Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

A Review of Recent Advances in Nanomaterial-based Stem Cell Therapy and the Corresponding Risks

Author(s): Hao Tian , Long Yuan, Yong Song*, Jun Deng* and Xiao Wei Qi*

Volume 17, Issue 3, 2022

Published on: 19 July, 2021

Page: [195 - 206] Pages: 12

DOI: 10.2174/1574888X16666210719110436

Price: $65

Abstract

Stem cell therapy is widely regarded as a promising strategy in regenerative medicine, yet the therapeutic effects of stem cells in vivo are limited by many factors when applied without additional factors, such as poor cell engraftment, uncontrolled differentiation, and unclear cell fates and niches. The emergence of nanotechnology has provided several solutions for these problems. Nanomaterial-based cell labeling and tracking have been extensively investigated in recent decades, and many innovative and multifunctional nanomaterials have been used to reveal the fate of stem cells, allowing more efficient, sensitive, and accurate imaging/tracking strategies for stem cells to be achieved. Nanomaterials enhance stem cell therapy by incorporating or integrating with stem cells and, as scaffolds or substrates, nanomaterials with antioxidant properties that can be used as graft coatings show great promise for clinical transformation. However, current reviews on the subject tend to focus on the various effects of nanomaterials on stem cells and are less concerned with their application to stem cell therapy. Accordingly, we herein present a review of progress in the application of nanomaterials in stem cell therapy over the last three years, which we hope will be of benefit to a comprehensive understanding of nanomaterial-mediated stem cell therapy from lab to pre-clinical practice.

Keywords: nanomaterials, cell imaging, drug delivery, stem cell therapy, regenerative medicine, therapeutic effects

[1]
Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004; 116(5): 639-48.
[http://dx.doi.org/10.1016/S0092-8674(04)00208-9] [PMID: 15006347]
[2]
Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: Five decades later. Cell Stem Cell 2015; 17(4): 385-95.
[http://dx.doi.org/10.1016/j.stem.2015.09.003] [PMID: 26431181]
[3]
Bruyneel AA, Sehgal A, Malandraki-Miller S, Carr C. Stem cell therapy for the heart: Blind alley or magic bullet? J Cardiovasc Transl Res 2016; 9(5-6): 405-18.
[http://dx.doi.org/10.1007/s12265-016-9708-y] [PMID: 27542008]
[4]
Horie N, Pereira MP, Niizuma K, et al. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 2011; 29(2): 274-85.
[http://dx.doi.org/10.1002/stem.584] [PMID: 21732485]
[5]
Crivelli B, Chlapanidas T, Perteghella S, et al. Mesenchymal stem/stromal cell extracellular vesicles: From active principle to next generation drug delivery system. J Control Release 2017; 262: 104-17.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.023] [PMID: 28736264]
[6]
Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacol Sin 2013; 34(6): 747-54.
[http://dx.doi.org/10.1038/aps.2013.50] [PMID: 23736003]
[7]
Goradel NH, Hour FG, Negahdari B, et al. Stem cell therapy: A new therapeutic option for cardiovascular diseases. J Cell Biochem 2018; 119(1): 95-104.
[http://dx.doi.org/10.1002/jcb.26169] [PMID: 28543595]
[8]
Mead B, Berry M, Logan A, Scott RA, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res 2015; 14(3): 243-57.
[http://dx.doi.org/10.1016/j.scr.2015.02.003] [PMID: 25752437]
[9]
Müller P, Lemcke H, David R. Stem cell therapy in heart diseases-cell types, mechanisms and improvement strategies. Cell Physiol Biochem 2018; 48(6): 2607-55.
[http://dx.doi.org/10.1159/000492704] [PMID: 30121644]
[10]
Bovenberg MS, Degeling MH, Tannous BA. Advances in stem cell therapy against gliomas. Trends Mol Med 2013; 19(5): 281-91.
[http://dx.doi.org/10.1016/j.molmed.2013.03.001] [PMID: 23537753]
[11]
Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther 2017; 8(1): 111.
[http://dx.doi.org/10.1186/s13287-017-0567-5] [PMID: 28494803]
[12]
Trounson A, McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015; 17(1): 11-22.
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[13]
Lin HT, Otsu M, Nakauchi H. Stem cell therapy: An exercise in patience and prudence. Philos Trans R Soc Lond B Biol Sci 2013; 368(1609)20110334
[http://dx.doi.org/10.1098/rstb.2011.0334] [PMID: 23166396]
[14]
Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998-1004.
[http://dx.doi.org/10.1038/nm.3267] [PMID: 23921754]
[15]
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: A decade of progress. Nat Rev Drug Discov 2017; 16(2): 115-30.
[http://dx.doi.org/10.1038/nrd.2016.245] [PMID: 27980341]
[16]
Andreotti JP, Silva WN, Costa AC, et al. Neural stem cell niche heterogeneity. Semin Cell Dev Biol 2019; 95: 42-53.
[http://dx.doi.org/10.1016/j.semcdb.2019.01.005] [PMID: 30639325]
[17]
Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009; 324(5935): 1673-7.
[http://dx.doi.org/10.1126/science.1171643] [PMID: 19556500]
[18]
Kerativitayanan P, Carrow JK, Gaharwar AK. Nanomaterials for engineering stem cell responses. Adv Healthc Mater 2015; 4(11): 1600-27.
[http://dx.doi.org/10.1002/adhm.201500272] [PMID: 26010739]
[19]
Brandenberger C, Mühlfeld C, Ali Z, et al. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 2010; 6(15): 1669-78.
[http://dx.doi.org/10.1002/smll.201000528] [PMID: 20602428]
[20]
Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv 2013; 31(5): 654-68.
[http://dx.doi.org/10.1016/j.biotechadv.2012.08.001] [PMID: 22902273]
[21]
Krishna L, Dhamodaran K, Jayadev C, et al. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 2016; 7(1): 188.
[http://dx.doi.org/10.1186/s13287-016-0440-y] [PMID: 28038681]
[22]
Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem Soc Rev 2013; 42(14): 6060-93.
[http://dx.doi.org/10.1039/c3cs35486e] [PMID: 23740388]
[23]
Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem Soc Rev 2019; 48(4): 1004-76.
[http://dx.doi.org/10.1039/C8CS00457A] [PMID: 30534770]
[24]
Zhou X, Yuan L, Wu C, et al. Recent review of the effect of nanomaterials on stem cells. RSC Advances 2018; 8(32): 17656-76.
[http://dx.doi.org/10.1039/C8RA02424C]
[25]
Enver T, Pera M, Peterson C, Andrews PW. Stem cell states, fates, and the rules of attraction. Cell Stem Cell 2009; 4(5): 387-97.
[http://dx.doi.org/10.1016/j.stem.2009.04.011] [PMID: 19427289]
[26]
Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature 2006; 441(7097): 1094-6.
[http://dx.doi.org/10.1038/nature04960] [PMID: 16810245]
[27]
Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25(9): 1015-24.
[http://dx.doi.org/10.1038/nbt1327] [PMID: 17721512]
[28]
Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol 2011; 8(11): 677-88.
[http://dx.doi.org/10.1038/nrclinonc.2011.141] [PMID: 21946842]
[29]
Solanki A, Kim JD, Lee KB. Nanotechnology for regenerative medicine: Nanomaterials for stem cell imaging. Nanomedicine 2008; 3(4): 567-78.
[http://dx.doi.org/10.2217/17435889.3.4.567] [PMID: 18694318]
[30]
Kim T, Momin E, Choi J, et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 2011; 133(9): 2955-61.
[http://dx.doi.org/10.1021/ja1084095] [PMID: 21314118]
[31]
Jiang Y, Upputuri PK, Xie C, et al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett 2017; 17(8): 4964-9.
[http://dx.doi.org/10.1021/acs.nanolett.7b02106] [PMID: 28654292]
[32]
Guo B, Sheng Z, Hu D, et al. Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window. Mater Horiz 2017; 4: 1151-6.
[http://dx.doi.org/10.1039/C7MH00672A]
[33]
Wan H, Yue J, Zhu S, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun 2018; 9(1): 1171.
[http://dx.doi.org/10.1038/s41467-018-03505-4] [PMID: 29563581]
[34]
Yin C, Wen G, Liu C, et al. Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window. ACS Nano 2018; 12(12): 12201-11.
[http://dx.doi.org/10.1021/acsnano.8b05906] [PMID: 30433761]
[35]
Dhada KS, Hernandez DS, Suggs LJ. In vivo photoacoustic tracking of mesenchymal stem cell viability. ACS Nano 2019; 13(7): 7791-9.
[http://dx.doi.org/10.1021/acsnano.9b01802] [PMID: 31250647]
[36]
Hsuuw YD, Chang CK, Chan WH, Yu JS. Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J Cell Physiol 2005; 205(3): 379-86.
[http://dx.doi.org/10.1002/jcp.20408] [PMID: 15887245]
[37]
Kim SY, Jeong HC, Hong SK, Lee MO, Cho SJ, Cha HJ. Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cells. Oncotarget 2016; 8(39): 64964-73.
[http://dx.doi.org/10.18632/oncotarget.11070] [PMID: 29029404]
[38]
Chen G, Lin S, Huang D, et al. Revealing the fate of transplanted stem cells in vivo with a novel optical imaging strategy. Small 2018; 14(3): 1.
[http://dx.doi.org/10.1002/smll.201702679] [PMID: 29171718]
[39]
Nguyen PK, Riegler J, Wu JC. Stem cell imaging: From bench to bedside. Cell Stem Cell 2014; 14(4): 431-44.
[http://dx.doi.org/10.1016/j.stem.2014.03.009] [PMID: 24702995]
[40]
Lim S, Yoon HY, Jang HJ, et al. Dual-modal imaging-guided precise tracking of bioorthogonally labeled mesenchymal stem cells in mouse brain stroke. ACS Nano 2019; 13(10): 10991-1007.
[http://dx.doi.org/10.1021/acsnano.9b02173] [PMID: 31584257]
[41]
Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435(7046): 1214-7.
[http://dx.doi.org/10.1038/nature03808] [PMID: 15988521]
[42]
Yu EY, Bishop M, Zheng B, et al. Magnetic particle imaging: A novel in vivo imaging platform for cancer detection. Nano Lett 2017; 17(3): 1648-54.
[http://dx.doi.org/10.1021/acs.nanolett.6b04865] [PMID: 28206771]
[43]
Graeser M, Thieben F, Szwargulski P, et al. Human-sized magnetic particle imaging for brain applications. Nat Commun 2019; 10(1): 1936.
[http://dx.doi.org/10.1038/s41467-019-09704-x] [PMID: 31028253]
[44]
Bauer LM, Situ SF, Griswold MA, Samia AC. Magnetic particle imaging tracers: State-of-the-art and future directions. J Phys Chem Lett 2015; 6(13): 2509-17.
[http://dx.doi.org/10.1021/acs.jpclett.5b00610] [PMID: 26266727]
[45]
Wang Q, Ma X, Liao H, et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020; 14(2): 2053-62.
[http://dx.doi.org/10.1021/acsnano.9b08660] [PMID: 31999433]
[46]
Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42(3): 1147-235.
[http://dx.doi.org/10.1039/C2CS35265F] [PMID: 23238558]
[47]
Peng H, Wang C, Xu X, Yu C, Wang Q. An intestinal Trojan horse for gene delivery. Nanoscale 2015; 7(10): 4354-60.
[http://dx.doi.org/10.1039/C4NR06377E] [PMID: 25619169]
[48]
Xie Z, Paras CB, Weng H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 2013; 9(12): 9351-9.
[http://dx.doi.org/10.1016/j.actbio.2013.07.030] [PMID: 23917148]
[49]
Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, Mikos AG. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 2008; 43(5): 931-40.
[http://dx.doi.org/10.1016/j.bone.2008.06.019] [PMID: 18675385]
[50]
Tang W, Lin D, Yu Y, et al. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 2016; 32: 309-23.
[http://dx.doi.org/10.1016/j.actbio.2015.12.006] [PMID: 26689464]
[51]
Cui W, Liu Q, Yang L, et al. Sustained delivery of bmp-2-related peptide from the true bone ceramics/hollow mesoporous silica nanoparticles scaffold for bone tissue regeneration. ACS Biomater Sci Eng 2018; 4(1): 211-21.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00506] [PMID: 33418690]
[52]
Yuasa M, Yamada T, Taniyama T, et al. Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PLoS One 2015; 10(2)e0116462
[http://dx.doi.org/10.1371/journal.pone.0116462] [PMID: 25659106]
[53]
Andrée L, Barata D, Sutthavas P, Habibovic P, van Rijt S. Guiding mesenchymal stem cell differentiation using mesoporous silica nanoparticle-based films. Acta Biomater 2019; 96: 557-67.
[http://dx.doi.org/10.1016/j.actbio.2019.07.008] [PMID: 31284095]
[54]
Butler KS, Durfee PN, Theron C, Ashley CE, Carnes EC, Brinker CJ. Protocells: Modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small 2016; 12(16): 2173-85.
[http://dx.doi.org/10.1002/smll.201502119] [PMID: 26780591]
[55]
Rosenbrand R, Barata D, Sutthavas P, et al. Lipid surface modifications increase mesoporous silica nanoparticle labeling properties in mesenchymal stem cells. Int J Nanomedicine 2018; 13: 7711-25.
[http://dx.doi.org/10.2147/IJN.S182428] [PMID: 30538454]
[56]
Cheng G, Yin C, Tu H, et al. Controlled co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration. ACS Nano 2019; 13(6): 6372-82.
[http://dx.doi.org/10.1021/acsnano.8b06032] [PMID: 31184474]
[57]
Kubota S, Takigawa M. Role of CCN2/CTGF/Hcs24 in bone growth. Int Rev Cytol 2007; 257: 1-41.
[http://dx.doi.org/10.1016/S0074-7696(07)57001-4] [PMID: 17280894]
[58]
Liu Y-W, Chen B, Yang X, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 2018; 36(7): 597-605.
[http://dx.doi.org/10.1038/nbt.4162] [PMID: 29969440]
[59]
Protze SI, Lee JH, Keller GM. Human pluripotent stem cell-derived cardiovascular cells: From developmental biology to therapeutic applications. Cell Stem Cell 2019; 25(3): 311-27.
[http://dx.doi.org/10.1016/j.stem.2019.07.010] [PMID: 31491395]
[60]
Mazo M, Planat-Bénard V, Abizanda G, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail 2008; 10(5): 454-62.
[http://dx.doi.org/10.1016/j.ejheart.2008.03.017] [PMID: 18436478]
[61]
Fan W, Cheng K, Qin X, et al. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo. Stem Cells 2013; 31(1): 203-14.
[http://dx.doi.org/10.1002/stem.1265] [PMID: 23081858]
[62]
Ma Q, Yang J, Huang X, et al. Poly(lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells 2018; 36(4): 540-50.
[http://dx.doi.org/10.1002/stem.2777] [PMID: 29327399]
[63]
Yokoyama R, Ii M, Masuda M, et al. Cardiac regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction. Stem Cells Transl Med 2019; 8(10): 1055-67.
[http://dx.doi.org/10.1002/sctm.18-0244] [PMID: 31157513]
[64]
Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 2008; 15(10): 739-52.
[http://dx.doi.org/10.1038/gt.2008.41] [PMID: 18369324]
[65]
Hingtgen SD, Kasmieh R, van de Water J, Weissleder R, Shah K. A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy. Stem Cells 2010; 28(4): 832-41.
[http://dx.doi.org/10.1002/stem.313] [PMID: 20127797]
[66]
Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ 2014; 21(9): 1350-64.
[http://dx.doi.org/10.1038/cdd.2014.81] [PMID: 24948009]
[67]
Suryaprakash S, Lao YH, Cho HY, et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Lett 2019; 19(3): 1701-5.
[http://dx.doi.org/10.1021/acs.nanolett.8b04697] [PMID: 30773888]
[68]
Tukmachev D, Lunov O, Zablotskii V, et al. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale 2015; 7(9): 3954-8.
[http://dx.doi.org/10.1039/C4NR05791K] [PMID: 25652717]
[69]
Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101(8): 2999-3001.
[http://dx.doi.org/10.1182/blood-2002-06-1830] [PMID: 12480709]
[70]
Yun S, Shin TH, Lee JH, et al. Design of magnetically labeled cells (mag-cells) for in vivo control of stem cell migration and differentiation. Nano Lett 2018; 18(2): 838-45.
[http://dx.doi.org/10.1021/acs.nanolett.7b04089] [PMID: 29393650]
[71]
Ahn YJ, Kong TH, Choi JS, Yun WS, Key J, Seo YJ. Strategies to enhance efficacy of spion-labeled stem cell homing by magnetic attraction: A systemic review with meta-analysis. Int J Nanomedicine 2019; 14: 4849-66.
[http://dx.doi.org/10.2147/IJN.S204910] [PMID: 31308662]
[72]
Mashinchian O, Turner LA, Dalby MJ, et al. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine 2015; 10(5): 829-47.
[http://dx.doi.org/10.2217/nnm.14.225] [PMID: 25816883]
[73]
Regalado-Santiago C, Juárez-Aguilar E, Olivares-Hernández JD, Tamariz E. Mimicking neural stem cell niche by biocompatible substrates. Stem Cells Int 2016; 20161513285
[http://dx.doi.org/10.1155/2016/1513285] [PMID: 26880934]
[74]
Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007; 313(9): 1820-9.
[http://dx.doi.org/10.1016/j.yexcr.2007.02.031] [PMID: 17428465]
[75]
Zhu Y, Li X, Janairo RRR, et al. Matrix stiffness modulates the differentiation of neural crest stem cells in vivo. J Cell Physiol 2018; 1-10.
[PMID: 30368818]
[76]
Higuchi A, Ling Q-D, Chang Y, Hsu ST, Umezawa A. Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev 2013; 113(5): 3297-328.
[http://dx.doi.org/10.1021/cr300426x] [PMID: 23391258]
[77]
Wen JH, Vincent LG, Fuhrmann A, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 2014; 13(10): 979-87.
[http://dx.doi.org/10.1038/nmat4051] [PMID: 25108614]
[78]
Hao W, Han J, Chu Y, et al. Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials 2018; 161: 106-16.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.034] [PMID: 29421547]
[79]
Das Ghosh L, Hasan J, Jain A, Sundaresan NR, Chatterjee K. A nanopillar array on black titanium prepared by reactive ion etching augments cardiomyogenic commitment of stem cells. Nanoscale 2019; 11(43): 20766-76.
[http://dx.doi.org/10.1039/C9NR03424B] [PMID: 31651003]
[80]
Ma Q, Jiang N, Liang S, et al. Functionalization of a clustered TiO2 nanotubular surface with platelet derived growth factor-BB covalent modification enhances osteogenic differentiation of bone marrow mesenchymal stem cells. Biomaterials 2020; 230119650
[http://dx.doi.org/10.1016/j.biomaterials.2019.119650] [PMID: 31806404]
[81]
Kong D, Peng L, Di Cio S, Novak P, Gautrot JE. Stem cell expansion and fate decision on liquid substrates are regulated by self-assembled nanosheets. ACS Nano 2018; 12(9): 9206-13.
[http://dx.doi.org/10.1021/acsnano.8b03865] [PMID: 30178996]
[82]
Lee JY, Xu K, Nguyen H, Guedes VA, Borlongan CV, Acosta SA. Stem cell-induced biobridges as possible tools to aid neuroreconstruction after CNS injury. Front Cell Dev Biol 2017; 5: 51.
[http://dx.doi.org/10.3389/fcell.2017.00051] [PMID: 28540289]
[83]
Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol 2017; 13(5): 265-78.
[http://dx.doi.org/10.1038/nrneurol.2017.45] [PMID: 28418023]
[84]
Sofroniew MV. Dissecting spinal cord regeneration. Nature 2018; 557(7705): 343-50.
[http://dx.doi.org/10.1038/s41586-018-0068-4] [PMID: 29769671]
[85]
Xu W, Chi L, Xu R, et al. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord 2005; 43(4): 204-13.
[http://dx.doi.org/10.1038/sj.sc.3101674] [PMID: 15520836]
[86]
Li L, Xiao B, Mu J, et al. A MnO2 nanoparticle-dotted hydrogel promotes spinal cord repair via regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells. ACS Nano 2019; 13(12): 14283-93.
[http://dx.doi.org/10.1021/acsnano.9b07598] [PMID: 31769966]
[87]
Park S, Park HH, Sun K, et al. Hydrogel nanospike patch as a flexible anti-pathogenic scaffold for regulating stem cell behavior. ACS Nano 2019; 13(10): 11181-93.
[http://dx.doi.org/10.1021/acsnano.9b04109] [PMID: 31518110]
[88]
Ruan J, Ji J, Song H, et al. Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Res Lett 2012; 7(1): 309.
[http://dx.doi.org/10.1186/1556-276X-7-309] [PMID: 22709686]
[89]
Cheng K, Li TS, Malliaras K, Davis DR, Zhang Y, Marbán E. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res 2010; 106(10): 1570-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.212589] [PMID: 20378859]
[90]
Voinov MA, Sosa Pagán JO, Morrison E, Smirnova TI, Smirnov AI. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 2011; 133(1): 35-41.
[http://dx.doi.org/10.1021/ja104683w] [PMID: 21141957]
[91]
Connell JJ, Patrick PS, Yu Y, Lythgoe MF, Kalber TL. Advanced cell therapies: Targeting, tracking and actuation of cells with magnetic particles. Regen Med 2015; 10(6): 757-72.
[http://dx.doi.org/10.2217/rme.15.36] [PMID: 26390317]
[92]
Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology 2010; 151(2): 458-65.
[http://dx.doi.org/10.1210/en.2009-1082] [PMID: 20016026]
[93]
Cheng K, Malliaras K, Li T-S, et al. Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell Transplant 2012; 21(6): 1121-35.
[http://dx.doi.org/10.3727/096368911X627381] [PMID: 22405128]
[94]
Van de Walle A, Plan Sangnier A, Abou-Hassan A, et al. Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proc Natl Acad Sci USA 2019; 116(10): 4044-53.
[http://dx.doi.org/10.1073/pnas.1816792116] [PMID: 30760598]
[95]
Curcio A, Van de Walle A, Serrano A, et al. Transformation cycle of magnetosomes in human stem cells: From degradation to biosynthesis of magnetic nanoparticles anew. ACS Nano 2020; 14(2): 1406-17.
[http://dx.doi.org/10.1021/acsnano.9b08061] [PMID: 31880428]
[96]
Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 2004; 119(4): 529-42.
[http://dx.doi.org/10.1016/j.cell.2004.10.017] [PMID: 15537542]
[97]
Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA. Silver nanoparticles compromise neurodevelopment in PC12 cells: Critical contributions of silver ion, particle size, coating, and composition. Environ Health Perspect 2011; 119(1): 37-44.
[http://dx.doi.org/10.1289/ehp.1002337] [PMID: 20840908]
[98]
Ema M, Okuda H, Gamo M, Honda K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 2017; 67: 149-64.
[http://dx.doi.org/10.1016/j.reprotox.2017.01.005] [PMID: 28088501]
[99]
Rezvani E, Rafferty A, McGuinness C, Kennedy J. Adverse effects of nanosilver on human health and the environment. Acta Biomater 2019; 94: 145-59.
[http://dx.doi.org/10.1016/j.actbio.2019.05.042] [PMID: 31125729]
[100]
Zhang J, Chen Y, Gao M, et al. Silver nanoparticles compromise female embryonic stem cell differentiation through disturbing X chromosome inactivation. ACS Nano 2019; 13(2): 2050-61.
[http://dx.doi.org/10.1021/acsnano.8b08604] [PMID: 30650303]
[101]
Wang Z, Li Q, Xu L, et al. Silver nanoparticles compromise the development of mouse pubertal mammary glands through disrupting internal estrogen signaling. Nanotoxicology 2020; 14(6): 740-56.
[http://dx.doi.org/10.1080/17435390.2020.1755470] [PMID: 32401081]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy