercetin in Swiss mice exposed to gamma radiation. Biomed. J., 2014, 37(5), 305-313.
[http://dx.doi.org/10.4103/2319-4170.132880] [PMID: 25179701]
[208]
Sajjad, N.; Wani, A.; Sharma, A.; Ali, R.; Hassan, S.; Hamid, R.; Habib, H.; Ganai, B.A. Artemisia amygdalina upregulates Nrf2 and protects neurons against oxidative stress in Alzheimer disease. Cell. Mol. Neurobiol., 2019, 39(3), 387-399.
[http://dx.doi.org/10.1007/s10571-019-00656-w] [PMID: 30725250]
[209]
Alsherbiny, M.A.; Abd-Elsalam, W.H.; El Badawy, S.A.; Taher, E.; Fares, M.; Torres, A.; Chang, D.; Li, C.G. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem. Toxicol., 2019, 123, 72-97.
[http://dx.doi.org/10.1016/j.fct.2018.10.048] [PMID: 30352300]
[210]
Tarozzi, A.; Angeloni, C.; Malaguti, M.; Morroni, F.; Hrelia, S.; Hrelia, P. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid. Med. Cell. Longev., 2013, 2013, 415078.
[http://dx.doi.org/10.1155/2013/415078] [PMID: 23983898]
[211]
Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; Yamamoto, M.; Nabeshima, Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun., 1997, 236(2), 313-322.
[http://dx.doi.org/10.1006/bbrc.1997.6943] [PMID: 9240432]
[212]
Talalay, P.; De Long, M.J.; Prochaska, H.J. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc. Natl. Acad. Sci. USA, 1988, 85(21), 8261-8265.
[http://dx.doi.org/10.1073/pnas.85.21.8261] [PMID: 3141925]
[213]
Fakhri, S.; Patra, J.K.; Das, S.K.; Das, G.; Majnooni, M.B.; Farzaei, M.H. Ginger and heart health: from mechanisms to therapeutics. Curr. Mol. Pharmacol., 2020.
[http://dx.doi.org/10.2174/1874467213666201209105005] [PMID: 33297926]
[214]
Rao, B.N.; Rao, B.S.; Aithal, B.K.; Kumar, M.R. Radiomodifying and anticlastogenic effect of Zingerone on Swiss albino mice exposed to whole body gamma radiation. Mutat. Res., 2009, 677(1-2), 33-41.
[http://dx.doi.org/10.1016/j.mrgentox.2009.05.004] [PMID: 19463966]
[215]
Rao, B.N.; Archana, P.R.; Aithal, B.K.; Rao, B.S.S. Protective effect of zingerone, a dietary compound against radiation induced genetic damage and apoptosis in human lymphocytes. Eur. J. Pharmacol., 2011, 657(1-3), 59-66.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.002] [PMID: 21335001]
[216]
Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem., 2018, 153, 105-115.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[217]
Gandhi, N.M. Baicalein protects mice against radiation-induced DNA damages and genotoxicity. Mol. Cell. Biochem., 2013, 379(1-2), 277-281.
[http://dx.doi.org/10.1007/s11010-013-1649-z] [PMID: 23606056]
[218]
Mansour, S.Z.; Moawed, F.S.M.; Elmarkaby, S.M. Protective effect of 5, 7-dihydroxyflavone on brain of rats exposed to acrylamide or &-radiation. J. Photochem. Photobiol. B, 2017, 175, 149-155.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.08.034] [PMID: 28888167]
[219]
Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Rashid, S.M.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective strategies for neurological disorders by natural products: An update. Curr. Neuropharmacol., 2019, 17(3), 247-267.
[http://dx.doi.org/10.2174/1570159X16666180911124605] [PMID: 30207234]
[220]
Zhao, H.; Zhu, W.; Jia, L.; Sun, X.; Chen, G.; Zhao, X.; Li, X.; Meng, X.; Kong, L.; Xing, L.; Yu, J. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br. J. Radiol., 2016, 89(1058), 20150665.
[http://dx.doi.org/10.1259/bjr.20150665] [PMID: 26607642]
[221]
Li, J. Neuroprotective effect of (-)-epigallocatechin-3-gallate on autoimmune thyroiditis in a rat model by an anti-inflammation effect, anti-apoptosis and inhibition of TRAIL signaling pathway. Exp. Ther. Med., 2018, 15(1), 1087-1092.
[PMID: 29434699]
[222]
Yang, S-W.; Lee, B.R.; Koh, J-W. Protective effects of epigallocatechin gallate after UV irradiation in cultured human retinal pigment epithelial cells. Korean J. Ophthalmol., 2007, 21(4), 232-237.
[http://dx.doi.org/10.3341/kjo.2007.21.4.232] [PMID: 18063889]
[223]
Mitrica, R.; Dumitru, I.; Ruta, L.L.; Ofiteru, A.M.; Farcasanu, I.C. The dual action of epigallocatechin gallate (EGCG), the main constituent of green tea, against the deleterious effects of visible light and singlet oxygen-generating conditions as seen in yeast cells. Molecules, 2012, 17(9), 10355-10369.
[http://dx.doi.org/10.3390/molecules170910355] [PMID: 22932216]
[224]
Richi, B.; Kale, R.K.; Tiku, A.B. Radio-modulatory effects of green tea catechin EGCG on pBR322 plasmid DNA and murine splenocytes against gamma-radiation induced damage. Mutat. Res., 2012, 747(1), 62-70.
[http://dx.doi.org/10.1016/j.mrgentox.2012.04.002] [PMID: 22521723]
[225]
Nam, S.; Smith, D.M.; Dou, Q.P. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J. Biol. Chem., 2001, 276(16), 13322-13330.
[http://dx.doi.org/10.1074/jbc.M004209200] [PMID: 11278274]
[226]
Alkis, H.; Kuzhan, A.; Dirier, A.; Tarakcioglu, M.; Demir, E.; Saricicek, E.; Demir, T.; Ahlatci, A.; Demirci, A.; Cinar, K. Neuroprotective effects of propolis and caffeic acid phenethyl ester (CAPE) on the radiation-injured brain tissue (Neuroprotective effects of propolis and CAPE). Int J Radiat Res, 2015, 13(4), 297-303.
[227]
Calikoglu, M.; Tamer, L.; Sucu, N.; Coskun, B.; Ercan, B.; Gul, A.; Calikoglu, I.; Kanik, A. The effects of caffeic acid phenethyl ester on tissue damage in lung after hindlimb ischemia-reperfusion. Pharmacol. Res., 2003, 48(4), 397-403.
[http://dx.doi.org/10.1016/S1043-6618(03)00156-7] [PMID: 12902211]
[228]
Cikman, O.; Taysi, S.; Gulsen, M.T.; Demir, E.; Akan, M.; Diril, H.; Kiraz, H.A.; Karaayvaz, M.; Tarakcioglu, M. The radio-protective effects of caffeic acid phenethyl ester and thymoquinone in rats exposed to total head irradiation. Wien. Klin. Wochenschr., 2015, 127(3-4), 103-108.
[http://dx.doi.org/10.1007/s00508-014-0635-0] [PMID: 25409943]
[229]
Sharman, M.J.; Verdile, G.; Kirubakaran, S.; Parenti, C.; Singh, A.; Watt, G.; Karl, T.; Chang, D.; Li, C.G.; Münch, G. Targeting inflammatory pathways in Alzheimer’s disease: A focus on natural products and phytomedicines. CNS Drugs, 2019, 33(5), 457-480.
[http://dx.doi.org/10.1007/s40263-019-00619-1] [PMID: 30900203]
[230]
Raškovi& A.; Gigov, S.; &apo, I.; Paut Kusturica, M.; Milijaševi& B.; Koji&-Damjanov, S.; Marti& N. Antioxidative and protective actions of apigenin in a paracetamol-induced hepatotoxicity rat model. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(5), 849-856.
[http://dx.doi.org/10.1007/s13318-017-0407-0] [PMID: 28255865]
[231]
Rithidech, K.N.; Tungjai, M.; Whorton, E.B. Protective effect of apigenin on radiation-induced chromosomal damage in human lymphocytes. Mutat. Res., 2005, 585(1-2), 96-104.
[http://dx.doi.org/10.1016/j.mrgentox.2005.04.003] [PMID: 15886050]
[232]
Taheri, A.; Rostamzadeh, A.; Gharib, A.; Fatehi, D. Radioprotective effects of Silymarin, a natural medical herb, in modulation and prevention of radiation induced damages. Pharm. Lett., 2016, 8(9), 146-150.
[233]
Son, Y.; Lee, H.J.; Rho, J.K.; Chung, S.Y.; Lee, C.G.; Yang, K.; Kim, S.H.; Lee, M.; Shin, I.S.; Kim, J.S. The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer. BMC Pulm. Med., 2015, 15(1), 68.
[http://dx.doi.org/10.1186/s12890-015-0055-6] [PMID: 26143275]
[234]
Adhikari, M.; Arora, R. The flavonolignan-silymarin protects enzymatic, hematological, and immune system against &-radiation-induced toxicity. Environ. Toxicol., 2016, 31(6), 641-654.
[http://dx.doi.org/10.1002/tox.22076] [PMID: 25411116]
[235]
Fu, H.; Lin, M.; Katsumura, Y.; Yokoya, A.; Hata, K.; Muroya, Y.; Fujii, K.; Shikazono, N. Protective effects of silybin and analogues against X-ray radiation-induced damage. Acta Biochim. Biophys. Sin. (Shanghai), 2010, 42(7), 489-495.
[http://dx.doi.org/10.1093/abbs/gmq045] [PMID: 20705588]
[236]
Wang, H.; Xu, Y.S.; Wang, M.L.; Cheng, C.; Bian, R.; Yuan, H.; Wang, Y.; Guo, T.; Zhu, L.L.; Zhou, H. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: Implications for the treatment of neurodegenerative disorders. Int. J. Mol. Med., 2017, 39(4), 819-830.
[http://dx.doi.org/10.3892/ijmm.2017.2904] [PMID: 28260042]
[237]
Heidary Moghaddam, R.; Samimi, Z.; Moradi, S.Z.; Little, P.J.; Xu, S.; Farzaei, M.H. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. Eur. J. Pharmacol., 2020, 887, 173535.
[http://dx.doi.org/10.1016/j.ejphar.2020.173535] [PMID: 32910944]
[238]
Archana, P.R.; Nageshwar Rao, B.; Satish Rao, B.S. Modulation of gamma ray-induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integr. Cancer Ther., 2011, 10(4), 374-383.
[http://dx.doi.org/10.1177/1534735410387421] [PMID: 21147817]
[239]
Abedi, S.M.; Yarmand, F.; Motallebnejad, M.; Seyedmajidi, M.; Moslemi, D.; Bijani, A.; Hosseinimehr, S.J. Radioprotective effect of thymol against salivary glands dysfunction induced by ionizing radiation in rats. Iran. J. Pharm. Res., 2016, 15(4), 861-866.
[PMID: 28243283]
[240]
Nair, S.; Nair, R.R.K.; Srinivas, P.; Srinivas, G.; Pillai, M.R. Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol. Carcinog., 2008, 47(1), 22-33.
[http://dx.doi.org/10.1002/mc.20359] [PMID: 17562542]
[241]
Moradi, S.Z.; Nowroozi, A.; Sadrjavadi, K.; Moradi, S.; Mansouri, K.; Hosseinzadeh, L.; Shahlaei, M. Direct evidences for the groove binding of the Clomifene to double stranded DNA. Int. J. Biol. Macromol., 2018, 114, 40-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.040] [PMID: 29555513]
[242]
Brunetti, G.; Di Rosa, G.; Scuto, M.; Leri, M.; Stefani, M.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int. J. Mol. Sci., 2020, 21(7), 2588.
[http://dx.doi.org/10.3390/ijms21072588] [PMID: 32276415]
[243]
D’Angelo, S.; Ingrosso, D.; Migliardi, V.; Sorrentino, A.; Donnarumma, G.; Baroni, A.; Masella, L.; Tufano, M.A.; Zappia, M.; Galletti, P. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells. Free Radic. Biol. Med., 2005, 38(7), 908-919.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.12.015] [PMID: 15749387]
[244]
Alothman, M.; Bhat, R.; Karim, A. Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci. Technol., 2009, 20(5), 201-212.
[http://dx.doi.org/10.1016/j.tifs.2009.02.003]
[245]
Oboh, G.; Adedayo, B.C.; Adetola, M.B.; Oyeleye, I.S.; Ogunsuyi, O.B. Characterization and neuroprotective properties of alkaloid extract of Vernonia amygdalina Delile in experimental models of Alzheimer’s disease. Drug Chem. Toxicol., 2020, 1-10.
[http://dx.doi.org/10.1080/01480545.2020.1773845] [PMID: 32543989]
[246]
Zhu, X.Z.; Li, X-Y.; Liu, J. Recent pharmacological studies on natural products in China. Eur. J. Pharmacol., 2004, 500(1-3), 221-230.
[http://dx.doi.org/10.1016/j.ejphar.2004.07.027] [PMID: 15464035]
[247]
Zhang, Y.; Gao, L.; Cheng, Z.; Cai, J.; Niu, Y.; Meng, W.; Zhao, Q.; Kukoamine, A. Kukoamine A prevents radiation-induced neuroinflammation and preserves hippocampal neurogenesis in rats by inhibiting activation of NF-&B and AP-1. Neurotox. Res., 2017, 31(2), 259-268.
[http://dx.doi.org/10.1007/s12640-016-9679-4] [PMID: 27815817]
[248]
Lee, T.C.; Greene-Schloesser, D.; Payne, V.; Diz, D.I.; Hsu, F.C.; Kooshki, M.; Mustafa, R.; Riddle, D.R.; Zhao, W.; Chan, M.D.; Robbins, M.E. Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiat. Res., 2012, 178(1), 46-56.
[http://dx.doi.org/10.1667/RR2731.1] [PMID: 22687052]
[249]
Raju, U.; Gumin, G.J.; Tofilon, P.J. NF kappa B activity and target gene expression in the rat brain after one and two exposures to ionizing radiation. Radiat. Oncol. Investig., 1999, 7(3), 145-152.
[http://dx.doi.org/10.1002/(SICI)1520-6823(1999)7:3<145:AID-ROI2>3.0.CO;2-R] [PMID: 10406055]
[250]
Zhang, Y.; Cheng, Z.; Wang, C.; Ma, H.; Meng, W.; Zhao, Q. Neuroprotective effects of kukoamine a against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis. Neurochem. Res., 2016, 41(10), 2549-2558.
[http://dx.doi.org/10.1007/s11064-016-1967-0] [PMID: 27241194]
[251]
Kurinnyi, D.; Rushkovsky, S.; Demchenko, O.; Pilinska, M. Astaxanthin as a modifier of genome instability after &-radiation. Progress Carotenoid Res., 2018, 2018, 121-138.
[http://dx.doi.org/10.5772/intechopen.79341]
[252]
Xue, X-L.; Han, X-D.; Li, Y.; Chu, X-F.; Miao, W-M.; Zhang, J-L.; Fan, S-J. Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis. Stem Cell Res. Ther., 2017, 8(1), 7.
[http://dx.doi.org/10.1186/s13287-016-0464-3] [PMID: 28115023]
[253]
Fakhri, S.; Nouri, Z.; Moradi, S.Z.; Farzaei, M.H. Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytother. Res., 2020, 34(11), 2790-2792.
[http://dx.doi.org/10.1002/ptr.6797] [PMID: 32754955]
[254]
Cao, Z.; Wang, P.; Gao, X.; Shao, B.; Zhao, S.; Li, Y. Lycopene attenuates aluminum-induced hippocampal lesions by inhibiting oxidative stress-mediated inflammation and apoptosis in the rat. J. Inorg. Biochem., 2019, 193, 143-151.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.01.017] [PMID: 30743053]
[255]
Naoi, M.; Shamoto-Nagai, M.; Maruyama, W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: Antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol., 2019, 14, FNL9.
[http://dx.doi.org/10.2217/fnl-2018-0028]
[256]
Zhao, J.; Moore, A.N.; Redell, J.B.; Dash, P.K. Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J. Neurosci., 2007, 27(38), 10240-10248.
[http://dx.doi.org/10.1523/JNEUROSCI.1683-07.2007] [PMID: 17881530]
[257]
Zhao, X.; Sun, G.; Zhang, J.; Strong, R.; Dash, P.K.; Kan, Y.W.; Grotta, J.C.; Aronowski, J. Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke, 2007, 38(12), 3280-3286.
[http://dx.doi.org/10.1161/STROKEAHA.107.486506] [PMID: 17962605]
[258]
Talalay, P.; Fahey, J.W.; Healy, Z.R.; Wehage, S.L.; Benedict, A.L.; Min, C.; Dinkova-Kostova, A.T. Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc. Natl. Acad. Sci. USA, 2007, 104(44), 17500-17505.
[http://dx.doi.org/10.1073/pnas.0708710104] [PMID: 17956979]
[259]
Ullah, F.; Liang, A.; Rangel, A.; Gyengesi, E.; Niedermayer, G.; Münch, G. High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch. Toxicol., 2017, 91(4), 1623-1634.
[http://dx.doi.org/10.1007/s00204-017-1939-4] [PMID: 28204864]
[260]
Tang, F.R.; Loke, W.K.; Wong, P.; Khoo, B.C. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol. Behav., 2017, 175, 37-46.
[http://dx.doi.org/10.1016/j.physbeh.2017.03.027] [PMID: 28341234]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy