Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

An Integrated Strategy for Rapid Screening of Multi-target Lead Compounds for the Treatment of Alzheimer's Disease from Traditional Chinese Medicines by UHPLC Combined with High-throughput Screening: A Case Study on Salviae miltiorrhizae Radix et Rhizoma

Author(s): Minmin Zhang, Siduo Zhou, Wei Liu, Huijiao Yan, Xiao Wang and Heng-qiang Zhao*

Volume 18, Issue 3, 2022

Published on: 29 July, 2021

Page: [336 - 344] Pages: 9

DOI: 10.2174/1573412917666210729120333

Abstract

Background: Salviae miltiorrhizae Radix et Rhizoma (Red Sage root) is widely used in traditional Chinese medicine (TCM) for the treatment of Alzheimer’s disease (AD) with demonstrated curative effects, based on the concept of "one drug with multiple therapeutic targets," which appears to be a good strategy for AD treatment.

Objective: This study aimed to develop of high-throughput screening (HTS) method for multitherapeutic target components found in complex TCMs, which are active against AD, using Red Sage root as the case study.

Methods: Acetylcholinesterase (AChE) inhibitors (AChEIs) from Red Sage root extracts were pre-screened by ultrafiltration-HPLC (UF-HPLC) analysis, in which AChE was added to the extract and then ultrafiltered to remove non-binding compounds. Potential AChEIs were identified by HPLC analysis of compounds bound to AChE. A microplate-based HTS was then used to quantify the AChE inhibitory activity and antioxidant activity of the pre-screened compounds.

Results: Pre-screening found ten potential inhibitors, which were identified by ESI-TOF/MS; six of these were purified by semi-preparative HPLC: Oleoyl neocryptotanshinone (1), Dihydrotanshinone Ⅰ (2), Cryptotanshinone (3), Tanshinone Ⅰ (4), Tanshinone ⅡA (5) and Miltirone (6). All six compounds had good AChE inhibitory activity and weak DPPH scavenging capacity.

Conclusion: This study provides a platform and technology support for the rapid discovery of multi-target components, potentially active against AD, from complex TCMs and with strong potential for adaptation to the discovery of treatments for other diseases.

Keywords: Ultrafiltration-HPLC, high throughput screening method, multi-target, Alzheimer's disease, traditional Chinese medicines, neuro disorder.

« Previous
Graphical Abstract

[1]
Garcez, M.L.; Jacobs, K.R.; Guillemin, G.J. Microbiota alterations in Alzheimer’s disease: Involvement of the kynurenine pathway and inflammation. Neurotox. Res., 2019, 36(2), 424-436.
[http://dx.doi.org/10.1007/s12640-019-00057-3] [PMID: 31089885]
[2]
Papariello, A.; Newell-Litwa, K. Human-derived brain models: Windows into neuropsychiatric disorders and drug therapies. Assay Drug Dev. Technol., 2020, 18(2), 79-88.
[http://dx.doi.org/10.1089/adt.2019.922] [PMID: 31090445]
[3]
Meena, V.K.; Chaturvedi, S.; Sharma, R.K.; Mishra, A.K.; Hazari, P.P. A potent acetylcholinesterase selective and reversible homodimeric agent based on tacrine for theranostics. Mol. Pharm., 2019, 16(6), 2296-2308.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01058] [PMID: 31059278]
[4]
Martínez-Morcillo, S.; Pérez-López, M.; Míguez, M.P.; Valcárcel, Y.; Soler, F. Comparative study of esterase activities in different tissues of marine fish species Trachurus trachurus, Merluccius merluccius and Trisopterus luscus. Sci. Total Environ., 2019, 679, 12-22.
[http://dx.doi.org/10.1016/j.scitotenv.2019.05.047] [PMID: 31078771]
[5]
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of vitamin E in the treatment of alzheimer’s disease: Evidence from animal models. Int. J. Mol. Sci., 2017, 18(12), 2504-2524.
[http://dx.doi.org/10.3390/ijms18122504] [PMID: 29168797]
[6]
Kim, H.J.; Moon, W.J.; Han, S.H. Differential cholinergic pathway involvement in Alzheimer’s disease and subcortical ischemic vascular dementia. J. Alzheimers Dis., 2013, 35(1), 129-136.
[http://dx.doi.org/10.3233/JAD-122320] [PMID: 23364137]
[7]
Iadecola, C. The pathobiology of vascular dementia. Neuron, 2013, 80(4), 844-866.
[http://dx.doi.org/10.1016/j.neuron.2013.10.008] [PMID: 24267647]
[8]
Martinez, M.; Frank, A.; Diez-Tejedor, E.; Hernanz, A. Amino acid concentrations in cerebrospinal fluid and serum in Alzheimer’s disease and vascular dementia. J. Neural Transm. Park. Dis. Dement. Sect., 1993, 6(1), 1-9.
[http://dx.doi.org/10.1007/BF02252617] [PMID: 8216758]
[9]
Li, Y.H.; Zhao, P.L. Progress of multi-targeted anti-alzheimer's disease compounds. pharmacy today, 2020. Available from:, http://kns.cnki.net/kcms/detail/44.1650.R.20200319.1030.006.html
[10]
Suman, C.; Suresh, K. Alpha-terpinyl acetate: A natural monoterpenoid from elettaria cardamomum as multi-target directed ligand in alzheimer’s disease. J. Funct. Foods, 2020, 68103892
[http://dx.doi.org/10.1016/j.jff.2020.103892]
[11]
Zhou, Y.; Li, W.; Xu, L.; Chen, L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ. Toxicol. Pharmacol., 2011, 31(3), 443-452.
[http://dx.doi.org/10.1016/j.etap.2011.02.006] [PMID: 21787715]
[12]
Wong, K.K.; Ho, M.T.; Lin, H.Q.; Lau, K.F.; Rudd, J.A.; Chung, R.C.; Fung, K.P.; Shaw, P.C.; Wan, D.C. Cryptotanshinone, an acetylcholinesterase inhibitor from Salvia miltiorrhiza, ameliorates scopolamine-induced amnesia in Morris water maze task. Planta Med., 2010, 76(3), 228-234.
[http://dx.doi.org/10.1055/s-0029-1186084] [PMID: 19774505]
[13]
Shao, Q.; Chang, L.; Wei, Z.; Wei, Y. Separation of four flavonol glycosides from Solanum rostratum dunal using solvent sublation followed by HSCCC and low column temperature preparative HPLC. J. Chromatogr. Sci., 2018, 56(8), 695-701.
[http://dx.doi.org/10.1093/chromsci/bmy044] [PMID: 29771292]
[14]
Li, X.Y.; Tang, H.J.; Zhang, L.; Yang, L.; Li, P.; Chen, J. A selective knockout method for discovery of minor active components from plant extracts: Feasibility and challenges as illustrated by an application to Salvia miltiorrhiza. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 253-260.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.011] [PMID: 29132906]
[15]
Liu, J.; Zhao, J.; Dai, Z.; Lin, R.; Wang, G.; Ma, S. A pair of new antioxidant phenolic acid stereoisomers isolated from danshen injection (lyophilized powder). Molecules, 2014, 19(2), 1786-1794.
[http://dx.doi.org/10.3390/molecules19021786] [PMID: 24500008]
[16]
Ni, L.; Zhang, F.; Han, M.; Zhang, L.; Luan, S.; Li, W.; Deng, H.; Lan, Z.; Wu, Z.; Luo, X.; Mleczko, L. Qualitative analysis of the roots of Salvia miltiorrhiza and Salvia yunnanensis based on NIR, UHPLC and LC-MS-MS. J. Pharm. Biomed. Anal., 2019, 170, 295-304.
[http://dx.doi.org/10.1016/j.jpba.2019.01.010] [PMID: 30951995]
[17]
Wu, T.; Liu, C.; Huang, Y.; Li, S.; Wang, Y. Simultaneous screening and isolation of activated constituents from Puerariae Flos by ultrafiltration with liquid chromatography and mass spectrometry combined with high-speed counter-current chromatography. J. Sep. Sci., 2018, 41(24), 4458-4468.
[http://dx.doi.org/10.1002/jssc.201800691] [PMID: 30444083]
[18]
Chen, G.; Guo, M. Rapid screening for α-Glucosidase inhibitors from Gymnema sylvestre by affinity ultrafiltration-HPLC-MS. Front. Pharmacol., 2017, 8, 228-235.
[http://dx.doi.org/10.3389/fphar.2017.00228] [PMID: 28496409]
[19]
Hou, W.; Xia, J.; Liu, C.; Li, S.; Wu, T.; Huang, Y. Development of a method to screen and isolate bioactive constituents from Stellera chamaejasme by ultrafiltration and liquid chromatography combined with semi-preparative high-performance liquid chromatography and high-speed counter current chromatography. J. Sep. Sci., 2019, 42(22), 3421-3431.
[http://dx.doi.org/10.1002/jssc.201900772] [PMID: 31529668]
[20]
Chen, M.; Liu, L.; Chen, X. Preparative isolation and analysis of alcohol dehydrogenase inhibitors from Glycyrrhiza uralensis root using ultrafiltration combined with high-performance liquid chromatography and high-speed countercurrent chromatography. J. Sep. Sci., 2014, 37(13), 1546-1551.
[http://dx.doi.org/10.1002/jssc.201400051] [PMID: 24723388]
[21]
Commission of the Ministry of Public Health. China Pharmacopoeia; Beijing,. , 2015.
[22]
Zhao, H.; Zhou, S.; Zhang, M.; Feng, J.; Wang, S.; Wang, D.; Geng, Y.; Wang, X. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch. J. Pharm. Biomed. Anal., 2016, 120, 235-240.
[http://dx.doi.org/10.1016/j.jpba.2015.12.025] [PMID: 26760241]
[23]
Zhang, M.; Zhao, H.; Zhao, Z.; Yan, H.; Lv, R.; Cui, L.; Yuan, J.; Wang, D.; Geng, Y.; Liu, D.; Wang, X. Rapid screening, identification, and purification of neuraminidase inhibitors from Lithospermum erythrorhizon Sieb.et Zucc. by ultrafiltration with HPLC-ESI-TOF-MS combined with semipreparative HPLC. J. Sep. Sci., 2016, 39(11), 2097-2104.
[http://dx.doi.org/10.1002/jssc.201600087] [PMID: 27061885]
[24]
Xia, L.; Liu, H.L.; Li, P.; Zhou, J.L.; Qi, L.W.; Yi, L.; Chen, J. Rapid and sensitive analysis of multiple bioactive constituents in Compound Danshen preparations using LC-ESI-TOF-MS. J. Sep. Sci., 2008, 31(18), 3156-3169.
[http://dx.doi.org/10.1002/jssc.200800327] [PMID: 18763250]
[25]
Cao, J.; Wei, Y.J.; Qi, L.W.; Li, P.; Qian, Z.M.; Luo, H.W.; Chen, J.; Zhao, J. Determination of fifteen bioactive components in Radix et Rhizoma Salviae Miltiorrhizae by high-performance liquid chromatography with ultraviolet and mass spectrometric detection. Biomed. Chromatogr., 2008, 22(2), 164-172.
[http://dx.doi.org/10.1002/bmc.911] [PMID: 17853389]
[26]
Lin, H.Y.; Lin, T.S.; Chien, H.J.; Juang, Y.M.; Chen, C.J.; Wang, C.S.; Lai, C.C. A rapid, simple, and high-throughput UPLC-MS/MS method for simultaneous determination of bioactive constituents in Salvia miltiorrhiza with positive/negative ionization switching. J. Pharm. Biomed. Anal., 2018, 161, 94-100.
[http://dx.doi.org/10.1016/j.jpba.2018.08.027] [PMID: 30145454]
[27]
Liu, Y.; Li, X.; Li, Y.; Wang, L.; Xue, M. Simultaneous determination of danshensu, rosmarinic acid, cryptotanshinone, tanshinone IIA, tanshinone I and dihydrotanshinone I by liquid chromatographic-mass spectrometry and the application to pharmacokinetics in rats. J. Pharm. Biomed. Anal., 2010, 53(3), 698-704.
[http://dx.doi.org/10.1016/j.jpba.2010.03.041] [PMID: 20430561]
[28]
Lin, H.C.; Ding, H.Y.; Chang, W.L. Two new fatty diterpenoids from Salvia miltiorrhiza. J. Nat. Prod., 2001, 64(5), 648-650.
[http://dx.doi.org/10.1021/np000345v] [PMID: 11374966]
[29]
Lan, T.F.; Yu, Z.Y.; Wang, D.J.; Wang, X.; Guan, R.J. Separation and purification oftanshinone from Salvia miltiorrhiza by combinationof silica gel and high-speed counter-current chromatography. Chin. Tradit. Herbal Drugs, 2011, 42, 466-469.
[30]
Sun, A.; Zhang, Y.; Li, A.; Meng, Z.; Liu, R. Extraction and preparative purification of tanshinones from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(21), 1899-1904.
[http://dx.doi.org/10.1016/j.jchromb.2011.05.014] [PMID: 21621488]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy