Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Combating the Progression of Novel Coronavirus SARS-CoV-2 Infectious Disease: Current State and Future Prospects in Molecular Diagnostics and Drug Discovery

Author(s): Arbind Kumar*, Aashish Sharma, Narendra Vijay Tirpude, Sharad Thakur and Sanjay Kumar*

Volume 23, Issue 2, 2023

Published on: 03 March, 2022

Page: [127 - 146] Pages: 20

DOI: 10.2174/1566524021666210803154250

Price: $65

Abstract

A highly infectious and life-threatening virus was first reported in Wuhan, China, in late 2019, and it rapidly spread all over the world. This novel virus belongs to the coronavirus family and is associated with severe acute respiratory syndrome (SARS), causing respiratory disease known as COVID-19. In March 2020, WHO has declared the COVID-19 outbreak a global pandemic. Its morbidity and mortality rates are swiftly rising day by day, with the situation becoming more severe and fatal for the comorbid population. Many COVID-19 patients are asymptomatic, but they silently spread the infection. There is a need for proper screening of infected patients to prevent the epidemic transmission of disease and for early curative interventions to reduce the risk of developing severe complications from COVID-19. To date, the diagnostic assays are of two categories, molecular detection of viral genetic material by real-time RTpolymerase chain reaction and serological test, which relies on detecting antiviral antibodies. Unfortunately, there are no effective prophylactics and therapeutics available against COVID-19. However, a few drugs have shown promising antiviral activity against it, and these presently are being referred for clinical trials, albeit FDA has issued an Emergency Use Authorization (EUA) for the emergency use of a few drugs for SARSCoV- 2 infection. This review provides an insight into current progress, challenges and future prospects of laboratory detection methods of COVID-19, and highlights the clinical stage of the major evidence-based drugs/vaccines recommended against the novel SARS-CoV-2 pandemic virus.

Keywords: SARS-CoV-2, COVID-19, asymptomatic, diagnostic, biomarker, drugs, vaccines.

[1]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[2]
Tian J, Yuan X, Xiao J, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: A multicentre, retrospective, cohort study. Lancet Oncol 2020; 21(7): 893-903.
[http://dx.doi.org/10.1016/S1470-2045(20)30309-0] [PMID: 32479790]
[3]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[4]
WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020.Accessed online on 8th of. World Heal Organ 2020; 1 Available from: https://www.who.int/emergencies/diseases/novel-coronavirus2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
[5]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[6]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[7]
Bruenn JA. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 2003; 31(7): 1821-9.
[http://dx.doi.org/10.1093/nar/gkg277] [PMID: 12654997]
[8]
Zhou Y, Jiang S, Du L. Prospects for a MERS-CoV spike vaccine. Expert Rev Vaccines 2018; 17(8): 677-86.
[http://dx.doi.org/10.1080/14760584.2018.1506702] [PMID: 30058403]
[9]
Du L, Tai W, Zhou Y, Jiang S. Vaccines for the prevention against the threat of MERS-CoV. Expert Rev Vaccines 2016; 15(9): 1123-34.
[http://dx.doi.org/10.1586/14760584.2016.1167603] [PMID: 26985862]
[10]
Chan JFW, To KKW, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. Trends Microbiol 2013; 21(10): 544-55.
[http://dx.doi.org/10.1016/j.tim.2013.05.005] [PMID: 23770275]
[11]
Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[12]
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- An update on the status. Mil Med Res 2020; 7: 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0]
[13]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[14]
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[15]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[16]
York A. Novel coronavirus takes flight from bats? Nat Rev Microbiol 2020; 18(4): 191.
[http://dx.doi.org/10.1038/s41579-020-0336-9] [PMID: 32051570]
[17]
Li X, Zai J, Wang X, Li Y. Potential of large “first generation” human-to-human transmission of 2019-nCoV. J Med Virol 2020; 92(4): 448-54.
[http://dx.doi.org/10.1002/jmv.25693] [PMID: 31997390]
[18]
Siordia JA Jr. Epidemiology and clinical features of COVID-19: A review of current literature. J Clin Virol 2020; 127: 104357.
[http://dx.doi.org/10.1016/j.jcv.2020.104357] [PMID: 32305884]
[19]
W.H. Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV) 2019; 1-6. Available from: https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
[20]
Roncon L, Zuin M, Rigatelli G, Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J Clin Virol 2020; 127: 104354.
[http://dx.doi.org/10.1016/j.jcv.2020.104354] [PMID: 32305882]
[21]
Hu Y, Sun J, Dai Z, et al. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Virol 2020; 127: 104371.
[http://dx.doi.org/10.1016/j.jcv.2020.104371] [PMID: 32315817]
[22]
Shiqin Li, Li Sijia, Disoma C. SARS‐CoV‐2: Mechanism of infection and emerging technologies for future prospects. Rev Med Virol 2020; e2168.
[http://dx.doi.org/10.1002/rmv.2168]
[23]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[24]
Gao Z, Xu Y, Sun C, Wang X, Guo Y, Qiu S. A systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect 2020; 54(1): 12-6.
[http://dx.doi.org/10.1016/j.jmii.2020.05.001] [PMID: 32425996]
[25]
Ki M. Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiol Health 2020; 42: e2020007.
[http://dx.doi.org/10.4178/epih.e2020007] [PMID: 32035431]
[26]
Kimball A, Hatfield KM, Arons M, James A, Taylor J, Spicer K. Asymptomatic and presymptomatic SARS-COV-2 infections in residents of a long-term care skilled nursing facility - King County, Washington, March 2020. Morb Mortal Weekly Rep 2020; 69: 377-81.
[PMID: 32240128]
[27]
Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Rev Med Virol 2020; 30(3): e2106.
[http://dx.doi.org/10.1002/rmv.2106] [PMID: 32302058]
[28]
Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N Engl J Med 2020; 383(6): 517-25.
[http://dx.doi.org/10.1056/NEJMoa2016638] [PMID: 32492293]
[29]
Narota A, Puri G, Singh VP, Kumar A, Naura AS. COVID-19 and ARDS: Update on preventive and therapeutic venues. Curr Mol Med 2021; 21: 1.
[http://dx.doi.org/10.2174/1566524021666210408103921] [PMID: 33829971]
[30]
Poon LLM, Chan KH, Wong OK, et al. Early diagnosis of SARS coronavirus infection by real time RT-PCR. J Clin Virol 2003; 28(3): 233-8.
[http://dx.doi.org/10.1016/j.jcv.2003.08.004] [PMID: 14522060]
[31]
Poon LLM, Wong OK, Chan KH, et al. Rapid diagnosis of a coronavirus associated with severe acute respiratory syndrome (SARS). Clin Chem 2003; 49(6 Pt 1): 953-5.
[http://dx.doi.org/10.1373/49.6.953] [PMID: 12765993]
[32]
Lanciotti RS, Kerst AJ. Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses. J Clin Microbiol 2001; 39(12): 4506-13.
[http://dx.doi.org/10.1128/JCM.39.12.4506-4513.2001] [PMID: 11724870]
[33]
Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res 2002; 30(6): 1292-305.
[http://dx.doi.org/10.1093/nar/30.6.1292] [PMID: 11884626]
[34]
Smith IL, Halpin K, Warrilow D, Smith GA. Development of a fluorogenic RT-PCR assay (TaqMan) for the detection of Hendra virus. J Virol Methods 2001; 98(1): 33-40.
[http://dx.doi.org/10.1016/S0166-0934(01)00354-8] [PMID: 11543882]
[35]
Trujillo AA, McCaustland KA, Zheng DP, et al. Use of TaqMan real-time reverse transcription-PCR for rapid detection, quantification, and typing of norovirus. J Clin Microbiol 2006; 44(4): 1405-12.
[http://dx.doi.org/10.1128/JCM.44.4.1405-1412.2006] [PMID: 16597869]
[36]
Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1967-76.
[http://dx.doi.org/10.1056/NEJMoa030747] [PMID: 12690091]
[37]
Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020; 25(3): 2000045.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[38]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[39]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[40]
Chu DKW, Pan Y, Cheng SMS, et al. Molecular diagnosis of a novel coronavirus (2019-ncov) causing an outbreak of pneumonia. Clin Chem 2020; 66(4): 549-55.
[http://dx.doi.org/10.1093/clinchem/hvaa029] [PMID: 32031583]
[41]
Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-NCOV infection from an asymptomatic contact in Germany. N Engl J Med 2020; 382(10): 970-1.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[42]
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[43]
Yang L, Sinha T, Carlson TK, Keiser TL, Torrelles JB, Schlesinger LS. Changes in the major cell envelope components of Mycobacterium tuberculosis during in vivo growth. Glycobiology 2013; 23(8): 926-34.
[http://dx.doi.org/10.1093/glycob/cwt029] [PMID: 23576535]
[44]
Perchetti GA, Nalla AK, Huang ML, Jerome KR, Greninger AL. Multiplexing primer/probe sets for detection of SARS-CoV-2 by qRT-PCR. J Clin Virol 2020; 129: 104499.
[http://dx.doi.org/10.1016/j.jcv.2020.104499] [PMID: 32535397]
[45]
Nieto-Torres JL, Dediego ML, Álvarez E, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011; 415(2): 69-82.
[http://dx.doi.org/10.1016/j.virol.2011.03.029] [PMID: 21524776]
[46]
Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus nucleocapsid protein-forms and functions. Antiviral Res 2014; 103: 39-50.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.009] [PMID: 24418573]
[47]
Surjit M, Lal SK. The SARS-CoV nucleocapsid protein: A protein with multifarious activities. Infect Genet Evol 2008; 8(4): 397-405.
[http://dx.doi.org/10.1016/j.meegid.2007.07.004] [PMID: 17881296]
[48]
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6(8): 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[49]
Li F, Li W, Farzan M, Harrison SC. Structural biology: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (80-) 2005; 309(5742): 1864-8.
[50]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[51]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[52]
Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020; 17(6): 613-20.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[53]
Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses 2010; 2(8): 1804-20.
[http://dx.doi.org/10.3390/v2081803] [PMID: 21994708]
[54]
Ziebuhr J. The coronavirus replicase. Curr Top Microbiol Immunol 2005; 287: 57-94.
[http://dx.doi.org/10.1007/3-540-26765-4_3] [PMID: 15609509]
[55]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[56]
Venkataraman S, Prasad BVLS, Selvarajan R. RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses 2018; 10: 76-84.
[http://dx.doi.org/10.3390/v10020076]
[57]
Morgenstern B, Michaelis M, Baer PC, Doerr HW, Cinatl J Jr. Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun 2005; 326(4): 905-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.128] [PMID: 15607755]
[58]
Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9(2): e00221-18.
[59]
Lim SY, Osuna C, Lakritz J, Chen E, Yoon G, Taylor R. Galidesivir, a direct-acting antiviral drug, abrogates viremia in rhesus macaques challenged with zika virus. Open Forum Infect Dis 2017; 4 (Suppl. 1): S55-5.
[60]
Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 2013; 100(2): 446-54.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[61]
Chan JFW, Yip CCY, To KKW, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vivo and with clinical specimens. J Clin Microbiol 2020; 58(5): e00310-20.
[http://dx.doi.org/10.1128/JCM.00310-20] [PMID: 32132196]
[62]
Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg Microbes Infect 2020; 9(1): 386-9.
[http://dx.doi.org/10.1080/22221751.2020.1729071] [PMID: 32065057]
[63]
Yang Y, Yang M, Shen C, Wang F, Yuan J, Li J. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections medRxiv. Cold Spring Harbor Laboratory Press 2019.
[64]
Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI-P. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): A systematic review. J Clin Med 2019; 9(3): 623.
[65]
Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, Campo R del, Ciapponi A. False-negative results of initial RT-PCR assays for COVID-19: A systematic review. medRxiv 2020.
[66]
Wikramaratna P, Paton RS, Ghafari M, Lourenco J. Estimating false-negative detection rate of SARS-CoV-2 by RT-PCR. medRxiv 2020.
[67]
Petherick A. Developing antibody tests for SARS-CoV-2. Lancet 2020; 395(10230): 1101-2.
[68]
Sinnott-Armstrong N, Klein D, Hickey B. Evaluation of group testing for SARS-COV-2 RNA. medRxiv 2020; 30
[69]
Shani-Narkiss H, Gilday OD, Yayon N, Landau ID. Efficient and practical sample pooling high-throughput pcr diagnosis of COVID-19. medRxiv 2020.
[70]
Yelin I, Aharony N, Tamar ES, Argoetti A, Messer E, Berenbaum D. Evaluation of COVID-19 RT-QPCR test in multi sample pools. Clin Infect Dis 2020; ciaa531.
[71]
Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; 323(18): 1843-4.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[72]
Seah JN, Yu L, Kwang J. Localization of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein. Vet Microbiol 2000; 75(1): 11-6.
[http://dx.doi.org/10.1016/S0378-1135(00)00202-9] [PMID: 10865148]
[73]
Denac H, Moser C, Tratschin JD, Hofmann MA. An indirect ELISA for the detection of antibodies against porcine reproductive and respiratory syndrome virus using recombinant nucleocapsid protein as antigen. J Virol Methods 1997; 65(2): 169-81.
[http://dx.doi.org/10.1016/S0166-0934(97)02186-1] [PMID: 9186940]
[74]
Wang N, Li SY, Yang XL, et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol Sin 2018; 33(1): 104-7.
[http://dx.doi.org/10.1007/s12250-018-0012-7] [PMID: 29500691]
[75]
Woo PCY, Lau SKP, Wong BHL, et al. Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J Clin Microbiol 2004; 42(5): 2306-9.
[http://dx.doi.org/10.1128/JCM.42.5.2306-2309.2004] [PMID: 15131220]
[76]
Berry JD, Hay K, Rini JM, et al. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs 2010; 2(1): 53-66.
[http://dx.doi.org/10.4161/mabs.2.1.10788] [PMID: 20168090]
[77]
Amanat F, Stadlbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med 2020; 26(7): 1033-6.
[http://dx.doi.org/10.1038/s41591-020-0913-5] [PMID: 32398876]
[78]
Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020; 26(8): 1200-4.
[http://dx.doi.org/10.1038/s41591-020-0965-6] [PMID: 32555424]
[79]
Cohen J. CRISPR, the revolutionary genetic “scissors,” honored by Chemistry Nobel. Science 2020.
[http://dx.doi.org/10.1126/science.abf0540]
[80]
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017; 356(6336): 438-42.
[http://dx.doi.org/10.1126/science.aam9321] [PMID: 28408723]
[81]
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018; 360(6387): 436-9.
[http://dx.doi.org/10.1126/science.aar6245] [PMID: 29449511]
[82]
Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov 2018; 4: 20.
[http://dx.doi.org/10.1038/s41421-018-0028-z] [PMID: 29707234]
[83]
Jolany Vangah S, Katalani C, Booneh HA, Hajizade A, Sijercic A, Ahmadian G. CRISPR- based diagnosis of infectious and noninfectious diseases. Biol Proced Online 2020; 14: 22.
[84]
Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018; 360(6387): 444-8.
[85]
Ai JW, Zhou X, Xu T, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg Microbes Infect 2019; 8(1): 1361-9.
[http://dx.doi.org/10.1080/22221751.2019.1664939] [PMID: 31522608]
[86]
Lucia C, Federico P, Alejandra GC. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.29.971127]
[87]
Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020; 38(7): 870-4.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[88]
Suganya S, Divya S, Parani M. Severe acute respiratory syndrome‐coronavirus‐2: Current advances in therapeutic targets and drug development. Rev Med Virol 2020; 1-9.
[http://dx.doi.org/10.1002/rmv.2174] [PMID: 32965078]
[89]
Giovane RA, Rezai S, Cleland E, Henderson CE. Current pharmacological modalities for management of novel coronavirus disease 2019 (COVID-19) and the rationale for their utilization: A review. Rev Med Virol 2020; 30(5): e2136.
[http://dx.doi.org/10.1002/rmv.2136] [PMID: 32644275]
[90]
Valle C, Martin B, Touret F, et al. Drugs against SARS-CoV-2: What do we know about their mode of action? Rev Med Virol 2020; 30(6): 1-10.
[http://dx.doi.org/10.1002/rmv.2143] [PMID: 32779326]
[91]
Shahverdi M, Darvish M. Therapeutic measures for the novel coronavirus: A review of current status and future perspective. Curr Mol Med 2021; 21(7): 562-72.
[http://dx.doi.org/10.2174/1566524020666201203170230] [PMID: 33272178]
[92]
McCreary EK, Pogue JM. Coronavirus disease 2019 treatment: A review of early and emerging options Open forum infectious diseases. Oxford University Press 2020; p. 7.
[93]
Aljofan M, Gaipov A. Covid-19 treatment: The race against time. Electr J of General Med 2020; p. em227.
[94]
Martin RE, Marchetti RV, Cowan AI, Howitt SM, Bröer S, Kirk K. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science (80-) 2009; 325(5984): 1680-2.
[http://dx.doi.org/10.1126/science.1175667]
[95]
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect Dis 2003; 3(11): 722-7.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[96]
Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vivo inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004; 323(1): 264-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[97]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2: 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[98]
Kono M, Tatsumi K, Imai AM, Saito K, Kuriyama T, Shirasawa H. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK. Antiviral Res 2008; 77(2): 150-2.
[http://dx.doi.org/10.1016/j.antiviral.2007.10.011] [PMID: 18055026]
[99]
Madrid PB, Chopra S, Manger ID, et al. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One 2013; 8(4): e60579.
[http://dx.doi.org/10.1371/journal.pone.0060579] [PMID: 23577127]
[100]
Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020; 47(2): 119-21.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[101]
Takla M, Jeevaratnam K. Chloroquine, hydroxychloroquine, and COVID-19: Systematic review and narrative synthesis of efficacy and safety. Saudi Pharm J 2020; 28(12): 1760-76.
[102]
Chan JFW, Chan KH, Kao RYT, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect 2013; 67(6): 606-16.
[http://dx.doi.org/10.1016/j.jinf.2013.09.029] [PMID: 24096239]
[103]
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat Rev Mol Cell Biol 2009; 10(9): 623-35.
[http://dx.doi.org/10.1038/nrm2745] [PMID: 19672277]
[104]
Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: Analysis and therapeutic implications. J Pharm Sci 2007; 96(4): 729-46.
[http://dx.doi.org/10.1002/jps.20792] [PMID: 17117426]
[105]
An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J Immunol 2015; 194(9): 4089-93.
[http://dx.doi.org/10.4049/jimmunol.1402793] [PMID: 25821216]
[106]
Zhou D, Dai SM, Tong Q. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 2020; 75(7): 1667-70.
[http://dx.doi.org/10.1093/jac/dkaa114] [PMID: 32196083]
[107]
Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017; 5(1): e00293.
[http://dx.doi.org/10.1002/prp2.293] [PMID: 28596841]
[108]
Kužnik A. Benčina M, Švajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186(8): 4794-804.
[http://dx.doi.org/10.4049/jimmunol.1000702] [PMID: 21398612]
[109]
van den Borne BEEM, Dijkmans BAC, de Rooij HH, le Cessie S, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-α interleukin 6, and interferon-γ production by peripheral blood mononuclear cells. J Rheumatol 1997; 24(1): 55-60.
[PMID: 9002011]
[110]
Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5): 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[111]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[112]
Bright R. Letter of authorization - chloroquine phosphate and hydroxychloroquine sulfate 2020. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f398f8a9-92f3-47cb-81c2-6078806a464d
[113]
Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (sars-cov-2) infection: A randomized clinical trial. JAMA Netw Open 2020; 3(4): e208857.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.8857] [PMID: 32330277]
[114]
Boretti A, Banik B, Castelletto S. Mechanism of action of chloroquine/hydroxychloroquine for COVID-19 infection. Coronaviruses 2020; 1: 1.
[http://dx.doi.org/10.2174/2666796701999201112125319]
[115]
Horby P, Mafham M, Linsell L, et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med 2020; 383(21): 2030-40.
[http://dx.doi.org/10.1056/NEJMoa2022926] [PMID: 33031652]
[116]
Lammers AJJ, Brohet RM, Theunissen REP, et al. Early hydroxychloroquine but not chloroquine use reduces ICU admission in COVID-19 patients. Int J Infect Dis 2020; 101: 283-9.
[http://dx.doi.org/10.1016/j.ijid.2020.09.1460] [PMID: 33007454]
[117]
Kashour Z, Riaz M, Garbati MA, et al. Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: A systematic review and meta-analysis. J Antimicrob Chemother 2021; 76(1): 30-42.
[http://dx.doi.org/10.1093/jac/dkaa403] [PMID: 33031488]
[118]
Disbrow GL. Letter revoking EUA for chloroquine phosphate and hydroxychloroquine sulfate 2020.
[119]
Castelnuovo AD, Costanzo S, Antinori A, et al. Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study. Eur J Intern Med 2020; 82: 38-47.
[http://dx.doi.org/10.1016/j.ejim.2020.08.019] [PMID: 32859477]
[120]
Catteau L, Dauby N, Montourcy M, et al. Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: A nationwide observational study of 8075 participants. Int J Antimicrob Agents 2020; 56(4): 106144.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106144] [PMID: 32853673]
[121]
Gasmi A, Peana M, Noor S, et al. Chloroquine and hydroxychloroquine in the treatment of COVID-19: The never-ending story. Appl Microbiol Biotechnol 2021; 105(4): 1333-43.
[http://dx.doi.org/10.1007/s00253-021-11094-4] [PMID: 33515285]
[122]
Carafoli E. Chloroquine and hydroxychloroquine in the prophylaxis and therapy of COVID-19 infection. Biochem Biophys Res Commun 2021; 538: 156-62.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.128] [PMID: 33028485]
[123]
González Canga A, Sahagún Prieto AM, Diez Liébana MJ, Fernández Martínez N, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and interactions of ivermectin in humans-a mini-review. AAPS J 2008; 10(1): 42-6.
[http://dx.doi.org/10.1208/s12248-007-9000-9] [PMID: 18446504]
[124]
Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012; 443(3): 851-6.
[http://dx.doi.org/10.1042/BJ20120150] [PMID: 22417684]
[125]
Tay MYF, Fraser JE, Chan WKK, et al. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res 2013; 99(3): 301-6.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.002] [PMID: 23769930]
[126]
Lundberg L, Pinkham C, Baer A, et al. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res 2013; 100(3): 662-72.
[http://dx.doi.org/10.1016/j.antiviral.2013.10.004] [PMID: 24161512]
[127]
Götz V, Magar L, Dornfeld D, Giese S, Pohlmann A, Höper D. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci Rep 2016; 18(6): 23138.
[128]
Yang SNY, Atkinson SC, Wang C, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res 2020; 177: 104760.
[http://dx.doi.org/10.1016/j.antiviral.2020.104760] [PMID: 32135219]
[129]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vivo. Antiviral Res 2020; 178: 104787.
[130]
Ahmed S, Karim MM, Ross AG, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis 2021; 103: 214-6.
[http://dx.doi.org/10.1016/j.ijid.2020.11.191] [PMID: 33278625]
[131]
Chaccour C, Casellas A, Blanco-Di Matteo A, et al. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine 2021; 32: 100720.
[http://dx.doi.org/10.1016/j.eclinm.2020.100720] [PMID: 33495752]
[132]
Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016; 531(7594): 381-5.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[133]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[134]
de Wit E, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA 2020; 117(12): 6771-6.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[135]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[136]
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC. Remdesivir for the treatment of COVID-19 — preliminary report. N Engl J Med 2020; 383: 1813-26.
[137]
Nili A, Farbod A, Neishabouri A, Mozafarihashjin M, Tavakolpour S, Mahmoudi H. Remdesivir: A beacon of hope from Ebola virus disease to COVID-19. Rev Med Virol 2020; 30(6): 1-13.
[http://dx.doi.org/10.1002/rmv.2133] [PMID: 33210457]
[138]
Glowacka I, Bertram S, Müller MA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011; 85(9): 4122-34.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[139]
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005; 102(33): 11876-81.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[140]
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010; 84(24): 12658-64.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[141]
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011; 85(2): 873-82.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[142]
Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 2012; 86(12): 6537-45.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[143]
Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol 2019; 93(6): e01815-8.
[http://dx.doi.org/10.1128/JVI.01815-18] [PMID: 30626688]
[144]
Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology 2018; 517: 9-15.
[http://dx.doi.org/10.1016/j.virol.2017.11.012] [PMID: 29217279]
[145]
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrob Agents Chemother 2020; 64(6): e00754-20.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[146]
Doi K, Ikeda M, Hayase N, Moriya K, Morimura N. Nafamostat mesylate treatment in combination with favipiravir for patients critically ill with COVID-19: A case series. Crit Care 2020; 24(1): 392.
[http://dx.doi.org/10.1186/s13054-020-03078-z] [PMID: 32620147]
[147]
Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther Clin Risk Manag. 2008; 4: pp. 1023-33.
[148]
Chu CM, Cheng VCC, Hung IFN, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[149]
de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014; 58(8): 4875-84. Available from: https://pubmed.ncbi.nlm.nih.gov/24841269/
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[150]
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[151]
Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[152]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2001282
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[153]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 323(18): 1824-36. Available from: https://jamanetwork.com/
[PMID: 32282022]
[154]
Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020; 92(6): 556-63.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[155]
Rocha-Pereira J, Jochmans D, Dallmeier K, Leyssen P, Nascimento MSJ, Neyts J. Favipiravir (T-705) inhibits in vivo norovirus replication. Biochem Biophys Res Commun 2012; 424(4): 777-80.
[156]
Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res 2014; 105(1): 17-21.
[157]
Doi Y, Hibino M, Hase R, et al. A prospective, randomized, open-label trial of early versus late favipiravir therapy in hospitalized patients with COVID-19. Antimicrob Agents Chemother 2020; 64(12): e01897-20.
[http://dx.doi.org/10.1128/AAC.01897-20] [PMID: 32958718]
[158]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for covid-19: An open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[159]
Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res 2014; 107: 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[160]
Gagarinova VM, Ignat’eva GS, Sinitskaia LV, Ivanova AM, Rodina MA, Tur’eva AV. The new chemical preparation arbidol: Its prophylactic efficacy during influenza epidemics. Zh Mikrobiol Epidemiol Immunobiol 1993; (5): 40-3.
[PMID: 8067142]
[161]
Titova ON, Petrova MA, Shklyarevich NA, Kuzubova NA, Aleksandrov AL, Kovaleva LF. Efficacy of arbidol in the prevention of virus-induced exacerbations of bronchial asthma and chronic obstructive pulmonary disease. Ter Arkh 2018; 90(8): 48-52.
[http://dx.doi.org/10.26442/terarkh201890848-52]
[162]
Khamitov RA, Loginova SIa, Shchukina VN, Borisevich SV, Maksimov VA, Shuster AM. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr Virusol 2008; 53(4): 9-13.
[PMID: 18756809]
[163]
Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int J Antimicrob Agents 2020; 56(2): 105998.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
[164]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vivo. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[165]
Yang C, Ke C, Yue D, Li W, Hu Z, Liu W. Effectiveness of arbidol for covid-19 prevention in health professionals. Front Public Health 2020; 8: 249.
[166]
Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J. Favipiravir versus arbidol for COVID-19: A randomized clinical trial. medRxiv 2020.
[167]
Xu P, Huang J, Fan Z, et al. Arbidol/IFN-α2b therapy for patients with corona virus disease 2019: A retrospective multicenter cohort study. Microbes Infect 2020; 22(4-5): 200-5.
[http://dx.doi.org/10.1016/j.micinf.2020.05.012] [PMID: 32445881]
[168]
Nojomi M, Yassin Z, Keyvani H, et al. Effect of arbidol (umifenovir) on covid-19: A randomized controlled trial. BMC Infect Dis 2020; 20(1): 954.
[http://dx.doi.org/10.1186/s12879-020-05698-w] [PMID: 33317461]
[169]
Zhu Z, Lu Z, Xu T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect 2020; 81(1): e21-3.
[http://dx.doi.org/10.1016/j.jinf.2020.03.060] [PMID: 32283143]
[170]
Gao W, Chen S, Wang K, et al. Clinical features and efficacy of antiviral drug, Arbidol in 220 nonemergency COVID-19 patients from East-West-Lake Shelter Hospital in Wuhan: A retrospective case series. Virol J 2020; 17(1): 162.
[http://dx.doi.org/10.1186/s12985-020-01428-5] [PMID: 33097047]
[171]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[172]
Alattar R, Ibrahim TBH, Shaar SH, Abdalla S, Shukri K, Daghfal JN. Tocilizumab for the treatment of severe coronavirus disease 2019 J Med Virol 2020; jmv25964 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25964
[173]
Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: A systematic review and meta-analysis. Rev Med Virol 2020; 30(6): 1-9.
[http://dx.doi.org/10.1002/rmv.2141] [PMID: 32845568]
[174]
Toniati P, Piva S, Cattalini M, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020; 19(7): 102568.
[http://dx.doi.org/10.1016/j.autrev.2020.102568] [PMID: 32376398]
[175]
Klopfenstein T, Zayet S, Lohse A, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect 2020; 50(5): 397-400.
[http://dx.doi.org/10.1016/j.medmal.2020.05.001] [PMID: 32387320]
[176]
Sciascia S, Aprà F, Baffa A, et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol 2020; 38(3): 529-32.
[PMID: 32359035]
[177]
Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: A retrospective cohort study. Lancet Rheumatol 2020; 2(8): e474-84.
[http://dx.doi.org/10.1016/S2665-9913(20)30173-9] [PMID: 32835257]
[178]
Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir Med 2020; 8(3): 267-76.
[http://dx.doi.org/10.1016/S2213-2600(19)30417-5] [PMID: 32043986]
[179]
Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with COVID-19 — preliminary report. N Engl J Med 2021; 384(8): 693-704.
[180]
Lammers T, Sofias AM, van der Meel R, et al. Dexamethasone nanomedicines for COVID-19. Nat Nanotechnol 2020; 15(8): 622-4.
[http://dx.doi.org/10.1038/s41565-020-0752-z] [PMID: 32747742]
[181]
Dhama K, Khan S, Tiwari R, et al. Coronavirus disease 2019-COVID-19. Clin Microbiol Rev 2020; 33(4): 1-48.
[http://dx.doi.org/10.1128/CMR.00028-20] [PMID: 32580969]
[182]
Khan MM, Noor A, Madni A, Shafiq M. Emergence of novel coronavirus and progress toward treatment and vaccine. Rev Med Virol 2020; 30(4): e2116.
[http://dx.doi.org/10.1002/rmv.2116] [PMID: 32495979]
[183]
Heaton PM. The COVID-19 vaccine-development multiverse. N Engl J Med 2020; 383(20): 1986-8.
[http://dx.doi.org/10.1056/NEJMe2025111] [PMID: 32663910]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy