Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Mesenchymal Stem Cells in Veterinary Regenerative Therapy: Basic Physiology and Clinical Applications

Author(s): Vikash Chandra, Pratheesh Mankuzhy and Taru Sharma G.*

Volume 17, Issue 3, 2022

Published on: 06 December, 2021

Page: [237 - 251] Pages: 15

DOI: 10.2174/1574888X16666210804112741

Price: $65

Abstract

Background: The consistent, self-renewal capability and wide-ranged differentiation potential during specific physiologic conditions mark stem cells as a novel candidate not only for biomedical research and regenerative therapy but also as an alternative source in research related to life sciences. This vital and distinct characteristic of stem cells enables them to offer unprecedented hope in treating many diseases and disorders, which are otherwise difficult to treat. Several efforts are still being undertaken to enhance the efficiency of MSCs for better therapeutic applications.

Objective: In the recent past, several studies have been conducted regarding the isolation of stem cells from diverse sources and are being used clinically in veterinary regenerative therapy. However, to date, only a few systemic studies are available. This study provides a comprehensive analysis of the findings from basic and applied research conducted on stem cell therapeutics with particular emphasis on animals.

Result: On the basis of their sources, stem cells can be classified as adult or embryonic stem (ES) cells. Physiologically, the ES cells have the capability to differentiate into all body cells and develop into the normal adult organism, whereas adult stem cells serve as a repair system by restoring damaged tissues of the body. The adult stem cells referred to as Mesenchymal stem cells (MSCs) can be derived from various adult body organs, whereas embryos give rise to embryonic stem cells. MSCs possess the unique property of proliferation, trans-differentiation, and secretion of important biomolecules to create a microenvironment, which is immunosuppressive and stimulates native MSCs of damaged tissue. MSCs being immunocompromised cells can be used in autologous as well as in allogenic mode.

Conclusion: In veterinary therapeutics, MSCs equipped with engineering and pharmaceutical modifications are offered as potential candidates in the treatment of wound healing, nerve injury, bone/ligament injury, etc., and also bear a great hope for the improvement of udder health and milk production in animals.

Keywords: Mesenchymal stem cell, immunosuppression, secretome, regenerative therapy, ageing, genetic engineering.

[1]
Ansari MM, Sreekumar TR, Chandra V, Dubey PK, Saikumar G. Amarpal, Sharma GT. Therapeutic potential of canine bone marrow derived mesenchymal stem cells and its conditioned media in diabetic rat wound healing. J Stem Cell Res Ther 2013; 3: 141.
[http://dx.doi.org/10.4172/2157-7633.1000141]
[2]
Bhat IA, T B S, Somal A, et al. An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J Cell Physiol 2019; 234(3): 2705-18.
[http://dx.doi.org/10.1002/jcp.27086] [PMID: 30132873]
[3]
Joseph A, Baiju I, Bhat IA, et al. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J Cell Physiol 2020; 235(7-8): 5555-69.
[http://dx.doi.org/10.1002/jcp.29486] [PMID: 31960454]
[4]
Meirelles LdaS, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009; 20(5-6): 419-27.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.002] [PMID: 19926330]
[5]
Lajtha LG. Stem cell concepts. Nouv Rev Fr Hematol 1979; 21(1): 59-65. PMID: 493107
[6]
Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: Opposite sides of the same coin. Biochem Soc Trans 2005; 33(Pt 6): 1526-30.
[http://dx.doi.org/10.1042/BST0331526] [PMID: 16246161]
[7]
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6(2): 230-47.
[http://dx.doi.org/10.1097/00007890-196803000-00009] [PMID: 5654088]
[8]
Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9(5): 641-50.
[http://dx.doi.org/10.1002/jor.1100090504] [PMID: 1870029]
[9]
Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD, Jones PH. A single type of progenitor cell maintains normal epidermis. Nature 2007; 446(7132): 185-9.
[http://dx.doi.org/10.1038/nature05574] [PMID: 17330052]
[10]
Hegyi B, Sagi B, Kovacs J, et al. Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues:bone marrow, spleen, thymus and aorta wall. Int Immun 2010; 22(7): 551-9.
[http://dx.doi.org/10.1093/intimm/dxq039]
[11]
Meirelles da Silva L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 1192006; 119(Pt 11): 2204-13.
[12]
Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RKW. Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J 2012; 44(1): 25-32.
[http://dx.doi.org/10.1111/j.2042-3306.2011.00363.x] [PMID: 21615465]
[13]
Smith RKW, Werling NJ, Dakin SG, Alam R, Goodship AE, Dudhia J. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PLoS One 2013; 8(9): e75697.
[http://dx.doi.org/10.1371/journal.pone.0075697] [PMID: 24086616]
[14]
Iacono E, Rossi B, Merlo B. Stem cells from foetal adnexa and fluid in domestic animals: An update on their features and clinical application. Reprod Domest Anim 2015; 50(3): 353-64.
[http://dx.doi.org/10.1111/rda.12499] [PMID: 25703812]
[15]
Somal A, Bhat IA, Indu B, et al. A Comparative study of growth kinetics, in vitro differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. PLoS One 2016; 11(6): e0156821.
[16]
Carlin R, Davis D, Weiss M, Schultz B, Troyer D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 2006; 4(1): 8.
[http://dx.doi.org/10.1186/1477-7827-4-8] [PMID: 16460563]
[17]
Witkowska-Zimny M, Wrobel E. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett 2011; 16(3): 493-514.
[http://dx.doi.org/10.2478/s11658-011-0019-7] [PMID: 21786036]
[18]
Sessarego N, Parodi A, Podestà M, et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 2008; 93(3): 339-46.
[http://dx.doi.org/10.3324/haematol.11869] [PMID: 18268281]
[19]
Herthel DJ. Suspensory desmitis therapies Proceedings of 12th ACVS Symp, 2020 oct 17-20; San Diego. CA, P. 165-7.
[20]
Udehiya RK, Amarpal, Aithal HP, Kinjavdekar P, Pawde AM, Singh R, Taru Sharma G. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Res Vet Sci 2013; 94(3): 743-52.
[http://dx.doi.org/10.1016/j.rvsc.2013.01.011] [PMID: 23414969]
[21]
Pratheesh MD, Gade NE, Dubey PK, et al. Molecular characterization and xenogenic application of Wharton’s jelly derived caprine mesenchymal stem cells. Vet Res Commun 2014; 38(2): 139-48.
[http://dx.doi.org/10.1007/s11259-014-9597-y] [PMID: 24604133]
[22]
Mudasir B. Amarpal, Aithal HP, Kinjavdekar P, Ansari MM, Pawde AM, Sharma GT. Isolation, culture and characterization of New Zealand White rabbit mesenchymal Stem cells derived from bone marrow. Asian J Anim Vet Adv 2015; 10(10): 537-48.
[http://dx.doi.org/10.3923/ajava.2015.537.548]
[23]
Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76(8): 1208-13.
[http://dx.doi.org/10.1097/01.TP.0000082540.43730.80] [PMID: 14578755]
[24]
Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 2007; 25(9): 2363-70.
[http://dx.doi.org/10.1634/stemcells.2006-0686] [PMID: 17540857]
[25]
Bhardwaj R, Ansari MM, Parmar MS, Chandra V, Sharma GT. Stem cell conditioned media contains important growth factors and improves in vitro buffalo embryo production. Anim Biotechnol 2016; 27(2): 118-25.
[http://dx.doi.org/10.1080/10495398.2015.1118383] [PMID: 26913553]
[26]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]
[27]
Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res 2001; 268(2): 189-200.
[http://dx.doi.org/10.1006/excr.2001.5278] [PMID: 11478845]
[28]
Gregory CA, Prockop DJ, Spees JL. Non-hematopoietic bone marrow stem cells: Molecular control of expansion and differentiation. Exp Cell Res 2005; 306(2): 330-5.
[http://dx.doi.org/10.1016/j.yexcr.2005.03.018] [PMID: 15925588]
[29]
Davani S, Marandin A, Mersin N, et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 2003; 108(Suppl. 1): II253-8.
[http://dx.doi.org/10.1161/01.cir.0000089186.09692.fa] [PMID: 12970242]
[30]
Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 2003; 288(1): 51-9.
[http://dx.doi.org/10.1016/S0014-4827(03)00132-0] [PMID: 12878158]
[31]
Gugjoo MB, Amarpal, Chandra V, Wani MY, Dhama K, Sharma GT. Mesenchymal stem cell research in veterinary medicine. Curr Stem Cell Res Ther 2018; 13(8): 645-57.
[http://dx.doi.org/10.2174/1574888X13666180517074444] [PMID: 29769009]
[32]
Majors AK, Boehm CA, Nitto H, Midura RJ, Muschler GF. Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. J Orthop Res 1997; 15(4): 546-57.
[http://dx.doi.org/10.1002/jor.1100150410] [PMID: 9379264]
[33]
Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007; 25(3): 646-54.
[http://dx.doi.org/10.1634/stemcells.2006-0208] [PMID: 17124009]
[34]
Guan XJ, Song L, Han FF, et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem 2013; 114(2): 323-35.
[http://dx.doi.org/10.1002/jcb.24377] [PMID: 22949406]
[35]
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: What do we know so far? BioMed Res Int 2014; 2014: 216806.
[http://dx.doi.org/10.1155/2014/216806] [PMID: 25025040]
[36]
Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007; 262(5): 509-25.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01844.x] [PMID: 17949362]
[37]
Noronha NC, Mizukami A, Caliári-Oliveira C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 2019; 10(1): 131.
[http://dx.doi.org/10.1186/s13287-019-1224-y] [PMID: 31046833]
[38]
Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102(10): 3837-44.
[http://dx.doi.org/10.1182/blood-2003-04-1193] [PMID: 12881305]
[39]
Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10): 3838-43.
[http://dx.doi.org/10.1182/blood.V99.10.3838] [PMID: 11986244]
[40]
Taechangam N, Iyer SS, Walker NJ, Arzi B, Borjesson DL. Mechanisms utilized by feline adipose-derived mesenchymal stem cells to inhibit T lymphocyte proliferation. Stem Cell Res Ther 2019; 10(1): 188.
[http://dx.doi.org/10.1186/s13287-019-1300-3] [PMID: 31238978]
[41]
Maccario R, Podestà M, Moretta A, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005; 90(4): 516-25.
[PMID: 15820948]
[42]
Shi M, Liu ZW, Wang FS. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol 2011; 164(1): 1-8.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04327.x] [PMID: 21352202]
[43]
Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann New York Acad 2009; 1176: 101-17.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04607.x] [PMID: 19796238]
[44]
Krampera M, Cosmi L, Angeli R, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006; 24(2): 386-98.
[http://dx.doi.org/10.1634/stemcells.2005-0008] [PMID: 16123384]
[45]
Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107(1): 367-72.
[http://dx.doi.org/10.1182/blood-2005-07-2657] [PMID: 16141348]
[46]
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111(3): 1327-33.
[http://dx.doi.org/10.1182/blood-2007-02-074997] [PMID: 17951526]
[47]
DelaRosa O, Lombardo E. Modulation of adult mesenchymal stem cells activity by toll-like receptors: Implications on therapeutic potential. Mediators Inflamm 2010; 2010: 865601.
[http://dx.doi.org/10.1155/2010/865601] [PMID: 20628526]
[48]
Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: Mechanisms and strategies for improvement. iScience 2019; 15: 421-38.
[49]
Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24(4): 1030-41.
[http://dx.doi.org/10.1634/stemcells.2005-0319] [PMID: 16253981]
[50]
Shi M, Li J, Liao L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: Role in homing efficiency in NOD/SCID mice. Haematologica 2007; 92(7): 897-904.
[http://dx.doi.org/10.3324/haematol.10669] [PMID: 17606439]
[51]
Fan H, Zhao G, Liu L, et al. Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol 2012; 9(6): 473-81.
[http://dx.doi.org/10.1038/cmi.2012.40] [PMID: 23085948]
[52]
Xinaris C, Morigi M, Benedetti V, et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 2013; 22(3): 423-36.
[http://dx.doi.org/10.3727/096368912X653246] [PMID: 22889699]
[53]
An JH, Li Q, Bhang DH, Song WJ, Youn HY. TNF-α and INF-γ primed canine stem cell-derived extracellular vesicles alleviate experimental murine colitis. Sci Rep 2020; 10(1): 2115.
[http://dx.doi.org/10.1038/s41598-020-58909-4] [PMID: 32034203]
[54]
Qiu Y, Marquez-Curtis LA, Janowska-Wieczorek A. Mesenchymal stromal cells derived from umbilical cord blood migrate in response to complement C1q. Cytotherapy 2012; 14(3): 285-95.
[http://dx.doi.org/10.3109/14653249.2011.651532] [PMID: 22264191]
[55]
Liu H, Xue W, Ge G, et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs. Biochem Biophys Res Commun 2010; 401(4): 509-15.
[http://dx.doi.org/10.1016/j.bbrc.2010.09.076] [PMID: 20869949]
[56]
Nair V. Retrovirus-induced oncogenesis and safety of retroviral vectors. Curr Opin Mol Ther 2008; 10(5): 431-8.
[PMID: 18830918]
[57]
Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11(5): 389-98.
[http://dx.doi.org/10.1016/j.bbmt.2005.02.001] [PMID: 15846293]
[58]
Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Pharma Res 2016; (111): 487-00.
[59]
Baek G, Choi H, Kim Y, Lee HC, Choi C. Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform. Stem Cells Transl Med 2019; 8(9): 880-6.
[http://dx.doi.org/10.1002/sctm.18-0226] [PMID: 31045328]
[60]
Jiang XC, Gao JQ. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 2017; 521(1-2): 167-75.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.038] [PMID: 28216464]
[61]
Conaty P, Sherman LS, Naaldijk Y, Ulrich H, Stolzing A, Rameshwar P. Methods of mesenchymal stem cell homing to the blood-brain barrier. Meth Mol Biol 2018; 1842: 81-91.
[http://dx.doi.org/10.1007/978-1-4939-8697-2_6] [PMID: 30196403]
[62]
O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21(10): 585-606.
[http://dx.doi.org/10.1038/s41580-020-0251-y] [PMID: 32457507]
[63]
Aleynik A, Gernavage KM, Mourad YSh, et al. Stem cell delivery of therapies for brain disorders. Clin Transl Med 2014; 3: 24.
[http://dx.doi.org/10.1186/2001-1326-3-24] [PMID: 25097727]
[64]
Oh J, Lee YD, Wagers AJ. Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat Med 2014; 20(8): 870-80.
[http://dx.doi.org/10.1038/nm.3651] [PMID: 25100532]
[65]
Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol 2011; 193(2): 257-66.
[http://dx.doi.org/10.1083/jcb.201010131] [PMID: 21502357]
[66]
Ahmed ASI, Sheng MH, Wasnik S, Baylink DJ, Lau KW. Effect of aging on stem cells. World J Exp Med 2017; 7(1): 1-10.
[http://dx.doi.org/10.5493/wjem.v7.i1.1] [PMID: 28261550]
[67]
Chakkalakal JV, Jones KM, Basson MA, Brack AS. The aged niche disrupts muscle stem cell quiescence. Nature 2012; 490(7420): 355-60.
[http://dx.doi.org/10.1038/nature11438] [PMID: 23023126]
[68]
Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 2007; 317(5839): 807-10.
[http://dx.doi.org/10.1126/science.1144090] [PMID: 17690295]
[69]
Lee JS, Lee MO, Moon BH, Shim SH, Fornace AJ Jr, Cha HJ. Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways. Stem Cells 2009; 27(8): 1963-75.
[http://dx.doi.org/10.1002/stem.121] [PMID: 19544416]
[70]
Sousa-Victor P, Perdiguero E, Muñoz-Cánoves P. Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle 2014; 13(20): 3183-90.
[http://dx.doi.org/10.4161/15384101.2014.965072] [PMID: 25485497]
[71]
Molofsky AV, Slutsky SG, Joseph NM, et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 2006; 443(7110): 448-52.
[http://dx.doi.org/10.1038/nature05091] [PMID: 16957738]
[72]
Fukada S, Ma Y, Uezumi A. Adult stem cell and mesenchymal progenitor theories of aging. Front Cell Dev Biol 2014; 2: 10.
[http://dx.doi.org/10.3389/fcell.2014.00010] [PMID: 25364718]
[73]
Sousa-Victor P, Gutarra S, García-Prat L, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 2014; 506(7488): 316-21.
[http://dx.doi.org/10.1038/nature13013] [PMID: 24522534]
[74]
Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther 2016; 7(37): 37.
[http://dx.doi.org/10.1186/s13287-016-0303-6] [PMID: 26960535]
[75]
Zhao T, Qi Y, Xiao S, et al. Integration of mesenchymal stem cell sheet and bFGF-loaded fibrin gel in knitted PLGA scaffolds favorable for tendon repair. J Mater Chem B Mater Biol Med 2019; 7(13): 2201-11.
[http://dx.doi.org/10.1039/C8TB02759E] [PMID: 32073579]
[76]
Gugjoo MB, Amarpal, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Kumar GS, Sharma GT. Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. Regen Med 2020; 15(2): 1261-75.
[http://dx.doi.org/10.2217/rme-2018-0138] [PMID: 32154762]
[77]
Jensen T, Wanczyk H, Sharma I, Mitchell A, Sayej WN, Finck C. Polyurethane scaffolds seeded with autologous cells can regenerate long esophageal gaps: An esophageal atresia treatment model. J Pediatr Surg 2019; 54(9): 1744-54.
[http://dx.doi.org/10.1016/j.jpedsurg.2018.09.024] [PMID: 30429066]
[78]
Bharti MK, Bhat IA, Pandey S, et al. Effect of cryopreservation on therapeutic potential of canine bone marrow derived mesenchymal stem cells augmented mesh scaffold for wound healing in guinea pig. Biomed Pharmacother 2020; 121: 109573.
[http://dx.doi.org/10.1016/j.biopha.2019.109573] [PMID: 31810116]
[79]
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Forsythe J, Ramakrishna S. Click chemistry approach for fabricating PVA/gelatin nanofibers for the differentiation of ADSCs to keratinocytes. J Mater Sci Mater Med 2013; 24(12): 2863-71.
[http://dx.doi.org/10.1007/s10856-013-5031-1] [PMID: 23999881]
[80]
Murphy KC, Whitehead J, Zhou D, Ho SS, Leach JK. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater 2017; 64: 176-86.
[http://dx.doi.org/10.1016/j.actbio.2017.10.007] [PMID: 28987783]
[81]
Garg RK, Rennert RC, Duscher D, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med 2014; 3(9): 1079-89.
[http://dx.doi.org/10.5966/sctm.2014-0007] [PMID: 25038246]
[82]
Bell GI, Meschino MT, Hughes-Large JM, Broughton HC, Xenocostas A, Hess DA. Combinatorial human progenitor cell transplantation optimizes islet regeneration through secretion of paracrine factors. Stem Cells Dev 2012; 21(11): 1863-76.
[http://dx.doi.org/10.1089/scd.2011.0634] [PMID: 22309189]
[83]
Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 2009; 20(5): 1053-67.
[http://dx.doi.org/10.1681/ASN.2008070798] [PMID: 19389847]
[84]
Hu MS, Maan ZN, Wu JC, et al. Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 2014; 42(7): 1494-507.
[http://dx.doi.org/10.1007/s10439-014-1010-z] [PMID: 24788648]
[85]
Chang EI, Loh SA, Ceradini DJ, et al. Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation 2007; 116(24): 2818-29.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.715847] [PMID: 18040029]
[86]
Kim JW, Lee JH, Lyoo YS, Jung DI, Park HM. The effects of topical mesenchymal stem cell transplantation in canine experimental cutaneous wounds. Vet Dermatol 2013; 24(2): 242-e53.
[http://dx.doi.org/10.1111/vde.12011] [PMID: 23432413]
[87]
Zubin E, Conti V, Leonardi F, Zanichelli S, Ramoni R, Grolli S. Regenerative therapy for the management of a large skin wound in a dog. Clin Case Rep 2015; 3(7): 598-603.
[http://dx.doi.org/10.1002/ccr3.253] [PMID: 26273450]
[88]
Falanga V, Iwamoto S, Badiavas EV, Chartier M V, Iwamoto S, Chartier M. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13(6): 1299-12.
[89]
Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 2003; 139(4): 510-6.
[http://dx.doi.org/10.1001/archderm.139.4.510] [PMID: 12707099]
[90]
Mei SH, Haitsma JJ, Dos Santos CC, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182(8): 1047-57.
[http://dx.doi.org/10.1164/rccm.201001-0010OC] [PMID: 20558630]
[91]
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2015; 4(9): 560-82.
[http://dx.doi.org/10.1089/wound.2015.0635] [PMID: 26339534]
[92]
Madhu DN, Ahmad RA. Caudal superficial epigastric axial pattern flap and stem cell therapy for the management of large wound on medial aspect of thigh in a dog. Adv Anim Vet Sci 2014; 2: 188-91.
[http://dx.doi.org/10.14737/journal.aavs/2014/2.3.188.191]
[93]
Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: A basic science review. Plast Reconstr Surg 2010; 126(4): 1172-80.
[http://dx.doi.org/10.1097/PRS.0b013e3181eae781] [PMID: 20885241]
[94]
Doi H, Kitajima Y, Luo L, et al. Potency of umbilical cord blood- and Wharton’s jelly-derived mesenchymal stem cells for scarless wound healing. Sci Rep 2016; 6: 18844.
[http://dx.doi.org/10.1038/srep18844] [PMID: 26728342]
[95]
McTigue DM, Wei P, Stokes BT. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 2001; 21(10): 3392-400.
[http://dx.doi.org/10.1523/JNEUROSCI.21-10-03392.2001] [PMID: 11331369]
[96]
Pfeifer K, Vroemen M, Blesch A, Weidner N. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Eur J Neurosci 2004; 20(7): 1695-704.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03657.x] [PMID: 15379990]
[97]
Paul G, Özen I, Christophersen NS, et al. The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 2012; 7(4): e35577.
[http://dx.doi.org/10.1371/journal.pone.0035577] [PMID: 22523602]
[98]
Kang M, Park H. Challenges of stem cell therapies in companion animal practice. J Vet Sci 2020; 21(3): e42.
[99]
Zeira O, Asiag N, Aralla M, et al. Adult autologous mesenchymal stem cells for the treatment of suspected non-infectious inflammatory diseases of the canine central nervous system: safety, feasibility and preliminary clinical findings. J Neuroinflammation 2015; 12(1): 181.
[http://dx.doi.org/10.1186/s12974-015-0402-9] [PMID: 26415563]
[100]
Goldberger ME. Functional recovery after lesions of the nervous system. IV. Structural correlates of recovery in adult subjects. Recovery of function and collateral sprouting in cat spinal cord. Neurosci Res Program Bull 1974; 12(2): 235-9.
[PMID: 4846478]
[101]
Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 2004; 7(3): 269-77.
[http://dx.doi.org/10.1038/nn1195] [PMID: 14966523]
[102]
Yang H, Lu P, McKay HM, et al. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J Neurosci 2006; 26(8): 2157-66.
[http://dx.doi.org/10.1523/JNEUROSCI.4070-05.2005] [PMID: 16495442]
[103]
Rodrigues M, Griffith LG, Wells A. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther 2010; 1(4): 32.
[http://dx.doi.org/10.1186/scrt32] [PMID: 20977782]
[104]
Aithal HP, Singh GR, Bisht GS. Fractures in dogs: A survey of 402 cases. Indian J Vet Surg 1999; 20: 15-21.
[105]
Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989; 3(3): 192-5.
[http://dx.doi.org/10.1097/00005131-198909000-00002] [PMID: 2809818]
[106]
Lozano-Calderón SA, Swaim SO, Federico A, Anderson ME, Gebhardt MC. Predictors of soft-tissue complications and deep infection in allograft reconstruction of the proximal tibia. J Surg Oncol 2016; 113(7): 811-7.
[http://dx.doi.org/10.1002/jso.24234] [PMID: 27126893]
[107]
Daems R, Hecke LV, Schwarzkopf I, et al. A feasibility study on the use of equine chondrogenic induced mesenchymal stem cells as a treatment for natural occurring osteoarthritis in dogs. Stem Cell Intl 2019; 2019: 4587594.
[http://dx.doi.org/10.1155/2019/4587594]
[108]
Matsumoto T, Cooper GM, Gharaibeh B, et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 2009; 60: 1390-405.
[http://dx.doi.org/10.1002/art.24443]
[109]
Caplan AI, Correa D. The MSC: An injury drugstore. Cell Stem Cell 2011; 9: 11.
[http://dx.doi.org/10.1016/j.stem.2011.06.008]
[110]
Ferrara N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev 2004; 25(4): 581-611.
[http://dx.doi.org/10.1210/er.2003-0027] [PMID: 15294883]
[111]
Barba M, Cicione C, Bernardini C, Michetti F, Lattanzi W. Adipose-derived mesenchymal cells for bone regereneration: State of the art. BioMed Res Int 2013; 2013: 416391.
[http://dx.doi.org/10.1155/2013/416391] [PMID: 24307997]
[112]
Chaudhury S. Mesenchymal stem cell applications to tendon healing. Muscles Ligaments Tendons J 2012; 2(3): 222-9.
[PMID: 23738300]
[113]
Zantop T, Gilbert TW, Yoder MC, Badylak SF. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J Orthop Res 2006; 24(6): 1299-309.
[http://dx.doi.org/10.1002/jor.20071] [PMID: 16649228]
[114]
Butler DL, Juncosa-Melvin N, Boivin GP, et al. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 2008; 26(1): 1-9.
[http://dx.doi.org/10.1002/jor.20456] [PMID: 17676628]
[115]
Renzi S, Riccò S, Dotti S, et al. Autologous bone marrow mesenchymal stromal cells for regeneration of injured equine ligaments and tendons: a clinical report. Res Vet Sci 2013; 95(1): 272-7.
[http://dx.doi.org/10.1016/j.rvsc.2013.01.017] [PMID: 23419936]
[116]
Van Loon VJ, Scheffer CJ, Genn HJ, Hoogendoorn AC, Greve JW. Clinical follow-up of horses treated with allogeneic equine mesenchymal stem cells derived from umbilical cord blood for different tendon and ligament disorders. Vet Q 2014; 34(2): 92-7.
[http://dx.doi.org/10.1080/01652176.2014.949390] [PMID: 25072527]
[117]
Bruno RD, Smith GH. Role of epithelial stem/progenitor cells in mammary cancer. Gene Expr 2011; 15(3): 133-40.
[http://dx.doi.org/10.3727/105221611X13176664479368] [PMID: 22268295]
[118]
Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439(7079): 993-7.
[http://dx.doi.org/10.1038/nature04496] [PMID: 16395311]
[119]
Chepko G, Dickson RB. Ultrastructure of the putative stem cell niche in rat mammary epithelium. Tissue Cell 2003; 35(2): 83-93.
[http://dx.doi.org/10.1016/S0040-8166(02)00107-6] [PMID: 12747930]
[120]
Martignani E, Cravero D, Miretti S, Accornero P, Baratta M. Bovine mammary stem cells: new perspective for dairy science. Vet Q 2014; 34(1): 52-8.
[http://dx.doi.org/10.1080/01652176.2014.894262] [PMID: 24624999]
[121]
Capuco AV, Ellis S. Bovine mammary progenitor cells: current concepts and future directions. J Mammary Gland Biol Neoplasia 2005; 10(1): 5-15.
[http://dx.doi.org/10.1007/s10911-005-2536-3] [PMID: 15886882]
[122]
Capuco AV, Evock-Clover CM, Minuti A, Wood DL. In vivo expansion of the mammary stem/ progenitor cell population by xanthosine infusion. Exp Biol Med 2009; 234(4): 475-82.
[http://dx.doi.org/10.3181/0811-RM-320] [PMID: 19176874]
[123]
Hassiotou F, Beltran A, Chetwynd E, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 2012; 30(10): 2164-74.
[http://dx.doi.org/10.1002/stem.1188] [PMID: 22865647]
[124]
Cordeiro MM, Dong Z, Kaneko T, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008; 34(8): 962-9.
[http://dx.doi.org/10.1016/j.joen.2008.04.009] [PMID: 18634928]
[125]
Khamis T, Abdelalim AF, Abdallah SH, Saeed AA, Edress NM, Arisha AH. Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866(1): 165577.
[http://dx.doi.org/10.1016/j.bbadis.2019.165577] [PMID: 31672553]
[126]
Teshima T, Matsumoto H, Michishita M, et al. Allogenic adipose tissue-derived mesenchymal stem cells ameliorate acute hepatic injury in dogs. Stem Cell Inter 2017; 2017: 3892514.
[http://dx.doi.org/10.1155/2017/3892514]
[127]
Groza I, Pop RA, Cenariu M, Ciupe S, Pall E. Canine Wharton’s jelly derived mesenchymal stem cells isolation. Agric Agric Sci Procedia 2016; 10: 408-11.
[http://dx.doi.org/10.1016/j.aaspro.2016.09.082]
[128]
Clark KC, Fierro FA, Ko EM, et al. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Res Ther 2017; 8(1): 69.
[http://dx.doi.org/10.1186/s13287-017-0528-z] [PMID: 28320483]
[129]
Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 2002; 30(8): 879-86.
[http://dx.doi.org/10.1016/S0301-472X(02)00864-0] [PMID: 12160839]
[130]
Pratheesh MD, Gade NE, Katiyar AN, et al. Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic fluid. Res Vet Sci 2013; 94(2): 313-9.
[http://dx.doi.org/10.1016/j.rvsc.2012.08.002] [PMID: 23017255]
[131]
Somal A, Bhat IA, B I, et al. Impact of cryopreservation on caprine fetal adnexa derived stem cells and its evaluation for growth kinetics, phenotypic characterization and wound healing potential in xenogenic rat model. J Cell Physiol 2017; 232(8): 2186-200.
[http://dx.doi.org/10.1002/jcp.25731] [PMID: 27966782]
[132]
Barberini DJ, Freitas NPP, Magnoni MS, et al. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: Immunophenotypic characterization and differentiation potential. Stem Cell Res Ther 2014; 5(1): 25.
[http://dx.doi.org/10.1186/scrt414] [PMID: 24559797]
[133]
Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: A new perspective on regenerative medicine and cell therapy. Clin Transl Med 2014; 3(1): 12.
[http://dx.doi.org/10.1186/2001-1326-3-12] [PMID: 24940477]
[134]
Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 2013; 8(7): 1391-415.
[http://dx.doi.org/10.1038/nprot.2013.076] [PMID: 23787896]
[135]
Peng SY, Chou CW, Kuo YH, Shen PC, Shaw SWS. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells. Taiwan J Obstet Gynecol 2017; 56(3): 306-11.
[http://dx.doi.org/10.1016/j.tjog.2017.04.007] [PMID: 28600038]
[136]
Raoufi MF, Tajik P, Dehghan MM, Eini F, Barin A. Isolation and differentiation of mesenchymal stem cells from bovine umbilical cord blood. Reprod Domest Anim 2011; 46(1): 95-9.
[http://dx.doi.org/10.1111/j.1439-0531.2010.01594.x] [PMID: 20345587]
[137]
Gade NE, Pratheesh MD. Molecular and cellular characterization of buffalo bone marrow derived mesenchymal stem cells. Reprod Domest Anim 2012; 47(6): 975-83.
[PMID: 23679988]
[138]
Sreekumar TR, Ansari MM, Chandra V, Sharma GT. Isolation and Characterization of Buffalo Wharton’s Jelly Derived Mesenchymal Stem Cells. J Stem Cell Res Ther 2014; 4: 207.
[http://dx.doi.org/10.4172/2157-7633.1000207]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy