Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Mini-Review Article

Technological Prospecting: Mapping Patents on L-asparaginases from Extremophilic Microorganisms

Author(s): Igor Gomes de Oliveira Lima, James Romero Soares Bispo, Maurício Bernardo da Silva, Alexya de Oliveira Feitosa, Ana Caroline Melo dos Santos, Magna Suzana Alexandre Moreira, Michel Rodrigo Zambrano Passarini, Paulo Eduardo Aguiar Saraiva Câmara, Luiz Henrique Rosa, Valéria Maia Oliveira, Aline Cavalcanti de Queiroz and Alysson Wagner Fernandes Duarte*

Volume 15, Issue 4, 2021

Published on: 05 August, 2021

Page: [250 - 265] Pages: 16

DOI: 10.2174/1872208315666210805162459

Price: $65

Abstract

Background: L-asparaginase (L-ASNase, L-asparagine amidohydrolase, E.C.3.5.1.1) is an enzyme with wide therapeutic applicability. Currently, the commercialized L-ASNase comes from mesophilic organisms, presenting low specificity to the substrate and limitations regarding thermostability and active pH range. Such factors prevent the maximum performance of the enzyme in different applications. Therefore, extremophilic organisms may represent important candidates for obtaining amidohydrolases with particular characteristics desired by the biotechnological market.

Objectives: The present study aims to carry out a technological prospecting of patents related to the L-asparaginases derived from extremophilic organisms, contributing to pave the way for further rational investigation and application of such enzymes.

Methods: This patent literature review used six patents databases: The LENS, WIPO, EPO, USPTO, Patent Inspiration, and INPI.

Results: It was analyzed 2860 patents, and 14 were selected according to combinations of descriptors and study criteria. Approximately 57.14% of the patents refer to enzymes obtained from archaea, especially from the speciesPyrococcus yayanosii (35.71% of the totality).

Conclusion: The present prospective study has singular relevance since there are no recent patent reviews for L-asparaginases, especially produced by extremophilic microorganisms. Although such enzymes have well-defined applications, corroborated by the patents compiled in this review, the most recent studies allude to new uses, such as the treatment of infections. The characterization of the catalytic profiles allows us to infer that there are potential sources still unexplored. Hence, the search for new L-ASNases with different characteristics will continue to grow in the coming years and, possibly, ramifications of the technological routes will be witnessed.

Keywords: Acrylamide, amidohydrolase, L-asparagine, chemotherapeutic drug, extremophiles, L-asparaginase, patents, technology innovation.

Graphical Abstract

[1]
Maqsood B, Basit A, Khurshid M, Bashir Q. Characterization of a thermostable, allosteric L-asparaginase from Anoxybacillus flavithermus. Int J Biol Macromol 2020; 152: 584-92.[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.246] [PMID: 32097739]
[2]
Lubkowski J, Vanegas J, Chan WK, et al. Mechanism of catalysis by l-asparaginase. Biochemistry 2020; 59(20): 1927-45.[http://dx.doi.org/10.1021/acs.biochem.0c00116] [PMID: 32364696]
[3]
Eslamizad S, Kobarfard F, Tsitsimpikou C, Tsatsakis A, Tabib K, Yazdanpanah H. Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food Chem Toxicol 2019; 126: 162-8.[http://dx.doi.org/10.1016/j.fct.2019.02.019] [PMID: 30753857]
[4]
Dourado C, Pinto CA, Cunha SC, Casal S, Saraiva JA. A novel strategy of acrylamide mitigation in fried potatoes using asparaginase and high pressure technology. Innov Food Sci Emerg Technol 2020; 60: 102310.[http://dx.doi.org/10.1016/j.ifset.2020.102310]
[5]
Paul V, Tiwary BN. An investigation on the acrylamide mitigation potential of L-asparaginase from Aspergillus terreus BV-C strain. Biocatal Agric Biotechnol 2020; 27: 101677.[http://dx.doi.org/10.1016/j.bcab.2020.101677]
[6]
Mousavi Khaneghah A, Fakhri Y, Nematollahi A, Seilani F, Vasseghian Y. The concentration of acrylamide in different food products: a global systematic review, meta-analysis, and meta-regression Food Rev Int 2020; 00: 1-19.[http://dx.doi.org/10.1080/87559129.2020.1791175]
[7]
Matoso V, Bargi-Souza P, Ivanski F, Romano MA, Romano RM. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem 2019; 283: 422-30.[http://dx.doi.org/10.1016/j.foodchem.2019.01.054] [PMID: 30722893]
[8]
Raffan S, Halford NG. Acrylamide in food: Progress in and prospects for genetic and agronomic solutions. Ann Appl Biol 2019; 175(3): 259-81.[http://dx.doi.org/10.1111/aab.12536] [PMID: 31866690]
[9]
Muneer F, Siddique MH, Azeem F, et al. Microbial L-asparaginase: purification, characterization and applications. Arch Microbiol 2020; 202(5): 967-81.[http://dx.doi.org/10.1007/s00203-020-01814-1] [PMID: 32052094]
[10]
Team TACS medical and editorial content. Chemotherapy for Acute Lymphocytic Leukemia (ALL). Am Cancer Soc 2018. Available at: https://www.cancer.org/cancer/acute-lymphocytic-leukemia/treating/chemotherapy.html.
[11]
Watanabe A, Miyake K, Nordlund J, et al. Association of aberrant asns imprinting with asparaginase sensitivity and chromosomal abnormality in childhood BCP-ALL. Blood 2020; 136(20): 2319-33.[http://dx.doi.org/10.1182/blood.2019004090] [PMID: 32573712]
[12]
Orhan H, Aktaş Uygun D. Immobilization of L-Asparaginase on magnetic nanoparticles for cancer treatment. Appl Biochem Biotechnol 2020; 191(4): 1432-43.[http://dx.doi.org/10.1007/s12010-020-03276-z] [PMID: 32103470]
[13]
Chiu M, Taurino G, Bianchi MG, Kilberg MS, Bussolati O. Asparagine synthetase in cancer: Beyond acute lymphoblastic leukemia. Front Oncol 2020; 9: 1480.[http://dx.doi.org/10.3389/fonc.2019.01480] [PMID: 31998641]
[14]
Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NMFSA. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 2017; 27(3): 283-97.[http://dx.doi.org/10.1080/13543776.2017.1254194] [PMID: 27813440]
[15]
Nunes JCF, Cristóvão RO, Freire MG, et al. Recent strategies and applications for l-Asparaginase confinement. Molecules 2020; 25(24): 5827.[http://dx.doi.org/10.3390/molecules25245827] [PMID: 33321857]
[16]
Chand S, Mahajan RV, Prasad JP, et al. A comprehensive review on microbial l-asparaginase: Bioprocessing, characterization, and industrial applications. Biotechnol Appl Biochem 2020; 67(4): 619-47.[http://dx.doi.org/10.1002/bab.1888] [PMID: 31954377]
[17]
Ameen F, Alshehri WA, Al-Enazi NM, Almansob A. L-Asparaginase activity analysis, ansZ gene identification and anticancer activity of a new Bacillus subtilis isolated from sponges of the Red Sea. Biosci Biotechnol Biochem 2020; 84(12): 2576-84.[http://dx.doi.org/10.1080/09168451.2020.1807310] [PMID: 32856523]
[18]
Kumar V, Kumar S, Darnal S, et al. Optimized chromogenic dyes-based identification and quantitative evaluation of bacterial l-asparaginase with low/no glutaminase activity bioprospected from pristine niches in Indian trans-Himalaya. Biotech 2019; 9(1): 275.
[19]
da Cunha MC, Dos Santos Aguilar JG, de Melo RR, et al. Fungal L-asparaginase: Strategies for production and food applications. Food Res Int 2019; 126: 108658.[http://dx.doi.org/10.1016/j.foodres.2019.108658] [PMID: 31732030]
[20]
Jiao L, Chi H, Lu Z, et al. Characterization of a novel type I l-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. J Biosci Bioeng 2020; 129(6): 672-8.[http://dx.doi.org/10.1016/j.jbiosc.2020.01.007] [PMID: 32088137]
[21]
Beckett A, Gervais D. What makes a good new therapeutic L-asparaginase? World J Microbiol Biotechnol 2019; 35(10): 152.[http://dx.doi.org/10.1007/s11274-019-2731-9] [PMID: 31552479]
[22]
Ashok A, Doriya K, Rao JV, Qureshi A, Tiwari AK, Kumar DS. Microbes producing l-asparaginase free of glutaminase and urease isolated from extreme locations of antarctic soil and moss. Sci Rep 2019; 9(1): 1423.[http://dx.doi.org/10.1038/s41598-018-38094-1] [PMID: 30723240]
[23]
Zhang YY, Yang QS, Qing X, et al. Peg-asparaginase-associated pancreatitis in chemotherapy-treated pediatric patients: A 5-year retrospective study. Front Oncol 2020; 10: 538779.[http://dx.doi.org/10.3389/fonc.2020.538779] [PMID: 33194600]
[24]
Daoud L, Ben Ali M. Halophilic microorganisms: Interesting group of extremophiles with important applications in biotechnology and environment. In: Salwan R, Sharma S, Eds. Physiological and biotechnological aspects of extremophiles. USA: Academic Press 2020; 51-64.
[25]
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: A mini review. Mar Drugs 2019; 17(12): E656.[http://dx.doi.org/10.3390/md17120656] [PMID: 31766541]
[26]
Monsalves MT, Ollivet-Besson GP, Amenabar MJ, Blamey JM. Isolation of a psychrotolerant and uv-c-resistant bacterium from elephant island, antarctica with a highly thermoactive and thermostable catalase. Microorganisms 2020; 8(1): 95.[http://dx.doi.org/10.3390/microorganisms8010095] [PMID: 31936717]
[27]
Vasudevan N, Jayshree A. Extremozymes and extremoproteins in biosensor applications. Encycl Mar Biotechnol 2020; 1711-36.
[28]
Shakambari G, Ashokkumar B, Varalakshmi P. L-asparaginase - a promising biocatalyst for industrial and clinical applications. Biocatal Agric Biotechnol 2019; 17: 213-24.[http://dx.doi.org/10.1016/j.bcab.2018.11.018]
[29]
Li X, Zhang X, Xu S, et al. Insight into the thermostability of thermophilic L-asparaginase and non-thermophilic L-asparaginase II through bioinformatics and structural analysis. Appl Microbiol Biotechnol 2019; 103(17): 7055-70.[http://dx.doi.org/10.1007/s00253-019-09967-w] [PMID: 31273395]
[30]
Watanabe M, Kisaragi M, Imahori K. Process for preparing thermophilic L-asparaginase. JPS51115988A, 1976.
[31]
Guy GR, Morgan HW, Roy DM. Stereospecific asparaginases. US4473646A, 1984.
[32]
Greiner-Stoeffele T, Struhalla M. Amidohydrolases for preparing foodstuffs or stimulants. EP2193198B1, 2014.
[33]
Hendriksen HV, Puder K, Olsen AG. Method for reducing the level of asparagine in a food material. WO2014/161935A1, 2014.
[34]
Kundu B, Bansal S, Mishra P. Mutants of L-asparaginase. US9322008B2, 2016.
[35]
Van Der Laan JM. Siew-LoonOoi, Teunissen AWRH, Wilbrink MH. Asparaginase. WO2017/050651A1, 2017.
[36]
Van Der Laan JM. Siew-LoonOoi, Teunissen AWRH, Wilbrink MH. Asparaginase. WO2017050652A1, 2017.
[37]
Van Der Laan JM. Teunissen AWRH, Wilbrink MH. Asparaginase. WO2017050653A1, 2017.
[38]
Van Der Laan JM, Ooi S-L, Teunissen AWRH, Wilbrink MH. Asparaginase. WO2017/050654A1, 2017.
[39]
Zhang X, Rao Z, Li X, et al. L-asparaginase mutant, and construction method thereof. CN107828768A, 2018.
[40]
Xu S, Zhang H, Xi Y, et al. Thermophilic L-asparaginase mutant and screening and fermentation method thereof. CN108103049A, 2018.
[41]
Xu S, Zhang H, Xi Y, et al. Enzyme-enhanced L-asparaginase mutant and construction method thereof. CN109266635A, 2019.
[42]
Rao Z, Li X, Zhang X, et al. al. Thermophilic L-asparaginase mutant and screening and fermentation methods thereof. US2019/0185840A1, 2019.
[43]
Rao Z, Li X, Zhang X, Yang T, Xu M, Yang J. Application of thermophilic L-asparaginase in high-temperature fried foods. CN108094976B, 2020.
[44]
WIPO. World intellectual property indicators 2019. Geneva: 2019; Available at: https://www.wipo.int/publications/en/details.jsp?id=4464.
[45]
Cornell U de, INSEAD, OMPI. Índice Global De Inovação 2019: Criar Vidas Sadias - O Futuro da Inovação Médica. Ithaca, Fontainebleau and Genebra: 2019; Available at: https://www.portaldaindustria.com.br/publicacoes/2019/11/indice-global-de-inovacao-2019-criar-vidas-sadias-o-futuro-da-inovacao-medica/..
[46]
Corporate DSM. Available at: https://www.dsm.com/corporate/home.html.
[48]
Pham HT, Hoang HM. Factors affecting acrylamide mitigation in fried potatoes. Sci Technol Dev J 2020; 23: 548-54.[http://dx.doi.org/10.32508/stdj.v23i2.1906]
[49]
Ebaid R, Wang H, Sha C, Abomohra AEF, Shao W. Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: A critical review. J Clean Prod 2019; 238: 117925.[http://dx.doi.org/10.1016/j.jclepro.2019.117925]
[50]
Rodriguez JG, Hux NP, Philips SJ, Towns MH. Michaelis − menten graphs, lineweaver − burk plots, and reaction schemes: investigating introductory biochemistry students ’ conceptions of representations in enzyme kinetics. J Chem Educ 2019; 96(9): 1835-45.[http://dx.doi.org/10.1021/acs.jchemed.9b00396]
[51]
Cristovao RO, Almeida MR, Barros MA, et al. Development and characterization of a novel l-asparaginase/MWCNT nanobioconjugate. RSC Advances 2020; 10: 31205-13.[http://dx.doi.org/10.1039/D0RA05534D]
[52]
Kante RK, Somavarapu S, Vemula S, Kethineni C, Mallu MR, Ronda SR. Production of recombinant human asparaginase from Escherichia coli under optimized fermentation conditions: effect of physicochemical properties on enzyme activity. Biotechnol Bioprocess Eng 2019; 24: 824-32.[http://dx.doi.org/10.1007/s12257-019-0147-x]
[53]
Nguyen HA, Su Y, Zhang JY, et al. A novel L-asparaginase with low L-glutaminase coactivity is highly efficacious against both T- and B-cell acute lymphoblastic Leukemias in vivo. Cancer Res 2018; 78(6): 1549-60.[http://dx.doi.org/10.1158/0008-5472.CAN-17-2106] [PMID: 29343523]
[54]
Saeed H, Hemida A, El-Nikhely N, et al. Highly efficient Pyrococcus furiosus recombinant L-asparaginase with no glutaminase activity: expression, purification, functional characterization, and cytotoxicity on THP-1, A549 and Caco-2 cell lines. Int J Biol Macromol 2020; 156: 812-28.[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.080] [PMID: 32311402]
[55]
Zong C, Hasegawa R, Urushitani M, et al. Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro. Arch Toxicol 2019; 93(7): 2007-19.[http://dx.doi.org/10.1007/s00204-019-02471-0] [PMID: 31073625]
[56]
Elblehi SS, El Euony OI, El-Sayed YS. Apoptosis and astrogliosis perturbations and expression of regulatory inflammatory factors and neurotransmitters in acrylamide-induced neurotoxicity under ω3 fatty acids protection in rats. Neurotoxicology 2020; 76: 44-57.[http://dx.doi.org/10.1016/j.neuro.2019.10.004] [PMID: 31647937]
[57]
Rajeh NA. Acrylamide toxicity and mitigation strategies: A summary of recent reports. J Pharm Res Int 2020; 32: 154-63.[http://dx.doi.org/10.9734/jpri/2020/v32i1430615]
[58]
Liu Y, Zhang X, Yan D, et al. Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment. Toxicol Appl Pharmacol 2020; 393: 114949.[http://dx.doi.org/10.1016/j.taap.2020.114949] [PMID: 32147541]
[59]
Vimal A, Kumar A. Asparaginase: a feasible therapeutic molecule for multiple diseases. 3 Biotech 2018; 8.
[60]
Baruch M, Hertzog BB, Ravins M, et al. Induction of endoplasmic reticulum stress and unfolded protein response constitutes a pathogenic strategy of group a streptococcus. Front Cell Infect Microbiol 2014; 4: 105.[http://dx.doi.org/10.3389/fcimb.2014.00105] [PMID: 25136516]
[61]
El-Naggar NEA, El-Shweihy NM. Bioprocess development for l-asparaginase production by streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Sci Rep 2020; 10(1): 7942.[http://dx.doi.org/10.1038/s41598-020-64052-x] [PMID: 32409719]
[62]
El-Fakharany E, Orabi H, Abdelkhalek E, Sidkey N. Purification and biotechnological applications of l-asparaginase from newly isolated Bacillus halotolerans ohem18 as antitumor and antioxidant agent. J Biomol Struct Dyn 2020; 0: 1-13.[http://dx.doi.org/10.1080/07391102.2020.1851300] [PMID: 33228468]
[63]
Golbabaie A, Nouri H, Moghimi H, Khaleghian A. l-asparaginase production and enhancement by sarocladium strictum: in vitro evaluation of anti-cancerous properties. J Appl Microbiol 2020; 129(2): 356-66.[http://dx.doi.org/10.1111/jam.14623] [PMID: 32119169]
[64]
Costa-Silva TA, Costa IM, Biasoto HP, et al. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of l-asparaginase as a biopharmaceutical to treat blood cancer. Blood Rev 2020; 43: 100651.[http://dx.doi.org/10.1016/j.blre.2020.100651] [PMID: 32014342]
[65]
Izadpanah Qeshmi F, Homaei A, Fernandes P, Javadpour S. Marine microbial l-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res 2018; 208: 99-112.[http://dx.doi.org/10.1016/j.micres.2018.01.011] [PMID: 29551216]
[66]
Cintrón-garcía J, Guddati AK. Management of CNS toxicity of chemotherapy and targeted agents. 2020; 10: 2617-20.
[67]
Mostafa Y, Alrumman S, Alamri S, et al. Enhanced production of glutaminase-free l-asparaginase by marine bacillus velezensis and cytotoxic activity against breast cancer cell lines. Electron J Biotechnol 2019; 42: 6-15.[http://dx.doi.org/10.1016/j.ejbt.2019.10.001]
[68]
Schröder C, Burkhardt C, Antranikian G. What we learn from extremophiles. ChemTexts 2020; 6: 1-6.[http://dx.doi.org/10.1007/s40828-020-0103-6]
[69]
Koszucka A, Nowak A, Nowak I, Motyl I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated european union legal regulations in food industry. Crit Rev Food Sci Nutr 2020; 60(10): 1677-92.[http://dx.doi.org/10.1080/10408398.2019.1588222] [PMID: 30907623]
[70]
Merhi A, Naous GEZ, Daher R, Abboud M, Mroueh M, Taleb RI. Carcinogenic and neurotoxic risks of dietary acrylamide consumed through cereals among the lebanese population. BMC Chem 2020; 14(1): 53.[http://dx.doi.org/10.1186/s13065-020-00705-2] [PMID: 32844160]
[71]
Fahrmann JF, Vykoukal JV, Ostrin EJ. Amino acid oncometabolism and immunomodulation of the tumor microenvironment in lung cancer. Front Oncol 2020; 10: 276.[http://dx.doi.org/10.3389/fonc.2020.00276] [PMID: 32266129]
[72]
Vimal A, Kumar A. Biotechnological production and practical application of l-asparaginase enzyme. Biotechnol Genet Eng Rev 2017; 33(1): 40-61.[http://dx.doi.org/10.1080/02648725.2017.1357294] [PMID: 28766374]
[73]
Wang M, Odom T, Cai J. Challenges in the development of next-generation antibiotics: Opportunities of small molecules mimicking mode of action of host-defense peptides. Expert Opin Ther Pat 2020; 30(5): 303-5.[http://dx.doi.org/10.1080/13543776.2020.1740683] [PMID: 32149532]
[74]
Andersson DI, Balaban NQ, Baquero F, et al. Antibiotic resistance: Turning evolutionary principles into clinical reality. FEMS Microbiol Rev 2020; 44(2): 171-88.[http://dx.doi.org/10.1093/femsre/fuaa001] [PMID: 31981358]
[75]
Şen Karaman D, Ercan UK, Bakay E, Topaloğlu N, Rosenholm JM. Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic era. Adv Funct Mater 2020; 30: 1-22.[http://dx.doi.org/10.1002/adfm.201908783]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy