Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

An Assessment of In-vitro and In-vivo Evaluation Methods for Theranostic Nanomaterials

Author(s): Poonam Parashar, Neelu Singh, Alka, Priyanka Maurya and Shubhini A. Saraf*

Volume 28, Issue 2, 2022

Published on: 03 August, 2021

Page: [78 - 90] Pages: 13

DOI: 10.2174/1381612827666210804101720

Price: $65

Abstract

Nanoparticles (NPs) as nanocarriers have emerged as novel and promising theranostic agents. The term theranostics revealed the properties of NPs capable of diagnosing the disease at an early stage and/or treating the disease. Such NPs are usually developed employing a surface engineering approach. The theranostic agents comprise NPs loaded with a drug/diagnostic agent that delivers it precisely to the target site. Theranostics is a field with promising results in enhancing therapeutic efficacy facilitated through higher payload at the targeted tissue, reduced dose, and dose-dependent side effects. However, controversies in terms of toxicity and size-dependent properties have often surfaced for NPs. Thus, a stringent in-vitro and in-vivo evaluation is required to develop safe and non-toxic NPs as theranostic agents. The review also focuses on the various entry points of NPs in the human system and their outcomes, including toxicity. It elaborates the evaluation criteria to ensure the safe use of NPs for diagnostic and therapeutic purposes.

Keywords: Theranostics, nanoparticles, toxicity, pharmacokinetic, proteins molecules, blood-brain barrier.

« Previous
[1]
Fan Z, Fu PP, Yu H, Ray PC. Theranostic nanomedicine for cancer detection and treatment. J Food Drug Anal 2014; 22(1): 3-17.
[http://dx.doi.org/10.1016/j.jfda.2014.01.001] [PMID: 24673900]
[2]
Indoria S, Singh V, Hsieh MF. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. Int J Pharm 2020; 582119314
[http://dx.doi.org/10.1016/j.ijpharm.2020.119314] [PMID: 32283197]
[3]
Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. Int J Nanomedicine 2020; 15: 1437-56.
[http://dx.doi.org/10.2147/IJN.S236927] [PMID: 32184597]
[4]
Vats S, Singh M, Siraj S, Singh H, Tandon S. Role of nanotechnology in theranostics and personalized medicines. J Health Res and Rev 2017; 4(1): 1.
[http://dx.doi.org/10.4103/2394-2010.199328]
[5]
Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med 2014; 55(12): 1919-22.
[http://dx.doi.org/10.2967/jnumed.114.146019] [PMID: 25413134]
[6]
Ramanathan S, Archunan G, Sivakumar M, et al. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13: 5561-76.
[http://dx.doi.org/10.2147/IJN.S149022] [PMID: 30271147]
[7]
Onaciu A, Jurj A, Moldovan C, Berindan-Neagoe I. Theranostic nanoparticles and their spectrum in cancer. In:Engineered Nanomaterials Health and Safety. InTech Open 2019.
[8]
Liu Y, Feng L, Liu T, et al. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 2014; 6(6): 3231-42.
[http://dx.doi.org/10.1039/c3nr05647c] [PMID: 24500240]
[9]
Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res 2011; 44(10): 1050-60.
[http://dx.doi.org/10.1021/ar200106e] [PMID: 21919457]
[10]
Shao D, Li J, Pan Y, et al. Noninvasive theranostic imaging of HSV-TK/GCV suicide gene therapy in liver cancer by folate-targeted quantum dot-based liposomes. Biomater Sci 2015; 3(6): 833-41.
[http://dx.doi.org/10.1039/C5BM00077G] [PMID: 26221843]
[11]
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely triggered nano-theranostics for cancer applications. Nanotheranostics 2017; 1(1): 1-22.
[http://dx.doi.org/10.7150/ntno.17109] [PMID: 28191450]
[12]
Cavalli R, Argenziano M, Vigna E, et al. Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids Surf B Biointerfaces 2015; 129: 39-46.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.023] [PMID: 25819364]
[13]
De Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[14]
Mugaka BP, Hu Y, Ma Y, Ding Y. Surface modification of gold nanoparticles for targeted drug delivery.In: Surface modification of nanoparticles for targeted drug delivery Springer, Cham. 2019; pp. 391-403.
[http://dx.doi.org/10.1007/978-3-030-06115-9_20]
[15]
Aydın A, Sipahi H, Charehsaz M. Nanoparticles toxicity and their routes of exposures. Recent Advances in Novel Drug Carrier Systems 2012.
[http://dx.doi.org/10.5772/51230]
[16]
Wani MY, Hashim MA, Nabi F, Malik MA. Nanotoxicity: Dimensional and morphological concerns. Adv Phys Chem 2011; 2011
[http://dx.doi.org/10.1155/2011/450912]
[17]
Brown DM, Donaldson K, Borm PJ, et al. Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 2004; 286(2): L344-53.
[http://dx.doi.org/10.1152/ajplung.00139.2003] [PMID: 14555462]
[18]
Hansen CS, Sheykhzade M, Møller P, et al. Diesel exhaust particles induce endothelial dysfunction in apoE-/- mice. Toxicol Appl Pharmacol 2007; 219(1): 24-32.
[http://dx.doi.org/10.1016/j.taap.2006.10.032] [PMID: 17234226]
[19]
Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006; 40(14): 4346-52.
[http://dx.doi.org/10.1021/es060589n] [PMID: 16903269]
[20]
Suhani LA, Aggarwal L, Ali S, Jhaketiya A, Thomas S. Short and hypertrophic ligament of treitz: A rare cause of superior mesentric artery syndrome. J Clin Diagn Res 2014; 8(10): ND03-4.
[PMID: 25478394]
[21]
Dreifuss T, Betzer O, Shilo M, Popovtzer A, Motiei M, Popovtzer R. A challenge for theranostics: Is the optimal particle for therapy also optimal for diagnostics? Nanoscale 2015; 7(37): 15175-84.
[http://dx.doi.org/10.1039/C5NR03119B] [PMID: 26313344]
[22]
Chen F, Hong H, Goel S, et al. In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine. ACS Nano 2015; 9(4): 3926-34.
[http://dx.doi.org/10.1021/nn507241v] [PMID: 25843647]
[23]
Chen L, Fu C, Deng Y, Wu W, Fu A. A pH-sensitive nanocarrier for tumor targeting: Delivery of ruthenium complex for tumor theranostic by pH-sensitive nanocapsule. Pharm Res 2016; 33(12): 2989-98.
[http://dx.doi.org/10.1007/s11095-016-2021-2] [PMID: 27590630]
[24]
Hu H, Wang J, Wang H, et al. Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics 2018; 8(13): 3597-610.
[http://dx.doi.org/10.7150/thno.25608] [PMID: 30026869]
[25]
Liu F, Chen Y, Li Y, et al. Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy. Int J Nanomedicine 2018; 13: 5139-58.
[http://dx.doi.org/10.2147/IJN.S167043] [PMID: 30233177]
[26]
Palacios-Hernandez T, Diaz-Diestra DM, Nguyen AK, et al. Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2020; 40(7): 918-30.
[http://dx.doi.org/10.1002/jat.3953] [PMID: 32080871]
[27]
Seleci M, Ag Seleci D, Scheper T, Stahl F. Theranostic liposome-nanoparticle hybrids for drug delivery and bioimaging. Int J Mol Sci 2017; 18(7)E1415
[http://dx.doi.org/10.3390/ijms18071415] [PMID: 28671589]
[28]
Varani M, Galli F, Capriotti G, et al. Theranostic designed near-infrared fluorescent poly (lactic-co-glycolic acid) nanoparticles and preliminary studies with functionalized VEGF-nanoparticles. J Clin Med 2020; 9(6): 1750.
[29]
Xiong H, Liu S, Wei T, Cheng Q, Siegwart DJ. Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery In Vivo. J Control Release 2020; 325: 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.030] [PMID: 32629133]
[30]
Bogdanov AA Jr, Gupta S, Koshkina N, et al. Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): In vitro and In Vivo evaluation of a potential theranostic agent. Bioconjug Chem 2015; 26(1): 39-50.
[http://dx.doi.org/10.1021/bc5005087] [PMID: 25496453]
[31]
Smith DJ. Characterization of nanomaterials using transmission electron microscopy. In: In: Nanocharacterization. 2015; pp. 1-29.
[http://dx.doi.org/10.1039/9781782621867-00001]
[32]
Choi J, Rustique E, Henry M, et al. Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: In vitro and In Vivo evaluation. Acc Chem Res 2017; 532(2): 677-85.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.007] [PMID: 28279737]
[33]
Cong Y, Xiao H, Xiong H, et al. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv Mater 2018; 30(11)
[http://dx.doi.org/10.1002/adma.201706220] [PMID: 29349918]
[34]
Voulgari E, Bakandritsos A, Galtsidis S, Zoumpourlis V, Burke BP, Clemente GS. Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers. J Control Release 2016; 243: 342-56.
[35]
Xu C, Wang Y, Yu H, Tian H. Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities. ACS Nano 2018; 12(8): 8255-65.
[36]
Yao H, Su L, Zeng M, et al. Construction of magnetic-carbon-quantum-dots-probe-labeled apoferritin nanocages for bioimaging and targeted therapy. Int J Nanomedicine 2016; 11: 4423-38.
[http://dx.doi.org/10.2147/IJN.S108039] [PMID: 27660437]
[37]
Akter M, Sikder MT, Rahman MM, et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 2017; 9: 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[38]
Beeran AE, Fernandez FB, Nazeer SS, et al. Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application. Colloids Surf B Biointerfaces 2015; 136: 1089-97.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.010] [PMID: 26595389]
[39]
Chen Y, Chen H, Shi J. Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opin Drug Deliv 2014; 11(6): 917-30.
[http://dx.doi.org/10.1517/17425247.2014.908181] [PMID: 24746014]
[40]
Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 2012; 33(10): 2936-51.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.046] [PMID: 22264522]
[41]
Almeida PV, Shahbazi MA, Correia A, et al. A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine (Lond) 2017; 12(12): 1401-20.
[http://dx.doi.org/10.2217/nnm-2017-0034] [PMID: 28524813]
[42]
Fu L, Morsch M, Shi B, et al. A versatile upconversion surface evaluation platform for bio-nano surface selection for the nervous system. Nanoscale 2017; 9(36): 13683-92.
[http://dx.doi.org/10.1039/C7NR03557H] [PMID: 28876356]
[43]
Rosch JG, DuRoss AN, Landry MR, Sun C. Formulation of folate-modified raltitrexed-loaded nanoparticles for colorectal cancer theranostics. Pharmaceutics 2020; 12(2)E133
[http://dx.doi.org/10.3390/pharmaceutics12020133] [PMID: 32033317]
[44]
Bose RJC, Uday Kumar S, Zeng Y, et al. Tumor cell-derived extracellular vesicle-coated nanocarriers: An efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents. ACS Nano 2018; 12(11): 10817-32.
[http://dx.doi.org/10.1021/acsnano.8b02587] [PMID: 30346694]
[45]
Butterworth KT, Nicol JR, Ghita M, et al. Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy. Nanomedicine (Lond) 2016; 11(16): 2035-47.
[http://dx.doi.org/10.2217/nnm-2016-0062] [PMID: 27463088]
[46]
Liu Y, Li J, Liu F, Feng L, Yu D, Zhang N. Theranostic polymeric micelles for the diagnosis and treatment of hepatocellular carcinoma. J Biomed Nanotechnol 2015; 11(4): 613-22.
[http://dx.doi.org/10.1166/jbn.2015.1945] [PMID: 26310068]
[47]
Kang H, Mintri S, Menon AV, Lee HY, Choi HS, Kim J. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale 2015; 7(45): 18848-62.
[http://dx.doi.org/10.1039/C5NR05264E] [PMID: 26528835]
[48]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[49]
Oberdörster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994; 102(Suppl. 5): 173-9.
[PMID: 7882925]
[50]
Hopwood D, Spiers EM, Ross PE, Anderson JT, McCullough JB, Murray FE. Endocytosis of fluorescent microspheres by human oesophageal epithelial cells: Comparison between normal and inflamed tissue. Gut 1995; 37(5): 598-602.
[http://dx.doi.org/10.1136/gut.37.5.598] [PMID: 8549931]
[51]
Parashar P, Rathor M, Dwivedi M, Saraf SA. Hyaluronic acid decorated naringenin nanoparticles: Appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics 2018; 10(1): 33.
[http://dx.doi.org/10.3390/pharmaceutics10010033] [PMID: 29534519]
[52]
Kanoujia J, Singh M, Singh P, Saraf SA. Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Mater Sci Eng C 2016; 69: 967-76.
[http://dx.doi.org/10.1016/j.msec.2016.08.011] [PMID: 27612792]
[53]
Zhang W, Yao Y, Sullivan N, Chen Y. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 2011; 45(10): 4422-8.
[http://dx.doi.org/10.1021/es104205a] [PMID: 21513312]
[54]
Yar Y, Khodadust R, Akkoc Y, et al. Development of tailored SPION-PNIPAM nanoparticles by ATRP for dually responsive doxorubicin delivery and MR imaging. J Mater Chem B Mater Biol Med 2018; 6(2): 289-300.
[http://dx.doi.org/10.1039/C7TB00646B] [PMID: 32254171]
[55]
Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009; 145(1-2): 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[56]
Yang X, Gondikas AP, Marinakos SM, et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 2012; 46(2): 1119-27.
[http://dx.doi.org/10.1021/es202417t] [PMID: 22148238]
[57]
El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 2011; 45(1): 283-7.
[http://dx.doi.org/10.1021/es1034188] [PMID: 21133412]
[58]
Bozich JS, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Klaper RD. Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ Sci Nano 2014; 1(3): 260-70.
[http://dx.doi.org/10.1039/C4EN00006D]
[59]
Yah CS. The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 2013; 24(3): 400-13.
[60]
Carnovale C, Bryant G, Shukla R, Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega 2019; 4(1): 242-56.
[http://dx.doi.org/10.1021/acsomega.8b03227]
[61]
Jia Y-P, Ma B-Y, Wei X-W, Qian Z-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 2017; 28(4): 691-702.
[http://dx.doi.org/10.1016/j.cclet.2017.01.021]
[62]
Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 2011; 13(4): 822-8.
[http://dx.doi.org/10.1039/c0em00611d] [PMID: 21267473]
[63]
Kaiser J-P, Buerki-Thurnherr T, Wick P. Influence of single walled carbon nanotubes at subtoxical concentrations on cell adhesion and other cell parameters of human epithelial cells. J King Saud Univ Sci 2013; 25(1): 15-27.
[http://dx.doi.org/10.1016/j.jksus.2012.06.003]
[64]
Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol 2019; 16(1): 18.
[http://dx.doi.org/10.1186/s12989-019-0299-z] [PMID: 30975174]
[65]
Mohanta D, Patnaik S, Sood S, Das N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J Pharm Anal 2019; 9(5): 293-300.
[http://dx.doi.org/10.1016/j.jpha.2019.04.003] [PMID: 31929938]
[66]
Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004; 4(11): 2163-9.
[http://dx.doi.org/10.1021/nl048715d]
[67]
Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006; 114(2): 165-72.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 16451849]
[68]
Tsoi KM, Dai Q, Alman BA, Chan WC. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 2013; 46(3): 662-71.
[http://dx.doi.org/10.1021/ar300040z] [PMID: 22853558]
[69]
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14(11): 1568-73.
[http://dx.doi.org/10.1023/A:1012126301290] [PMID: 9434276]
[70]
Gutierro I, Hernández RM, Igartua M, Gascón AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002; 21(1-2): 67-77.
[http://dx.doi.org/10.1016/S0264-410X(02)00435-8] [PMID: 12443664]
[71]
Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res 1994; 11(3): 402-6.
[http://dx.doi.org/10.1023/A:1018965121222] [PMID: 8008707]
[72]
Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 2003; 257(1-2): 169-80.
[http://dx.doi.org/10.1016/S0378-5173(03)00134-0] [PMID: 12711172]
[73]
Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and In Vivo. J Control Release 2007; 119(1): 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.016] [PMID: 17349712]
[74]
Kanoujia J, Singh M, Singh P, Parashar P, Tripathi CB, Arya M. Genipin crosslinked soy-whey based bioactive material for atorvastatin loaded nanoparticles: Preparation, characterization and in vivo antihyperlipidemic study. RSC Advances 2016; 6(96): 93275-87.
[http://dx.doi.org/10.1039/C6RA16830B]
[75]
Jain A, Mishra SK, Vuddanda PR, Singh SK, Singh R, Singh S. Targeting of diacerein loaded lipid nanoparticles to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats. Nanomedicine (Lond) 2014; 10(5): 1031-40.
[http://dx.doi.org/10.1016/j.nano.2014.01.008] [PMID: 24512762]
[76]
Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Eur Rev Med Pharmacol Sci 2002; 6(2-3): 33-44.
[PMID: 12708608]
[77]
Reseigno A, Segre G. Drug and tracer kinetics. Biomed Sci 1967; 17(2): 121.
[78]
Urso R, Aarons L. Bioavailability of drugs with long elimination half-lives. Eur J Clin Pharmacol 1983; 25(5): 689-93.
[http://dx.doi.org/10.1007/BF00542360] [PMID: 6141052]
[79]
Cerletti C, Marchi S, Lauri D, et al. Pharmacokinetics of enteric-coated aspirin and inhibition of platelet thromboxane A2 and vascular prostacyclin generation in humans. Clin Pharmacol Ther 1987; 42(2): 175-80.
[http://dx.doi.org/10.1038/clpt.1987.128] [PMID: 3301151]
[80]
Khalil NM, do Nascimento TCF, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces 2013; 101: 353-60.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.024] [PMID: 23010041]
[81]
Tsai M-J, Huang Y-B, Wu P-C, et al. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J Pharm Sci 2011; 100(2): 547-57.
[http://dx.doi.org/10.1002/jps.22285] [PMID: 20740670]
[82]
Nakane PK, Kawaoi A. Peroxidase-labeled antibody. A new method of conjugation. J Histochem Cytochem 1974; 22(12): 1084-91.
[http://dx.doi.org/10.1177/22.12.1084] [PMID: 4443551]
[83]
AVRAMEAS SR. Ternynck T, Guesdon JL. Coupling of enzymes to antibodies and antigens. Scand J Immunol 1978; 8: 7-23.
[http://dx.doi.org/10.1111/j.1365-3083.1978.tb03880.x]
[84]
Craven GR, Steers E Jr, Anfinsen CB. Purification, composition, and molecular weight of the β-galactosidase of Escherichia coli K12. J Biol Chem 1965; 240(6): 2468-77.
[http://dx.doi.org/10.1016/S0021-9258(18)97348-5] [PMID: 14304855]
[85]
Comoglio S, Celada F. An immuno-enzymatic assay of cortisol using E. coli β-galactosidase as label. J Immunol Methods 1976; 10(2-3): 161-70.
[http://dx.doi.org/10.1016/0022-1759(76)90167-8] [PMID: 778271]
[86]
Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 2006; 325(1-2): 147-54.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.019] [PMID: 16859846]
[87]
Mahmood T, Yang P-C. Western blot: Technique, theory, and trouble shooting. N Am J Med Sci 2012; 4(9): 429-34.
[http://dx.doi.org/10.4103/1947-2714.100998] [PMID: 23050259]
[88]
Arya M, Singh P, Tripathi CB, et al. Pectin-encrusted gold nanocomposites containing phytic acid and jacalin: 1,2-dimethylhydrazine-induced colon carcinogenesis in Wistar rats, PI3K/Akt, COX-2, and serum metabolomics as potential targets. Drug Deliv Transl Res 2019; 9(1): 53-65.
[http://dx.doi.org/10.1007/s13346-018-00605-y] [PMID: 30484258]
[89]
Roger E, Kalscheuer S, Kirtane A, et al. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 2012; 9(7): 2103-10.
[http://dx.doi.org/10.1021/mp2005388] [PMID: 22670575]
[90]
Parashar P, Tripathi CB, Arya M, et al. A synergistic approach for management of lung carcinoma through folic acid functionalized co-therapy of capsaicin and gefitinib nanoparticles: Enhanced apoptosis and metalloproteinase-9 down-regulation. Phytomedicine 2019; 53: 107-23.
[http://dx.doi.org/10.1016/j.phymed.2018.09.013] [PMID: 30668390]
[91]
Czerska M, Mikolajewska K, Zielinski M, Gromadzinska J, Wasowicz W. Today’s oxidative stress markers. Med Pr 2015; 66(3): 393-405.
[92]
Parashar P, Rana P, Dwivedi M, Saraf SA. Dextrose modified bilosomes for peroral delivery: Improved therapeutic potential and stability of silymarin in diethylnitrosamine-induced hepatic carcinoma in rats. J Liposome Res 2019; 29(3): 251-63.
[http://dx.doi.org/10.1080/08982104.2018.1551408] [PMID: 30501440]
[93]
Hirst SM, Karakoti A, Singh S, et al. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol 2013; 28(2): 107-18.
[http://dx.doi.org/10.1002/tox.20704] [PMID: 21618676]
[94]
Andreani T, Kiill CP, de Souza ALR, et al. Surface engineering of silica nanoparticles for oral insulin delivery: Characterization and cell toxicity studies. Colloids Surf B Biointerfaces 2014; 123: 916-23.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.047] [PMID: 25466464]
[95]
Singh N, Parashar P, Tripathi CB, Kanoujia J, Kaithwas G, Saraf SA. Oral delivery of allopurinol niosomes in treatment of gout in animal model. J Liposome Res 2017; 27(2): 130-8.
[http://dx.doi.org/10.1080/08982104.2016.1174943] [PMID: 28067087]
[96]
Parashar P, Mazhar I, Kanoujia J, et al. Appraisal of anti-gout potential of colchicine-loaded chitosan nanoparticle gel in uric acid-induced gout animal model. Arch Physiol Biochem 2019; 1-11.
[http://dx.doi.org/10.1080/13813455.2019.1702702] [PMID: 31852265]
[97]
Singh S, Parashar P, Kanoujia J, Singh I, Saha S, Saraf SA. Transdermal potential and anti-gout efficacy of Febuxostat from niosomal gel. J Drug Deliv Sci Technol 2017; 39: 348-61.
[http://dx.doi.org/10.1016/j.jddst.2017.04.020]
[98]
Bhalekar MR, Upadhaya PG, Madgulkar AR. Fabrication and efficacy evaluation of chloroquine nanoparticles in CFA-induced arthritic rats using TNF-α ELISA. Eur J Pharm Sci 2016; 84: 1-8.
[http://dx.doi.org/10.1016/j.ejps.2016.01.009] [PMID: 26776969]
[99]
McDowell A, Nicoll JJ, McLeod BJ, Tucker IG, Davies NM. Gastrointestinal transit in the common brushtail possum measured by gamma scintigraphy. Int J Pharm 2005; 302(1-2): 125-32.
[http://dx.doi.org/10.1016/j.ijpharm.2005.06.026] [PMID: 16112826]
[100]
Wilding IR, Coupe AJ, Davis SS. The role of γ-scintigraphy in oral drug delivery. Adv Drug Deliv Rev 2001; 46(1-3): 103-24.
[http://dx.doi.org/10.1016/S0169-409X(00)00135-6] [PMID: 11259836]
[101]
Huang Y-C, Chen J-K, Lam U-I, Chen S-Y. Preparing, characterizing, and evaluating chitosan/fucoidan nanoparticles as oral delivery carriers. J Polym Res 2014; 21(5): 415.
[http://dx.doi.org/10.1007/s10965-014-0415-6]
[102]
Parashar P, Tripathi CB, Arya M, et al. A facile approach for fabricating CD44-targeted delivery of hyaluronic acid-functionalized PCL nanoparticles in urethane-induced lung cancer: Bcl-2, MMP-9, caspase-9, and BAX as potential markers. Drug Deliv Transl Res 2019; 9(1): 37-52.
[http://dx.doi.org/10.1007/s13346-018-0575-8] [PMID: 30178279]
[103]
Qingnuan L, yan X, Xiaodong Z, et al. Preparation of (99m)Tc-C(60)(OH)(x) and its biodistribution studies. Nucl Med Biol 2002; 29(6): 707-10.
[http://dx.doi.org/10.1016/S0969-8051(02)00313-X] [PMID: 12234597]
[104]
Patel MD, Date PV, Gaikwad RV, Samad A, Malshe VC, Devarajan PV. Comparative evaluation of polymeric nanoparticles of rifampicin comprising Gantrez and poly(ethylene sebacate) on pharmacokinetics, biodistribution and lung uptake following oral administration. J Biomed Nanotechnol 2014; 10(4): 687-94.
[http://dx.doi.org/10.1166/jbn.2014.1739] [PMID: 24734521]
[105]
Aboushoushah S, Alshammari W, Darwesh R, Elbaily N. Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration. Life Sci 2021; 277119625
[http://dx.doi.org/10.1016/j.lfs.2021.119625] [PMID: 34015288]
[106]
Li X, Ouyang Z, Li H, et al. Dendrimer-decorated nanogels: Efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioact Mater 2021; 6(10): 3244-53.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.031] [PMID: 33778202]
[107]
Gulati K, Ray A. Immunotoxicity. In:Handbook of toxicology of chemical warfare agents. Academic Press, Elsevier 2009; pp. 595-609.
[http://dx.doi.org/10.1016/B978-012374484-5.00040-7]
[108]
Fahmy HM, Ebrahim NM, Gaber MH. In vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. J Trace Elem Med Biol 2020; 60126481
[http://dx.doi.org/10.1016/j.jtemb.2020.126481] [PMID: 32135445]
[109]
van der Zande M, Vandebriel RJ, Van Doren E, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 2012; 6(8): 7427-42.
[http://dx.doi.org/10.1021/nn302649p] [PMID: 22857815]
[110]
Magaye R, Zhao J, Bowman L, Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Ther Med 2012; 4(4): 551-61.
[http://dx.doi.org/10.3892/etm.2012.656] [PMID: 23170105]
[111]
Kumari M, Kumari SI, Kamal SSK, Grover P. Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure. Mutat Res Genet Toxicol Environ Mutagen 2014; 775-776: 7-19.
[http://dx.doi.org/10.1016/j.mrgentox.2014.09.009] [PMID: 25435351]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy