Review Article

基于脂质体的纳米平台提高了超声相关的诊断和治疗精度

卷 29, 期 8, 2022

发表于: 04 August, 2021

页: [1331 - 1341] 页: 11

弟呕挨: 10.2174/0929867328666210804092624

价格: $65

摘要

超声 (US) 因其缺乏电离辐射、非侵入性方法和实时监测能力而在医学领域被公认为一种安全有效的成像方式。随着纳米医学的最新进展,美国利用美国诱导的生物效应,不仅为基于影像的诊断,而且为基于美国的治疗提供了治疗诊断能力的希望。在过去的几十年中,由声能转换激发的空化、声孔效应、热效应和其他级联效应有助于解决医学问题,尽管与其他方法相比功效程度不同。最近,基于脂质体的纳米平台的使用推动了纳米药物的发展,并为抗肿瘤、溶栓和药物控制释放提供了新的临床策略。新型脂质体纳米平台与美国诱导反应的结合有望为未来医学开辟新蓝图。在本综述文章中,将讨论和总结基于脂质体的纳米平台在美国相关诊断和治疗中的价值以及未来可能的进一步研究方向。

关键词: 脂质体、超声、诊断、纳米平台、纳米医学、治疗

[1]
Kim, E.M.; Jeong, H.J. Liposomes: biomedical applications. Chonnam Med. J., 2021, 57(1), 27-35.
[http://dx.doi.org/10.4068/cmj.2021.57.1.27] [PMID: 33537216]
[2]
Yu, G.Z.; Istvanic, F.; Chen, X.; Nouraie, M.; Shiva, S.; Straub, A.C.; Pacella, J.J. Ultrasound-targeted microbubble cavitation with sodium nitrite synergistically enhances nitric oxide production and microvascular perfusion. Ultrasound Med. Biol., 2020, 46(3), 667-678.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.10.012] [PMID: 31810801]
[3]
Monteith, S.J.; Kassell, N.F.; Goren, O.; Harnof, S. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage. Neurosurg. Focus, 2013, 34(5), E14.
[http://dx.doi.org/10.3171/2013.2.FOCUS1313] [PMID: 23634918]
[4]
Stone, M.J.; Frenkel, V.; Dromi, S.; Thomas, P.; Lewis, R.P.; Li, K.C.; Horne, M., III; Wood, B.J. Pulsed-high intensity focused ultrasound enhanced tPA mediated thrombolysis in a novel in vivo clot model, a pilot study. Thromb. Res., 2007, 121(2), 193-202.
[http://dx.doi.org/10.1016/j.thromres.2007.03.023] [PMID: 17481699]
[5]
Yue, P.; Gao, L.; Wang, X.; Ding, X.; Teng, J. Ultrasound-triggered effects of the microbubbles coupled to GDNF- and Nurr1-loaded PEGylated liposomes in a rat model of Parkinson’s disease. J. Cell. Biochem., 2018, 119(6), 4581-4591.
[http://dx.doi.org/10.1002/jcb.26608] [PMID: 29240240]
[6]
Burgess, A.; Ayala-Grosso, C.A.; Ganguly, M.; Jordão, J.F.; Aubert, I.; Hynynen, K. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS One, 2011, 6(11), e27877.
[http://dx.doi.org/10.1371/journal.pone.0027877] [PMID: 22114718]
[7]
Huang, Y.; Alkins, R.; Schwartz, M.L.; Hynynen, K. Opening the blood-brain barrier with mr imaging-guided focused ultrasound: preclinical testing on a trans-human skull porcine model. Radiology, 2017, 282(1), 123-130.
[http://dx.doi.org/10.1148/radiol.2016152154] [PMID: 27420647]
[8]
Treat, L.H.; McDannold, N.; Zhang, Y.; Vykhodtseva, N.; Hynynen, K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med. Biol., 2012, 38(10), 1716-1725.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.04.015] [PMID: 22818878]
[9]
Thomas, E.; Menon, J.U.; Owen, J.; Skaripa-Koukelli, I.; Wallington, S.; Gray, M.; Mannaris, C.; Kersemans, V.; Allen, D.; Kinchesh, P.; Smart, S.; Carlisle, R.; Vallis, K.A. Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics, 2019, 9(19), 5595-5609.
[http://dx.doi.org/10.7150/thno.34669] [PMID: 31534505]
[10]
Yue, X.; Dai, Z. Liposomal nanotechnology for cancer theranostics. Curr. Med. Chem., 2018, 25(12), 1397-1408.
[http://dx.doi.org/10.2174/0929867324666170306105350] [PMID: 28266269]
[11]
Cullion, K.; Rwei, A.Y.; Kohane, D.S. Ultrasound-triggered liposomes for on-demand local anesthesia. Ther. Deliv., 2018, 9(1), 5-8.
[http://dx.doi.org/10.4155/tde-2017-0100] [PMID: 29216807]
[12]
Salkho, N.M.; Turki, R.Z.; Guessoum, O.; Martins, A.M.; Vitor, R.F.; Husseini, G.A. Liposomes as a promising ultrasound-triggered drug delivery system in cancer treatment. Curr. Mol. Med., 2017, 17(10), 668-688.
[http://dx.doi.org/10.2174/1566524018666180416100142] [PMID: 29663885]
[13]
Jain, A.; Jain, S.K. Stimuli-responsive smart liposomes in cancer targeting. Curr. Drug Targets, 2018, 19(3), 259-270.
[http://dx.doi.org/10.2174/1389450117666160208144143] [PMID: 26853324]
[14]
Lyshchik, A.; Kono, Y.; Dietrich, C.F.; Jang, H.J.; Kim, T.K.; Piscaglia, F.; Vezeridis, A.; Willmann, J.K.; Wilson, S.R. Contrast-enhanced ultrasound of the liver: technical and lexicon recommendations from the ACR CEUS LI-RADS working group. Abdom. Radiol. (N.Y.), 2018, 43(4), 861-879.
[http://dx.doi.org/10.1007/s00261-017-1392-0] [PMID: 29151131]
[15]
Schellhaas, B.; Görtz, R.S.; Pfeifer, L.; Kielisch, C.; Neurath, M.F.; Strobel, D. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS. Eur. J. Gastroenterol. Hepatol., 2017, 29(9), 1036-1044.
[http://dx.doi.org/10.1097/MEG.0000000000000916] [PMID: 28562394]
[16]
Ji, C.L.; Li, X.L.; He, Y.P.; Li, D.D.; Gu, X.G.; Xu, H.X. Quantitative parameters of contrast-enhanced ultrasound in breast invasive ductal carcinoma: The correlation with pathological prognostic factors. Clin. Hemorheol. Microcirc., 2017, 66(4), 333-345.
[http://dx.doi.org/10.3233/CH-170251] [PMID: 28387663]
[17]
Cai, W.B.; Yang, H.L.; Zhang, J.; Yin, J.K.; Yang, Y.L.; Yuan, L.J.; Zhang, L.; Duan, Y.Y. The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Sci. Rep., 2015, 5, 13725.
[http://dx.doi.org/10.1038/srep13725] [PMID: 26333917]
[18]
Zhang, J.; Chen, Y.; Deng, C.; Zhang, L.; Sun, Z.; Wang, J.; Yang, Y.; Lv, Q.; Han, W.; Xie, M. The optimized fabrication of a novel nanobubble for tumor imaging. Front. Pharmacol., 2019, 10, 610.
[http://dx.doi.org/10.3389/fphar.2019.00610] [PMID: 31214033]
[19]
Wu, H.; Abenojar, E.C.; Perera, R.; De Leon, A.C.; An, T.; Exner, A.A. Time-intensity-curve analysis and tumor extravasation of nanobubble ultrasound contrast agents. Ultrasound Med. Biol., 2019, 45(9), 2502-2514.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.05.025] [PMID: 31248638]
[20]
Sun, X.; Guo, L.; Shang, M.; Shi, D.; Liang, P.; Jing, X.; Meng, D.; Liu, X.; Zhou, X.; Zhao, Y.; Li, J. Ultrasound mediated destruction of LMW-HA-loaded and folate-conjugated nanobubble for TAM targeting and reeducation. Int. J. Nanomedicine, 2020, 15, 1967-1981.
[http://dx.doi.org/10.2147/IJN.S238587] [PMID: 32273697]
[21]
Pellow, C.; O’Reilly, M.A.; Hynynen, K.; Zheng, G.; Goertz, D.E. Simultaneous intravital optical and acoustic monitoring of ultrasound-triggered nanobubble generation and extravasation. Nano Lett., 2020, 20(6), 4512-4519.
[http://dx.doi.org/10.1021/acs.nanolett.0c01310] [PMID: 32374617]
[22]
Yokoe, I.; Murahata, Y.; Harada, K.; Sunden, Y.; Omata, D.; Unga, J.; Suzuki, R.; Maruyama, K.; Okamoto, Y.; Osaki, T. A pilot study on efficacy of lipid bubbles for theranostics in dogs with tumors. Cancers (Basel), 2020, 12(9), E2423.
[http://dx.doi.org/10.3390/cancers12092423] [PMID: 32859089]
[23]
Yang, H.; Cai, W.; Xu, L.; Lv, X.; Qiao, Y.; Li, P.; Wu, H.; Yang, Y.; Zhang, L.; Duan, Y. Nanobubble-affibody: novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials, 2015, 37, 279-288.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.013] [PMID: 25453958]
[24]
Peng, Y.; Zhu, L.; Wang, L.; Liu, Y.; Fang, K.; Lan, M.; Shen, D.; Liu, D.; Yu, Z.; Guo, Y. Preparation of nanobubbles modified with a small-molecule CXCR4 antagonist for targeted drug delivery to tumors and enhanced ultrasound molecular imaging. Int. J. Nanomedicine, 2019, 14, 9139-9157.
[http://dx.doi.org/10.2147/IJN.S210478] [PMID: 32063704]
[25]
Du, J.; Li, X.Y.; Hu, H.; Xu, L.; Yang, S.P.; Li, F.H. Preparation and imaging investigation of dual-targeted C3F8-filled PLGA nanobubbles as a novel ultrasound contrast agent for breast cancer. Sci. Rep., 2018, 8(1), 3887.
[http://dx.doi.org/10.1038/s41598-018-21502-x] [PMID: 29497045]
[26]
Yu, Z.; Hu, M.; Li, Z. Dan Xu, Zhu, L.; Guo, Y.; Liu, Q.; Lan, W.; Jiang, J.; Wang, L. Anti-G250 nanobody-functionalized nanobubbles targeting renal cell carcinoma cells for ultrasound molecular imaging. Nanotechnology, 2020, 31(20), 205101.
[http://dx.doi.org/10.1088/1361-6528/ab7040] [PMID: 32107342]
[27]
Lv, W.; Shen, Y.; Yang, H.; Yang, R.; Cai, W.; Zhang, J.; Yuan, L.; Duan, Y.; Zhang, L. A novel bimodal imaging agent targeting her2 molecule of breast cancer. J. Immunol. Res., 2018, 2018, 6202876.
[http://dx.doi.org/10.1155/2018/6202876] [PMID: 29854844]
[28]
Sparchez, Z.; Radu, P.; Zaharia, T.; Kacso, G.; Grigorescu, I.; Botis, G.; Badea, R. Usefulness of contrast enhanced ultrasound guidance in percutaneous biopsies of liver tumors. J. Gastrointestin. Liver Dis., 2011, 20(2), 191-196.
[PMID: 21725517]
[29]
Zhao, D.; Shao, Y.Q.; Hu, J.; Liu, D.; Tang, W.; He, N. Role of contrast-enhanced ultrasound guidance in core-needle biopsy for diagnosis of cervical tuberculous lymphadenitis. Clin. Hemorheol. Microcirc., 2021, 77(4), 381-389.
[http://dx.doi.org/10.3233/CH-201038] [PMID: 33337357]
[30]
Ektate, K.; Kapoor, A.; Maples, D.; Tuysuzoglu, A.; VanOsdol, J.; Ramasami, S.; Ranjan, A. Motion compensated ultrasound imaging allows thermometry and image guided drug delivery monitoring from echogenic liposomes. Theranostics, 2016, 6(11), 1963-1974.
[http://dx.doi.org/10.7150/thno.15922] [PMID: 27570563]
[31]
Prabhakar, A.; Banerjee, R. Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: a theranostic approach. ACS Omega, 2019, 4(13), 15567-15580.
[http://dx.doi.org/10.1021/acsomega.9b01924] [PMID: 31572858]
[32]
Duco, W.; Grosso, V.; Zaccari, D.; Soltermann, A.T. Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications. Methods, 2016, 109, 141-148.
[http://dx.doi.org/10.1016/j.ymeth.2016.07.015] [PMID: 27542338]
[33]
Choi, V.; Rajora, M.A.; Zheng, G. Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug. Chem., 2020, 31(4), 967-989.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00029] [PMID: 32129984]
[34]
Lin, X.; Liu, S.; Zhang, X.; Zhu, R.; Chen, S.; Chen, X.; Song, J.; Yang, H. An ultrasound activated vesicle of janus au-mno nanoparticles for promoted tumor penetration and sono-chemodynamic therapy of orthotopic liver cancer. Angew. Chem. Int. Ed. Engl., 2020, 59(4), 1682-1688.
[http://dx.doi.org/10.1002/anie.201912768] [PMID: 31710768]
[35]
Martins, Y.A.; Fonseca, M.J.V.; Pavan, T.Z.; Lopez, R.F.V. Bifunctional therapeutic application of low-frequency ultrasound associated with zinc phthalocyanine-loaded micelles. Int. J. Nanomedicine, 2020, 15, 8075-8095.
[http://dx.doi.org/10.2147/IJN.S264528] [PMID: 33116519]
[36]
Feng, Q.; Zhang, W.; Yang, X.; Li, Y.; Hao, Y.; Zhang, H.; Hou, L.; Zhang, Z. pH/ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy. Adv. Healthc. Mater., 2018, 7(5)
[http://dx.doi.org/10.1002/adhm.201700957] [PMID: 29141114]
[37]
Yin, N.; Hu, L.; Xiao, Z.B.; Liu, C.; Chen, W.Z.; Roberts, N.; Chen, J.Y.; Wang, Z.B. Factors influencing thermal injury to skin and abdominal wall structures in HIFU ablation of uterine fibroids. Int. J. Hyperthermia, 2018, 34(8), 1298-1303.
[http://dx.doi.org/10.1080/02656736.2018.1433880] [PMID: 29506421]
[38]
Zhou, W.; Arellano, R.S. Thermal ablation of T1c renal cell carcinoma: a comparative assessment of technical performance, procedural outcome, and safety of microwave ablation, radiofrequency ablation, and cryoablation. J. Vasc. Interv. Radiol., 2018, 29(7), 943-951.
[http://dx.doi.org/10.1016/j.jvir.2017.12.020] [PMID: 29628298]
[39]
Zhou, W.; Herwald, S.E.; Uppot, R.N.; Arellano, R.S. Risk assessment of chronic kidney disease following microwave ablation for stage T1 renal cell carcinoma. J. Vasc. Interv. Radiol., 2018, 29(12), 1685-1691.
[http://dx.doi.org/10.1016/j.jvir.2018.06.021] [PMID: 30297311]
[40]
Wang, M.; Lei, Y.; Zhou, Y. High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: Enhanced thermal field and cavitation at the focus. Ultrasonics, 2019, 91, 134-149.
[http://dx.doi.org/10.1016/j.ultras.2018.08.017] [PMID: 30146323]
[41]
Azmin, M.; Harfield, C.; Ahmad, Z.; Edirisinghe, M.; Stride, E. How do microbubbles and ultrasound interact? Basic physical, dynamic and engineering principles. Curr. Pharm. Des., 2012, 18(15), 2118-2134.
[http://dx.doi.org/10.2174/138161212800099955] [PMID: 22352768]
[42]
Suzuki, R.; Oda, Y.; Omata, D.; Nishiie, N.; Koshima, R.; Shiono, Y.; Sawaguchi, Y.; Unga, J.; Naoi, T.; Negishi, Y.; Kawakami, S.; Hashida, M.; Maruyama, K. Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci., 2016, 107(3), 217-223.
[http://dx.doi.org/10.1111/cas.12867] [PMID: 26707839]
[43]
Ma, L.; Wang, Y.; Zhang, S.; Qian, X.; Xue, N.; Jiang, Z.; Akakuru, O.U.; Li, J.; Xu, Y.; Wu, A. Deep penetration of targeted nanobubbles enhanced cavitation effect on thrombolytic capacity. Bioconjug. Chem., 2020, 31(2), 369-374.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00653] [PMID: 31765569]
[44]
Feng, G.; Hao, L.; Xu, C.; Ran, H.; Zheng, Y.; Li, P.; Cao, Y.; Wang, Q.; Xia, J.; Wang, Z. High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring. Int. J. Nanomedicine, 2017, 12, 4647-4659.
[http://dx.doi.org/10.2147/IJN.S135391] [PMID: 28721041]
[45]
Tachibana, K.; Feril, L.B., Jr; Ikeda-Dantsuji, Y. Sonodynamic therapy. Ultrasonics, 2008, 48(4), 253-259.
[http://dx.doi.org/10.1016/j.ultras.2008.02.003] [PMID: 18433819]
[46]
Rosenthal, I.; Sostaric, J.Z.; Riesz, P. Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem., 2004, 11(6), 349-363.
[http://dx.doi.org/10.1016/j.ultsonch.2004.03.004] [PMID: 15302020]
[47]
Trendowski, M. The promise of sonodynamic therapy. Cancer Metastasis Rev., 2014, 33(1), 143-160.
[http://dx.doi.org/10.1007/s10555-013-9461-5] [PMID: 24346159]
[48]
Harrison, G.H.; Balcer-Kubiczek, E.K.; Eddy, H.A. Potentiation of chemotherapy by low-level ultrasound. Int. J. Radiat. Biol., 1991, 59(6), 1453-1466.
[http://dx.doi.org/10.1080/09553009114551301] [PMID: 1677389]
[49]
Lagneaux, L.; de Meulenaer, E.C.; Delforge, A.; Dejeneffe, M.; Massy, M.; Moerman, C.; Hannecart, B.; Canivet, Y.; Lepeltier, M.F.; Bron, D. Ultrasonic low-energy treatment: a novel approach to induce apoptosis in human leukemic cells. Exp. Hematol., 2002, 30(11), 1293-1301.
[http://dx.doi.org/10.1016/S0301-472X(02)00920-7] [PMID: 12423682]
[50]
Firestein, F.; Rozenszajn, L.A.; Shemesh-Darvish, L.; Elimelech, R.; Radnay, J.; Rosenschein, U. Induction of apoptosis by ultrasound application in human malignant lymphoid cells: role of mitochondria-caspase pathway activation. Ann. N. Y. Acad. Sci., 2003, 1010, 163-166.
[http://dx.doi.org/10.1196/annals.1299.027] [PMID: 15033713]
[51]
Umemura, S.; Yumita, N.; Nishigaki, R. Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70. Jpn. J. Cancer Res., 1993, 84(5), 582-588.
[http://dx.doi.org/10.1111/j.1349-7006.1993.tb00179.x] [PMID: 8320175]
[52]
Miyoshi, N.; Misík, V.; Fukuda, M.; Riesz, P. Effect of gallium-porphyrin analogue ATX-70 on nitroxide formation from a cyclic secondary amine by ultrasound: on the mechanism of sonodynamic activation. Radiat. Res., 1995, 143(2), 194-202.
[http://dx.doi.org/10.2307/3579157] [PMID: 7631012]
[53]
van Wamel, A.; Bouakaz, A.; Bernard, B.; ten Cate, F.; de Jong, N. Radionuclide tumour therapy with ultrasound contrast microbubbles. Ultrasonics, 2004, 42(1-9), 903-906.
[http://dx.doi.org/10.1016/j.ultras.2003.11.013]
[54]
Evjen, T.J.; Hagtvet, E.; Moussatov, A.; Røgnvaldsson, S.; Mestas, J.L.; Fowler, R.A.; Lafon, C.; Nilssen, E.A. In vivo monitoring of liposomal release in tumours following ultrasound stimulation. Eur. J. Pharm. Biopharm., 2013, 84(3), 526-531.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.007] [PMID: 23274944]
[55]
El Hajj, F.; Fuchs, P.F.J.; Urbach, W.; Nassereddine, M.; Hamieh, S.; Taulier, N. Molecular study of ultrasound-triggered release of fluorescein from liposomes. Langmuir, 2021, 37(13), 3868-3881.
[http://dx.doi.org/10.1021/acs.langmuir.0c03444] [PMID: 33769822]
[56]
Wang, L.; Niu, M.; Zheng, C.; Zhao, H.; Niu, X.; Li, L.; Hu, Y.; Zhang, Y.; Shi, J.; Zhang, Z. A core-shell nanoplatform for synergistic enhanced sonodynamic therapy of hypoxic tumor via cascaded strategy. Adv. Healthc. Mater., 2018, 7(22), e1800819.
[http://dx.doi.org/10.1002/adhm.201800819] [PMID: 30303621]
[57]
Yue, W.; Chen, L.; Yu, L.; Zhou, B.; Yin, H.; Ren, W.; Liu, C.; Guo, L.; Zhang, Y.; Sun, L.; Zhang, K.; Xu, H.; Chen, Y. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun., 2019, 10(1), 2025.
[http://dx.doi.org/10.1038/s41467-019-09760-3] [PMID: 31048681]
[58]
Lentacker, I.; Geers, B.; Demeester, J.; De Smedt, S.C.; Sanders, N.N. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol. Ther., 2010, 18(1), 101-108.
[http://dx.doi.org/10.1038/mt.2009.160] [PMID: 19623162]
[59]
Liao, Z.X.; Chuang, E.Y.; Lin, C.C.; Ho, Y.C.; Lin, K.J.; Cheng, P.Y.; Chen, K.J.; Wei, H.J.; Sung, H.W. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J. Control. Release, 2015, 208, 42-51.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.032] [PMID: 25637705]
[60]
Chen, K.J.; Chaung, E.Y.; Wey, S.P.; Lin, K.J.; Cheng, F.; Lin, C.C.; Liu, H.L.; Tseng, H.W.; Liu, C.P.; Wei, M.C.; Liu, C.M.; Sung, H.W. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS Nano, 2014, 8(5), 5105-5115.
[http://dx.doi.org/10.1021/nn501162x] [PMID: 24742221]
[61]
Yu, F.T.; Chen, X.; Wang, J.; Qin, B.; Villanueva, F.S. Low intensity ultrasound mediated liposomal doxorubicin delivery using polymer microbubbles. Mol. Pharm., 2016, 13(1), 55-64.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00421] [PMID: 26567985]
[62]
Park, Y.C.; Zhang, C.; Kim, S.; Mohamedi, G.; Beigie, C.; Nagy, J.O.; Holt, R.G.; Cleveland, R.O.; Jeon, N.L.; Wong, J.Y. Microvessels-on-a-chip to assess targeted ultrasound-assisted drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(46), 31541-31549.
[http://dx.doi.org/10.1021/acsami.6b09071] [PMID: 27781429]
[63]
Ninomiya, K.; Yamashita, T.; Tanabe, Y.; Imai, M.; Takahashi, K.; Shimizu, N. Targeted and ultrasound-triggered cancer cell injury using perfluorocarbon emulsion-loaded liposomes endowed with cancer cell-targeting and fusogenic capabilities. Ultrason. Sonochem., 2016, 28, 54-61.
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.032] [PMID: 26384883]
[64]
Czarny, P.; Wigner, P.; Galecki, P.; Sliwinski, T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 309-321.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06.036] [PMID: 28669580]
[65]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[66]
Chattopadhyay, M.; Khemka, V.K.; Chatterjee, G.; Ganguly, A.; Mukhopadhyay, S.; Chakrabarti, S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol. Cell. Biochem., 2015, 399(1-2), 95-103.
[http://dx.doi.org/10.1007/s11010-014-2236-7] [PMID: 25312902]
[67]
Eftekhari, A.; Dizaj, S.M.; Chodari, L.; Sunar, S.; Hasanzadeh, A.; Ahmadian, E.; Hasanzadeh, M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother., 2018, 103, 1018-1027.
[http://dx.doi.org/10.1016/j.biopha.2018.04.126] [PMID: 29710659]
[68]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[69]
Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.A.; Torchilin, V.P.; Jain, R.K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res., 1995, 55(17), 3752-3756.
[PMID: 7641188]
[70]
Choi, K.Y.; Min, K.H.; Na, J.H.; Choi, K.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J. Mater. Chem., 2009, 19(24), 4102-4107.
[http://dx.doi.org/10.1039/b900456d]
[71]
Grantab, R.; Sivananthan, S.; Tannock, I.F. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res., 2006, 66(2), 1033-1039.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3077] [PMID: 16424039]
[72]
Yuan, F.; Leunig, M.; Huang, S.K.; Berk, D.A.; Papahadjopoulos, D.; Jain, R.K. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res., 1994, 54(13), 3352-3356.
[PMID: 8012948]
[73]
Hamarat Şanlıer, Ş.; Ak, G.; Yılmaz, H.; Ünal, A.; Bozkaya, Ü.F.; Tanıyan, G.; Yıldırım, Y.; Yıldız Türkyılmaz, G. Development of ultrasound-triggered and magnetic-targeted nanobubble system for dual-drug delivery. J. Pharm. Sci., 2019, 108(3), 1272-1283.
[http://dx.doi.org/10.1016/j.xphs.2018.10.030] [PMID: 30773203]
[74]
Kasetvatin, C.; Rujivipat, S.; Tiyaboonchai, W. Combination of elastic liposomes and low frequency ultrasound for skin permeation enhancement of hyaluronic acid. Colloids Surf. B Biointerfaces, 2015, 135, 458-464.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.078] [PMID: 26280820]
[75]
Park, K. Nanotechnology: What it can do for drug delivery. J. Control. Release, 2007, 120(1-2), 1-3.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.003] [PMID: 17532520]
[76]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[77]
Deng, Z.; Xiao, Y.; Pan, M.; Li, F.; Duan, W.; Meng, L.; Liu, X.; Yan, F.; Zheng, H. Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound. J. Control. Release, 2016, 243, 333-341.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.030] [PMID: 27984104]
[78]
Liang, X.; Gao, J.; Jiang, L.; Luo, J.; Jing, L.; Li, X.; Jin, Y.; Dai, Z. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano, 2015, 9(2), 1280-1293.
[http://dx.doi.org/10.1021/nn507482w] [PMID: 25599568]
[79]
Suzuki, R.; Takizawa, T.; Negishi, Y.; Hagisawa, K.; Tanaka, K.; Sawamura, K.; Utoguchi, N.; Nishioka, T.; Maruyama, K. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J. Control. Release, 2007, 117(1), 130-136.
[http://dx.doi.org/10.1016/j.jconrel.2006.09.008] [PMID: 17113176]
[80]
Suzuki, R.; Takizawa, T.; Negishi, Y.; Utoguchi, N.; Sawamura, K.; Tanaka, K.; Namai, E.; Oda, Y.; Matsumura, Y.; Maruyama, K. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J. Control. Release, 2008, 125(2), 137-144.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.025] [PMID: 18035442]
[81]
Suzuki, R.; Takizawa, T.; Negishi, Y.; Utoguchi, N.; Maruyama, K. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int. J. Pharm., 2008, 354(1-2), 49-55.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.034] [PMID: 18082343]
[82]
Negishi, Y.; Omata, D.; Iijima, H.; Takabayashi, Y.; Suzuki, K.; Endo, Y.; Suzuki, R.; Maruyama, K.; Nomizu, M.; Aramaki, Y. Enhanced laminin-derived peptide AG73-mediated liposomal gene transfer by bubble liposomes and ultrasound. Mol. Pharm., 2010, 7(1), 217-226.
[http://dx.doi.org/10.1021/mp900214s] [PMID: 20020739]
[83]
Endo-Takahashi, Y.; Negishi, Y.; Nakamura, A.; Suzuki, D.; Ukai, S.; Sugimoto, K.; Moriyasu, F.; Takagi, N.; Suzuki, R.; Maruyama, K.; Aramaki, Y. pDNA-loaded bubble liposomes as potential ultrasound imaging and gene delivery agents. Biomaterials, 2013, 34(11), 2807-2813.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.018] [PMID: 23343634]
[84]
Endo-Takahashi, Y.; Negishi, Y.; Kato, Y.; Suzuki, R.; Maruyama, K.; Aramaki, Y. Efficient siRNA delivery using novel siRNA-loaded Bubble liposomes and ultrasound. Int. J. Pharm., 2012, 422(1-2), 504-509.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.023] [PMID: 22119963]
[85]
Endo-Takahashi, Y.; Negishi, Y.; Suzuki, R.; Maruyama, K.; Aramaki, Y. MicroRNA imaging in combination with diagnostic ultrasound and bubble liposomes for microRNA delivery. Methods Mol. Biol., 2016, 1372, 209-213.
[http://dx.doi.org/10.1007/978-1-4939-3148-4_16] [PMID: 26530926]
[86]
Endo-Takahashi, Y.; Maruyama, K.; Negishi, Y. Nucleic acid delivery system by the combination of lipid bubbles and ultrasound. Curr. Pharm. Des., 2018, 24(23), 2673-2677.
[http://dx.doi.org/10.2174/1381612824666180807122759] [PMID: 30084324]
[87]
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release, 2016, 244(Pt A), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[88]
Kwon, I.K.; Lee, S.C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release, 2012, 164(2), 108-114.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.010] [PMID: 22800574]
[89]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[90]
Harris, J.M.; Martin, N.E.; Modi, M. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet., 2001, 40(7), 539-551.
[http://dx.doi.org/10.2165/00003088-200140070-00005] [PMID: 11510630]
[91]
Borden, M.A.; Kruse, D.E.; Caskey, C.F.; Zhao, S.; Dayton, P.A.; Ferrara, K.W. Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52(11), 1992-2002.
[http://dx.doi.org/10.1109/TUFFC.2005.1561668] [PMID: 16422411]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy