Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, Molecular Docking and Mosquitocidal Efficacy of Lawsone and its Derivatives Against the Dengue Vector Aedes aegypti L. (Diptera: Culicidae)

Author(s): Antony Stalin*, Paul Dhivya, Ding Lin, Yue Feng, Antony Cruz Asharaja, Munusamy Rajiv Gandhi, Balakrishnan Senthamarai Kannan, Subramani Kandhasamy, Appadurai Daniel Reegan* and Yuan Chen*

Volume 18, Issue 2, 2022

Published on: 02 August, 2021

Page: [170 - 180] Pages: 11

DOI: 10.2174/1573406417666210727121654

Price: $65

Abstract

Background: Aedes aegypti is the primary vector of dengue, a significant public health problem in many countries. Controlling of Ae. aegypti is the biggest challenge in the mosquito control programe, and there is a need for finding bioactive molecules to control Ae. aegypti in order to prevent dengue virus transmission.

Objective: To assess the mosquitocidal property of lawsone and its 3-methyl-4H-chromen-3-yl-1- phenylbenzo[6,7]chromeno[2,3,c]pyrazole-dione derivatives (6a-6h) against various life stages of Ae. aegypti. Besides, to study the mode of action of the active compound by molecular docking and histopathological analysis.

Methods: All derivatives were synthesized from the reaction between 2-hydroxy-1,4-naphthoquinone, chromene-3-carbaldehyde, and 1-phenyl-3-methyl-pyrazol-5-one by using one pot sequential multicomponent reaction. The mosquito life stages were subjected to diverse concentrations ranging from 1.25, 2.5, 5.0, and 10 ppm for lawsone and its derivatives. The structure of all synthesized compounds was characterized by spectroscopic analysis. Docking analysis was performed using autodock tools. Midgut sections of Ae. aegypti larvae were analyzed for histopathological effects.

Results: Among the nine compounds screened, derivative 6e showed the highest mortality on Ae. aegypti life stages. The analyzed LC<50 and LC90 results of derivative 6e were 3.01, 5.87 ppm, and 3.41, 6.28 ppm on larvae and pupae of Ae. aegypti, respectively. In the ovicidal assay, the derivative 6e recorded 47.2% egg mortality after 96-hour post-exposure to 10 ppm concentration. In molecular docking analysis, the derivative 6e confirmed strong binding interaction (-9.09 kcal/mol and -10.17 kcal/mol) with VAL 60 and HIS 62 of acetylcholinesterase 1 (AChE1) model and LYS 255, LYS 263 of kynurenine aminotransferase of Ae. aegypti, respectively. The histopathological results showed that the derivative 6e affected the columnar epithelial cells (CC) and peritrophic membrane (pM).

Conclusion: The derivative 6e is highly effective in the life stages of Ae. aegypti mosquito and it could be used in the integrated mosquito management programe.

Keywords: Multi-Component Reaction, 2-hydroxy-1, 4-naphthoquinone, Aedes aegypti, Mosquitocidal activity, Molecular docking, mosquito.

Graphical Abstract

[1]
Reegan, A.D.; Kannan, R.V.; Paulraj, M.G.; Ignacimuthu, S. Synergistic effects of essential oil-based cream formulations against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). J. Asia Pac. Entomol., 2014, 17(3), 327-331.
[http://dx.doi.org/10.1016/j.aspen.2014.02.008]
[2]
Reegan, A.D.; Gandhi, M.R.; Paulraj, M.G.; Balakrishna, K.; Ignacimuthu, S. Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae). Acta Trop., 2014, 139, 67-76.
[http://dx.doi.org/10.1016/j.actatropica.2014.07.002] [PMID: 25019220]
[3]
WHO Director-General summarizes the outcome of the Emergency Committee regarding clusters of microcephaly and Guillain-Barré syndrome., 2016.http://www.who.int/mediacentre/news/statements/2016/emergency-committee-zika-microcephaly/en/
[4]
Tikar, S.N.; Kumar, A.; Prasad, G.B.; Prakash, S. Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol. Res., 2009, 105(1), 57-63.
[http://dx.doi.org/10.1007/s00436-009-1362-8] [PMID: 19229558]
[5]
Llinás, G.A.; Seccacini, E.; Gardenal, C.N.; Licastro, S. Current resistance status to temephos in Aedes aegypti from different regions of Argentina. Mem. Inst. Oswaldo Cruz, 2010, 105(1), 113-116.
[http://dx.doi.org/10.1590/S0074-02762010000100019] [PMID: 20209341]
[6]
Mulyatno, K.C.; Yamanaka, A.; Konishi, E. Resistance of Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia. Southeast Asian J. Trop. Med. Public Health, 2012, 43(1), 29-33.
[PMID: 23082551]
[7]
Grisales, N.; Poupardin, R.; Gomez, S.; Fonseca-Gonzalez, I.; Ranson, H.; Lenhart, A. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Negl. Trop. Dis., 2013, 7(9)e2438
[http://dx.doi.org/10.1371/journal.pntd.0002438] [PMID: 24069492]
[8]
Chen, C.D.; Nazni, W.A.; Lee, H.L.; Norma-Rashid, Y.; Lardizabal, M.L.; Sofian-Azirun, M. Temephos resistance in field Aedes (Stegomyia) albopictus (Skuse) from Selangor, Malaysia. Trop. Biomed., 2013, 30(2), 220-230.
[PMID: 23959487]
[9]
Asche, C. Antitumour quinones. Mini Rev. Med. Chem., 2005, 5(5), 449-467.
[http://dx.doi.org/10.2174/1389557053765556] [PMID: 15892687]
[10]
Skibo, E.B.; Xing, C.; Dorr, R.T. Aziridinyl quinone antitumor agents based on indoles and cyclopent[b]indoles: structure-activity relationships for cytotoxicity and antitumor activity. J. Med. Chem., 2001, 44(22), 3545-3562.
[http://dx.doi.org/10.1021/jm010085u] [PMID: 11606119]
[11]
Santos, A.F.; Ferraz, P.A.; de Abreu, F.C.; Chiari, E.; Goulart, M.O.; Sant’Ana, A.E. Molluscicidal and trypanocidal activities of lapachol derivatives. Planta Med., 2001, 67(1), 92-93.
[http://dx.doi.org/10.1055/s-2001-10877] [PMID: 11270734]
[12]
dos Santos, A.F.; Ferraz, P.A.; Pinto, A.V. Pinto M do, C.; Goulart, M.O.; Sant’Ana, A.E. Molluscicidal activity of 2-hydroxy-3-alkyl-1,4-naphthoquinones and derivatives. Int. J. Parasitol., 2000, 30(11), 1199-1202.
[http://dx.doi.org/10.1016/S0020-7519(00)00114-4] [PMID: 11027788]
[13]
Barbosa, T.P.; Camara, C.A.; Silva, T.M.; Martins, R.M.; Pinto, A.C.; Vargas, M.D. New 1,2,3,4-tetrahydro-1-aza-anthraquinones and 2-aminoalkyl compounds from norlapachol with molluscicidal activity. Bioorg. Med. Chem., 2005, 13(23), 6464-6469.
[http://dx.doi.org/10.1016/j.bmc.2005.06.068] [PMID: 16140019]
[14]
Ferreira, V.F.; Jorqueira, A.; Souza, A.M.; da Silva, M.N.; de Souza, M.C.; Gouvêa, R.M.; Rodrigues, C.R.; Pinto, A.V.; Castro, H.C.; Santos, D.O.; Araújo, H.P.; Bourguignon, S.C. Trypanocidal agents with low cytotoxicity to mammalian cell line: a comparison of the theoretical and biological features of lapachone derivatives. Bioorg. Med. Chem., 2006, 14(16), 5459-5466.
[http://dx.doi.org/10.1016/j.bmc.2006.04.046] [PMID: 16725327]
[15]
Jorqueira, A.; Gouvêa, R.M.; Ferreira, V.F.; da Silva, M.N.; de Souza, M.C.; Zuma, A.A.; Cavalcanti, D.F.; Araújo, H.P.; Santos, D.O.; Bourguignon, S.C. Oxyrane derivative of alpha-lapachone is potent growth inhibitor of Trypanosoma cruzi epimastigote forms. Parasitol. Res., 2006, 99(4), 429-433.
[http://dx.doi.org/10.1007/s00436-006-0153-8] [PMID: 16596415]
[16]
da Silva, E.N., Jr; Menna-Barreto, R.F. Pinto, Mdo.C.; Silva, R.S.; Teixeira, D.V.; de Souza, M.C.; De Simone, C.A.; De Castro, S.L.; Ferreira, V.F.; Pinto, A.V. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur. J. Med. Chem., 2008, 43(8), 1774-1780.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.015] [PMID: 18045742]
[17]
Teixeira, M.J.; de Almeida, Y.M.; Viana, J.R.; Holanda Filha, J.G.; Rodrigues, T.P.; Prata, J.R., Jr; Coêlho, I.C.; Rao, V.S.; Pompeu, M.M. In vitro and in vivo Leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol). Phytother. Res., 2001, 15(1), 44-48.
[http://dx.doi.org/10.1002/1099-1573(200102)15:1<44:AID-PTR685>3.0.CO;2-1] [PMID: 11180522]
[18]
de Almeida, E.R.; da Silva Filho, A.A.; dos Santos, E.R.; Lopes, C.A. Antiinflammatory action of lapachol. J. Ethnopharmacol., 1990, 29(2), 239-241.
[http://dx.doi.org/10.1016/0378-8741(90)90061-W] [PMID: 2374436]
[19]
Gafner, S.; Wolfender, J.L.; Nianga, M.; Stoeckli-Evans, H.; Hostettmann, K. Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots. Phytochemistry, 1996, 42(5), 1315-1320.
[http://dx.doi.org/10.1016/0031-9422(96)00135-5] [PMID: 9397206]
[20]
Tabata, M.; Tsukada, M.; Fukui, H. Antimicrobial activity of quinone derivatives from Echium lycopsis callus cultures. Planta Med., 1982, 44(4), 234-236.
[http://dx.doi.org/10.1055/s-2007-971456] [PMID: 7100302]
[21]
Pinto, C.N.; Dantas, A.P.; De Moura, K.C.; Emery, F.S.; Polequevitch, P.F.; Pinto, M.C.; de Castro, S.L.; Pinto, A.V. Chemical reactivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy. Arzneimittelforschung, 2000, 50(12), 1120-1128.
[PMID: 11190779]
[22]
Pinto, A.V.; de Castro, S.L. The trypanocidal activity of naphthoquinones: a review. Molecules, 2009, 14(11), 4570-4590.
[http://dx.doi.org/10.3390/molecules14114570] [PMID: 19924086]
[23]
Salas, C.O.; Faúndez, M.; Morello, A.; Maya, J.D.; Tapia, R.A. Natural and synthetic naphthoquinones active against Trypanosoma cruzi: an initial step towards new drugs for Chagas disease. Curr. Med. Chem., 2011, 18(1), 144-161.
[http://dx.doi.org/10.2174/092986711793979779] [PMID: 21110810]
[24]
Hahn, S.A.; Hoque, A.T.; Moskaluk, C.A.; da Costa, L.T.; Schutte, M.; Rozenblum, E.; Seymour, A.B.; Weinstein, C.L.; Yeo, C.J.; Hruban, R.H.; Kern, S.E. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res., 1996, 56(3), 490-494.
[PMID: 8564959]
[25]
Sharma, S.K.; Kumar, S.; Chand, K.; Kathuria, A.; Gupta, A.; Jain, R. An update on natural occurrence and biological activity of chromones. Curr. Med. Chem., 2011, 18(25), 3825-3852.
[http://dx.doi.org/10.2174/092986711803414359] [PMID: 21824102]
[26]
Chen, G.; Jin, H.Z.; Li, X.F.; Zhang, Q.; Shen, Y.H.; Yan, S.K.; Zhang, W.D. A new chromone glycoside from Rhododendron spinuliferum. Arch. Pharm. Res., 2008, 31(8), 970-972.
[http://dx.doi.org/10.1007/s12272-001-1253-y] [PMID: 18787782]
[27]
Wu, D.; Zhang, M.; Zhang, C.; Wang, Z. Chromones from the flower buds of Tussilago farfara. Biochem. Syst. Ecol., 2008, 36(3), 219-222.
[http://dx.doi.org/10.1016/j.bse.2007.07.003]
[28]
Kakiuchi, Y.; Sasaki, N.; Satoh-Masuoka, M.; Murofushi, H.; Murakami-Murofushi, K. A novel pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase. Biochem. Biophys. Res. Commun., 2004, 320(4), 1351-1358.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.094] [PMID: 15303281]
[29]
Wu, T.W.; Zeng, L.H.; Wu, J.; Fung, K.P. Myocardial protection of MCI-186 in rabbit ischemia-reperfusion. Life Sci., 2002, 71(19), 2249-2255.
[http://dx.doi.org/10.1016/S0024-3205(02)01965-3] [PMID: 12215372]
[30]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2′'-hydroxy naphthalen-1′'-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[31]
Walker, J.R.; Fairfull-Smith, K.E.; Anzai, K.; Lau, S.; White, P.J.; Scammells, P.J.; Bottle, S.E. Edaravone containing isoin doline nitroxides for the potential treatment of cardiovascular ischaemia. MedChemComm, 2011, 2(5), 436-441.
[http://dx.doi.org/10.1039/c1md00041a]
[32]
Kandhasamy, S.; Arthi, N.; Arun, R.P.; Verma, R.S. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Mater. Sci. Eng. C, 2019, 102, 773-787.
[http://dx.doi.org/10.1016/j.msec.2019.04.076] [PMID: 31147050]
[33]
WHO Manual on Practical Entomology; Geneva, 1975.
[34]
WHO Guidelines for laboratory and field testing of mosquito larvicides, 2005.
[35]
Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 1925, 18, 265-267.
[http://dx.doi.org/10.1093/jee/18.2.265a]
[36]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[37]
Venugopala, K.N.; Nayak, S.K.; Gleiser, R.M.; Sanchez-Borzone, M.E.; Garcia, D.A.; Odhav, B. Synthesis, polymorphism, and insecticidal activity of methyl 4-(4-chlorophenyl)-8-iodo-2-methyl-6-oxo-1,6-dihydro-4H-pyrimido[2,1-b]quinazoline-3-carboxylate against Anopheles arabiensis mosquito. Chem. Biol. Drug Des., 2016, 88(1), 88-96.
[http://dx.doi.org/10.1111/cbdd.12736] [PMID: 26841246]
[38]
Schüttelkopf, A.W.; van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[39]
Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.; Liang, J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res, 2006, 34(Web Server issue), W116- 118.,
[http://dx.doi.org/10.1093/nar/gkl282]
[40]
Stalin, A.; Irudayaraj, S.S.; Gandhi, G.R.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N.A. Hypoglycemic activity of 6-bromoembelin and vilangin in high-fat diet fed-streptozotocin-induced type 2 diabetic rats and molecular docking studies. Life Sci., 2016, 153, 100-117.
[http://dx.doi.org/10.1016/j.lfs.2016.04.016] [PMID: 27091376]
[41]
Lima, T.C.; Santos, S.R.; Uliana, M.P.; Santos, R.L.; Brocksom, T.J.; Cavalcanti, S.C.; de Sousa, D.P. Oxime derivatives with larvicidal activity against Aedes aegypti L. Parasitol. Res., 2015, 114(8), 2883-2891.
[http://dx.doi.org/10.1007/s00436-015-4489-9] [PMID: 25956398]
[42]
Michaelakis, A.; Strongilos, A.T.; Bouzas, E.A.; Koliopoulos, G.; Couladouros, E.A. Larvicidal activity of naturally occurring naphthoquinones and derivatives against the West Nile virus vector Culex pipiens. Parasitol. Res., 2009, 104(3), 657-662.
[http://dx.doi.org/10.1007/s00436-008-1242-7] [PMID: 18998168]
[43]
Nishiwaki, H.; Hasebe, A.; Kawaguchi, Y.; Akamatsu, M.; Shuto, Y.; Yamauchi, S. Larvicidal activity of (-)-dihydroguaiaretic acid derivatives against Culex pipiens. Biosci. Biotechnol. Biochem., 2011, 75(9), 1735-1739.
[http://dx.doi.org/10.1271/bbb.110269] [PMID: 21897049]
[44]
Yu, K.X.; Wong, C.L.; Ahmad, R.; Jantan, I. Larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induced by seaweed extracts in Aedes aegypti (Diptera: Culicidae). Asian Pac. J. Trop. Med., 2015, 8(12), 1006-1012.
[http://dx.doi.org/10.1016/j.apjtm.2015.11.011] [PMID: 26706671]
[45]
Perumalsamy, H.; Kim, J.R.; Oh, S.M.; Jung, J.W.; Ahn, Y.J.; Kwon, H.W. Novel histopathological and molecular effects of natural compound pellitorine on larval midgut epithelium and anal gills of Aedes aegypti. PLoS One, 2013, 8(11)e80226
[http://dx.doi.org/10.1371/journal.pone.0080226] [PMID: 24260359]
[46]
Wang, Z.; Perumalsamy, H.; Wang, X.; Ahn, Y.J. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Sci. Rep., 2019, 9(1), 411.
[http://dx.doi.org/10.1038/s41598-018-36558-y] [PMID: 30674912]
[47]
Ganesan, P.; Stalin, A.; Gabriel Paulraj, M.; Balakrishna, K.; Ignacimuthu, S.; Abdullah Al-Dhabi, N. Biocontrol and non-target effect of fractions and compound isolated from Streptomyces rimosus on the immature stages of filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) and the compound interaction with Acetylcholinesterase (AChE1). Ecotoxicol. Environ. Saf., 2018, 161, 120-128.
[http://dx.doi.org/10.1016/j.ecoenv.2018.05.061] [PMID: 29879572]
[48]
Raja, T.R.W.; Ganesan, P.; Gandhi, M.R.; Duraipandiyan, V.; Paulraj, M.G.; Balakrishna, K.; Al-Dhabi, N.A.; Ignacimuthu, S. Effect of compound Musizin isolated from Rhamnus wightii Wight and Arn on the immature stages of filarial vector mosquito Culex quinquefasciatus Say (Diptera: Culicidae) and its non-target studies. Biocatal. Agric. Biotechnol., 2018, 16, 37-42.
[http://dx.doi.org/10.1016/j.bcab.2018.07.010]
[49]
da Silva Costa, M.; de Paula, S.O.; Martins, G.F.; Zanuncio, J.C.; Santana, A.E.; Serrão, J.E. Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti Larvae. PLoS One, 2016, 11(8)e0160928
[http://dx.doi.org/10.1371/journal.pone.0160928] [PMID: 27532504]
[50]
Li, J.; Li, G. Transamination of 3-hydroxykynurenine to produce xanthurenic acid: a major branch pathway of tryptophan metabolism in the mosquito, Aedes aegypti, during larval development. Insect Biochem. Mol. Biol., 1997, 27(10), 859-867.
[http://dx.doi.org/10.1016/S0965-1748(97)00068-4] [PMID: 9474782]
[51]
Han, Q.; Gao, Y.G.; Robinson, H.; Ding, H.; Wilson, S.; Li, J. Crystal structures of Aedes aegypti kynurenine aminotransferase. FEBS J., 2005, 272(9), 2198-2206.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04643.x] [PMID: 15853804]
[52]
Farnesi, L.C.; Menna-Barreto, R.F.; Martins, A.J.; Valle, D.; Rezende, G.L. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. J. Insect Physiol., 2015, 83, 43-52.
[http://dx.doi.org/10.1016/j.jinsphys.2015.10.006] [PMID: 26514070]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy