Abstract
Background: Antifungal Peptides (AFP) have been found to be effective against many fungal infections.
Objective: However, it is difficult to identify AFP. Therefore, it is great practical significance to identify AFP via machine learning methods (with sequence information).
Methods: In this study, a Multi-Kernel Support Vector Machine (MKSVM) with Hilbert-Schmidt Independence Criterion (HSIC) is proposed. Proteins are encoded with five types of features (188-bit, AAC, ASDC, CKSAAP, DPC), and then construct kernels using Gaussian kernel function. HSIC are used to combine kernels and multi-kernel SVM model is built.
Results: Our model performed well on three AFPs datasets and the performance is better than or comparable to other state-of-art predictive models.
Conclusion: Our method will be a useful tool for identifying antifungal peptides.
Keywords: Antifungal peptides, feature representation, amino acid composition, multiple kernel learning, hilbert-schmidt independence criterion, support vector machine.
Graphical Abstract
[http://dx.doi.org/10.4274/tjh.2018.0007] [PMID: 29391334]
[http://dx.doi.org/10.1016/j.peptides.2015.06.001] [PMID: 26093218]
[http://dx.doi.org/10.1146/annurev.mi.48.100194.002351] [PMID: 7826015]
[http://dx.doi.org/10.1111/2049-632X.12151] [PMID: 24515391]
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[http://dx.doi.org/10.1371/journal.pone.0087730] [PMID: 24498363]
[http://dx.doi.org/10.1016/j.knosys.2020.106254]
[http://dx.doi.org/10.2174/1574893615999200607173829]
[http://dx.doi.org/10.1109/TCBB.2019.2954826]
[http://dx.doi.org/10.1109/JBHI.2018.2883834] [PMID: 30507518]
[http://dx.doi.org/10.1016/j.neucom.2018.10.028]
[http://dx.doi.org/10.1016/j.ins.2017.08.045]
[http://dx.doi.org/10.1109/TCBB.2020.2968419]
[http://dx.doi.org/10.1109/JBHI.2020.2977091] [PMID: 32142462]
[http://dx.doi.org/10.1109/TNB.2019.2922214] [PMID: 31199265]
[http://dx.doi.org/10.1111/jcmm.16237] [PMID: 33369155]
[http://dx.doi.org/10.1016/j.knosys.2019.105261]
[http://dx.doi.org/10.1109/TCBB.2012.89] [PMID: 22732690]
[http://dx.doi.org/10.1016/j.ab.2013.01.019] [PMID: 23395824]
[http://dx.doi.org/10.3389/fmicb.2018.00323] [PMID: 29535692]
[http://dx.doi.org/10.2197/ipsjtbio.12.21]
[http://dx.doi.org/10.1186/s12859-016-0890-3] [PMID: 26801218]
[http://dx.doi.org/10.1016/j.artmed.2010.12.002] [PMID: 21208788]
[http://dx.doi.org/10.1039/C7MB00180K] [PMID: 28682387]
[http://dx.doi.org/10.1016/j.jtbi.2018.11.012] [PMID: 30452958]
[http://dx.doi.org/10.1016/j.asoc.2020.106596]
[http://dx.doi.org/10.1016/j.neucom.2019.11.103]
[http://dx.doi.org/10.1038/srep24482] [PMID: 27075512]
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[http://dx.doi.org/10.1093/nar/gkv1266] [PMID: 26586798]
[http://dx.doi.org/10.1074/jbc.M401932200] [PMID: 15039428]
[http://dx.doi.org/10.1093/bib/bby107] [PMID: 30383239]
[http://dx.doi.org/10.1371/journal.pone.0056499] [PMID: 23437146]
[http://dx.doi.org/10.1155/2013/686090] [PMID: 24027761]
[http://dx.doi.org/10.1186/s12864-017-4128-1] [PMID: 29513192]
[http://dx.doi.org/10.1021/acs.jproteome.7b00019] [PMID: 28436664]
[http://dx.doi.org/10.1093/bioinformatics/bty451] [PMID: 29868903]
[http://dx.doi.org/10.1002/jcc.21053] [PMID: 18567007]
[http://dx.doi.org/10.1016/j.bbrc.2007.02.040] [PMID: 17316561]
[http://dx.doi.org/10.1186/1472-6807-7-25] [PMID: 17437643]
[http://dx.doi.org/10.1002/jcc.20918] [PMID: 18293306]
[http://dx.doi.org/10.1089/omi.2015.0095] [PMID: 26406767]
[http://dx.doi.org/10.1093/bioinformatics/bty140] [PMID: 29528364]
[http://dx.doi.org/10.1007/BF00994018]
[http://dx.doi.org/10.1145/1961189.1961199]
[http://dx.doi.org/10.1007/978-981-10-3002-4_58]
[http://dx.doi.org/10.1186/s12859-019-2992-1] [PMID: 31416413]
[http://dx.doi.org/10.1093/bioinformatics/btl151] [PMID: 16632492]