Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Organocatalysis: An Overview of its Application in Oxidation and Reduction Reactions

Author(s): Rammyani Pal and Chhanda Mukhopadhyay*

Volume 9, Issue 1, 2022

Published on: 19 July, 2021

Page: [4 - 13] Pages: 10

DOI: 10.2174/2213337208666210719101409

Price: $65

Abstract

Organocatalysis was established to be a wide-applicable approach from its inception and rediscovery in the year 2000, where proline was used as a catalyst in aldol condensation and soon after the successful emergence of iminium catalysed reactions in organic synthesis. Development of new potential catalytic systems is always an important as well as an uphill task for scientists and researchers. The fundamental organic synthesis majorly deals with metal based catalysts, whereas there is a constant surge of developing metal free reaction condition to make the reactions environmental friendly. For the synthesis of complex organic molecules, reduction and oxidation reactions are always needed and there are plenty of catalysts available for these reactions. Organocatalysts are also developed and applied for these two elementary reactions. This review focuses on some of the latest developments and applications of organocatalysts in oxidation and reduction reactions in fundamental organic synthesis.

Keywords: Elementary reactions, metal free, organocatalysts, organic synthesis, oxidation, reduction.

Graphical Abstract

[1]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed. Engl., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[2]
Dalko, P.I.; Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. Engl., 2001, 40(20), 3726-3748.
[http://dx.doi.org/10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D] [PMID: 11668532]
[3]
Plietker, B. A highly regioselective salt-free iron-catalyzed allylic alkylation. Angew. Chem. Int. Ed. Engl., 2006, 45(9), 1469-1473.
[http://dx.doi.org/10.1002/anie.200503274] [PMID: 16440378]
[4]
List, B. The ying and yang of asymmetric aminocatalysis. Chem. Commun. (Camb.), 2006, (8), 819-824.
[http://dx.doi.org/10.1039/b514296m] [PMID: 16479280]
[5]
Seayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem., 2005, 3(5), 719-724.
[http://dx.doi.org/10.1039/b415217b] [PMID: 15731852]
[6]
List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122, 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[7]
France, S.; Guerin, D.J.; Miller, S.J.; Lectka, T. Nucleophilic chiral amines as catalysts in asymmetric synthesis. Chem. Rev., 2003, 103(8), 2985-3012.
[http://dx.doi.org/10.1021/cr020061a] [PMID: 12914489]
[8]
Basavaiah, D.; Rao, A.J.; Satyanarayana, T. Recent advances in the Baylis-Hillman reaction and applications. Chem. Rev., 2003, 103(3), 811-892.
[http://dx.doi.org/10.1021/cr010043d] [PMID: 12630854]
[9]
Akiyama, T.; Itoh, J.; Fuchibe, K. Recent progress in chiral brønsted acid catalysis. Adv. Synth. Catal., 2006, 348, 999-1010.
[http://dx.doi.org/10.1002/adsc.200606074]
[10]
Hunter, C.A. Quantifying intermolecular interactions: Guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. Engl., 2004, 43(40), 5310-5324.
[http://dx.doi.org/10.1002/anie.200301739] [PMID: 15468180]
[11]
Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev., 2003, 32(5), 289-296.
[http://dx.doi.org/10.1039/b107298f] [PMID: 14518182]
[12]
Vedejs, E.; Jure, M. Efficiency in nonenzymatic kinetic resolution. Angew. Chem. Int. Ed. Engl., 2005, 44(26), 3974-4001.
[http://dx.doi.org/10.1002/anie.200460842] [PMID: 15942973]
[13]
McGarrigle, E.M.; Gilheany, D.G. Asymmetric alkene epoxidation with chromium oxo salen complexes. A systematic study of salen ligand substituents. Chem. Rev., 2005, 105, 1563-1602.
[http://dx.doi.org/10.1021/cr0306945] [PMID: 15884784]
[14]
Denmark, S.E.; Fu, J. Catalytic enantioselective allylation with chiral Lewis bases. Chem. Commun. (Camb.), 2003, (2), 167-170.
[http://dx.doi.org/10.1039/b208065f] [PMID: 12585378]
[15]
Lygo, B.; Andrews, B.I. Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: Asymmetric alkylation of glycine imines. Acc. Chem. Res., 2004, 37(8), 518-525.
[http://dx.doi.org/10.1021/ar030058t] [PMID: 15311950]
[16]
Lim, C.W.; Ravoo, B.J.; Reinhoudt, D.N. Dynamic multivalent recognition of cyclodextrin vesicles. Chem. Commun. (Camb.), 2005, (45), 5627-5629.
[http://dx.doi.org/10.1039/b510540d] [PMID: 16292370]
[17]
Sellergren, B. Imprinted polymers with memory for small molecules, proteins, or crystals the author is grateful to Dr. Andrew Hall and Dr. Gunter Büchel for linguistic advice. Angew. Chem. Int. Ed. Engl., 2000, 39(6), 1031-1037.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000317)39:6<1031::AID-ANIE1031>3.0.CO;2-F] [PMID: 10760913]
[18]
Alexander, C.; Davidson, L.; Hayes, W. Imprinted polymers: Artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron, 2003, 59, 2025-2056.
[http://dx.doi.org/10.1016/S0040-4020(03)00152-2]
[19]
Guo, H.-C.; Ma, J.-A. Catalytic asymmetric tandem transformations triggered by conjugate additions. Angew. Chem. Int. Ed. Engl., 2006, 45(3), 354-366.
[http://dx.doi.org/10.1002/anie.200500195] [PMID: 16287187]
[20]
Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. Engl., 1979, 18, 239.
[http://dx.doi.org/10.1002/anie.197902393]
[21]
Stryer, L. Biochemistry, 4th ed; Freedman and Company: New York, 1995.
[22]
Mizuhara, S.; Handler, P. Mechanism of thiamine-catalyzed reactions. J. Am. Chem. Soc., 1954, 76, 571-573.
[http://dx.doi.org/10.1021/ja01631a071]
[23]
Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. 2-azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: Highly efficient organocatalysts for oxidation of alcohols. J. Am. Chem. Soc., 2006, 128(26), 8412-8413.
[http://dx.doi.org/10.1021/ja0620336] [PMID: 16802802]
[24]
Denmark, S.E.; Matsuhashi, H. Chiral fluoro ketones for catalytic asymmetric epoxidation of alkenes with oxone. J. Org. Chem., 2002, 67(10), 3479-3486.
[http://dx.doi.org/10.1021/jo020050h] [PMID: 12003563]
[25]
Yang, D. Ketone-catalyzed asymmetric epoxidation reactions. Acc. Chem. Res., 2004, 37(8), 497-505.
[http://dx.doi.org/10.1021/ar030065h] [PMID: 15311948]
[26]
Itsuno, S.; Ito, K.; Hirao, A.; Nakahama, S. Asymmetric reduction of aliphatic ketones with the reagent prepared from (S)-(-)-2-amino-3-methyl-1,1-diphenylbutan-1-ol and borane. J. Org. Chem., 1984, 49, 555-557.
[http://dx.doi.org/10.1021/jo00177a036]
[27]
Itsuno, S.; Ito, K.; Hirao, A.; Nakahama, S.J. Asymmetric reduction of aromatic ketones with the reagent prepared from (S)-(-)-2-amino-3-methyl-1,1-diphenylbutan-1-ol and borane. J. Chem. Soc. Chem. Commun., 1983, (8), 469-470.
[http://dx.doi.org/10.1039/C39830000469]
[28]
Corey, E.J.; Bakshi, R.K.; Shibata, S. Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J. Am. Chem. Soc., 1987, 109, 5551-5553.
[http://dx.doi.org/10.1021/ja00252a056]
[29]
Behnen, W.; Dauelsberg, C.; Wallbaum, S.; Martens, J. Enantioselective catalytic borane reductions of achiral ketones: Synthesis and application of new catalysts prepared from (S)-tert-leucine and (S)-azetidinecarboxylic acid. Synth. Commun., 1992, 22, 2143-2153.
[http://dx.doi.org/10.1080/00397919208019066]
[30]
Corey, E.J.; Bakshi, R.K. A new system for catalytic enantioselective reduction of achiral ketones to chiral alcohols. Synthesis of chiral α-hydroxy acids. Tetrahedron Lett., 1990, 31, 611-614.
[http://dx.doi.org/10.1016/S0040-4039(00)94581-7]
[31]
Harauchi, Y.; Takakura, C.; Furumoto, T.; Yanagita, R.C.; Kawanami, Y. Effect of BF3 on the enantioselective reduction of trifluoromethyl ketones using a chiral lactam alcohol with borane. Tetrahedron Asymmetry, 2015, 26, 333-337.
[http://dx.doi.org/10.1016/j.tetasy.2015.02.011]
[32]
Kawanami, Y.; Mikami, Y.; Kiguchi, K.; Harauchi, Y.; Yanagita, R.C. Enantioselective reduction of α, β-enones using an oxazaborolidine catalyst generated in situ from a chiral lactam alcohol. Tetrahedron Asymmetry, 2011, 22, 1891-1894.
[http://dx.doi.org/10.1016/j.tetasy.2011.10.018]
[33]
Yildiz, T. An oxazaborolidine-based catalytic method for the asymmetric synthesis of chiral allylic alcohols. Tetrahedron Asymmetry, 2015, 26, 497-504.
[http://dx.doi.org/10.1016/j.tetasy.2015.03.008]
[34]
Yu, S.; Lin, P. Recent progress on using BINOLs in enantioselective molecular recognition. Tetrahedron, 2015, 71, 745-772.
[http://dx.doi.org/10.1016/j.tet.2014.11.007]
[35]
Jayaprakash, D.; Sasai, H. Synthesis and catalytic applications of soluble polymer-supported BINOL. Tetrahedron Asymmetry, 2001, 12, 2589-2595.
[http://dx.doi.org/10.1016/S0957-4166(01)00443-8]
[36]
Zhang, A.L.; Yu, Z.D.; Yang, L.W.; Yang, N.F. Synthesis of several polyethers derived from BINOL and their application in the asymmetric borane reduction of prochiral ketones. Tetrahedron Asymmetry, 2015, 26, 173-179.
[http://dx.doi.org/10.1016/j.tetasy.2014.12.012]
[37]
Ma, M.F.P.; Li, K.; Zhou, Z.; Tang, C.; Chan, A.S.C. New chiral phosphorus catalysts derived from (S)-binaphthol for highly enantioselective reduction of acetophenone by borane. Tetrahedron Asymmetry, 1999, 10, 3259-3261.
[http://dx.doi.org/10.1016/S0957-4166(99)00323-7]
[38]
Lu, S.F.; Du, D.M.; Xu, S.W.; Zhang, J. Facile synthesis of C2-symmetric tridentate bis (thiazoline) and bis (oxazoline) ligands and their application in the enantioselective Henry reaction. Tetrahedron Asymmetry, 2004, 15, 3433-3441.
[http://dx.doi.org/10.1016/j.tetasy.2004.09.011]
[39]
Boland, N.A.; Casey, M.; Hynes, S.J.; Matthews, J.W.; Smyth, M.P. A novel general route for the preparation of enantiopure imidazolines. J. Org. Chem., 2002, 67(11), 3919-3922.
[http://dx.doi.org/10.1021/jo0111006] [PMID: 12027715]
[40]
Chen, Z.C.; Hui, X.P.; Yin, C.; Huang, L.N.; Xu, X.X.; Cheng, S.Y. Highly enantioselective addition of phenylacetylene to aldehydes catalyzed by titanium(IV) complexes of β-hydroxy amides. J. Mol. Catal. Chem., 2007, 269(1-2), 179-182.
[http://dx.doi.org/10.1016/j.molcata.2007.01.025]
[41]
Huang, L.N.; Hui, X.P.; Chen, Z.C.; Yin, C.; Xu, P.F.; Yu, X.X.; Cheng, S.Y. Enantioselective addition of phenylacetylene to aldehydes catalyzed by silica-immobilized titanium (IV) complex of β-hydroxyamide. J. Mol. Catal. Chem., 2007, 275, 9-13.
[http://dx.doi.org/10.1016/j.molcata.2007.05.013]
[42]
Turgut, Y.; Azizoglu, M.; Erdogan, A.; Arslan, N.; Hosgoren, H. β-Hydroxyamide derivatives of salicylic acid as organocatalysts for enantioselective reductions of prochiral ketones. Tetrahedron Asymmetry, 2013, 24, 853-859.
[http://dx.doi.org/10.1016/j.tetasy.2013.05.016]
[43]
A Guide to Organophosphorus Chemistry; Quin, L.D., Ed.; John Wiley & Sons: New York, 2000.
[44]
Phosphorus Ligands in Asymmetric Catalysis-Synthesis and Applications; Bçrner, A., Ed.; Wiley-VCH: Weinheim, 2008.
[45]
Schirmer, M.L.; Adomeit, S.; Spannenberg, A.; Werner, T. Novel base-free catalytic wittig reaction for the synthesis of highly functionalized alkenes. Chemistry, 2016, 22(7), 2458-2465.
[http://dx.doi.org/10.1002/chem.201503744] [PMID: 26762186]
[46]
Appel, R. Tertiary phosphane/tetrachloromethane, a versatile reagent for chlorination, dehydration, and P-N linkage. Angew. Chem. Int. Ed. Engl., 1975, 14, 801-811.
[http://dx.doi.org/10.1002/anie.197508011]
[47]
Mitsunobu, O.; Yamada, M. Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts. Bull. Chem. Soc. Jpn., 1967, 40, 2380-2382.
[http://dx.doi.org/10.1246/bcsj.40.2380]
[48]
Schirmer, M.L.; Jopp, S.; Holz, J.; Spannenberg, A.; Wernera, T. Organocatalyzed reduction of tertiary phosphine oxides. Adv. Synth. Catal., 2016, 358, 26-29.
[http://dx.doi.org/10.1002/adsc.201500762]
[49]
Teichert, J.F.; Hartog, T.; Hanstein, M.; Smit, C.; Horst, B.; Hernandez-Olmos, V.; Feringa, B.L.; Minnaard, A.J. Organocatalytic reduction of carbon− carbon double bonds in racemization-sensitive compounds. ACS Catal., 2011, 1, 309-315.
[http://dx.doi.org/10.1021/cs100121m]
[50]
Riduan, S.N.; Zhang, Y.; Ying, J.Y. Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. Angew. Chem. Int. Ed. Engl., 2009, 48(18), 3322-3325.
[http://dx.doi.org/10.1002/anie.200806058] [PMID: 19338007]
[51]
Chong, C.C.; Kinjo, R. Hydrophosphination of CO2 and subsequent formate transfer in the 1,3,2-diazaphospholene-catalyzed N- formylation of amines. Angew. Chem. Int. Ed. Engl., 2015, 54(41), 12116-12120.
[http://dx.doi.org/10.1002/anie.201505244] [PMID: 26276547]
[52]
Guo, Y.; Li, W.; Yan, J.; Moosa, B.; Amad, M.; Werth, C.J.; Khashab, N.M. Fullerene-catalyzed reduction of azo derivatives in water under UV irradiation. Chem. Asian J., 2012, 7(12), 2842-2847.
[http://dx.doi.org/10.1002/asia.201200701] [PMID: 23015411]
[53]
Yoshioka, E.; Inoue, M.; Nagoshi, Y.; Kobayashi, A.; Mizobuchi, R.; Kawashima, A.; Kohtani, S.; Miyabe, H. Oxidative functionalization of cinnamaldehyde derivatives: Control of chemoselectivity by organophotocatalysis and dual organocatalysis. J. Org. Chem., 2018, 83(16), 8962-8970.
[http://dx.doi.org/10.1021/acs.joc.8b01099] [PMID: 29969904]
[54]
Zelenka, J.; Svobodová, E.; Tarábek, J.; Hoskovcová, I.; Boguschová, V.; Bailly, S.; Sikorski, M.; Roithová, J.; Cibulka, R. Combining flavin photocatalysis and organocatalysis: Metal-free aerobic oxidation of unactivated benzylic substrates. Org. Lett., 2019, 21(1), 114-119.
[http://dx.doi.org/10.1021/acs.orglett.8b03547] [PMID: 30582822]
[55]
Dai, P.F.; Qu, J.P.; Kang, Y.B. Organocatalyzed aerobic oxidation of aldehydes to acids. Org. Lett., 2019, 21(5), 1393-1396.
[http://dx.doi.org/10.1021/acs.orglett.9b00101] [PMID: 30763111]
[56]
Tebben, L.; Studer, A. Nitroxides: Applications in synthesis and in polymer chemistry. Angew. Chem. Int. Ed. Engl., 2011, 50(22), 5034-5068.
[http://dx.doi.org/10.1002/anie.201002547] [PMID: 21538729]
[57]
Toledo, H.; Pisarevsky, E.; Abramovich, A.; Szpilman, A.M. Organocatalytic oxidation of aldehydes to mixed anhydrides. Chem. Commun. (Camb.), 2013, 49(39), 4367-4369.
[http://dx.doi.org/10.1039/C2CC35220F] [PMID: 22968566]
[58]
Limnios, D.; Kokotos, C.G. Organocatalytic oxidation of organosilanes to silanols. ACS Catal., 2013, 3, 2239-2243.
[http://dx.doi.org/10.1021/cs400515w]
[59]
Finney, E.E.; Ogawa, K.A.; Boydston, A.J. Organocatalyzed anodic oxidation of aldehydes. J. Am. Chem. Soc., 2012, 134(30), 12374-12377.
[http://dx.doi.org/10.1021/ja304716r] [PMID: 22768916]
[60]
Chen, S.; Hossain, M.S.; Foss, F.W., Jr. Organocatalytic dakin oxidation by nucleophilic flavin catalysts. Org. Lett., 2012, 14(11), 2806-2809.
[http://dx.doi.org/10.1021/ol3010326] [PMID: 22587606]
[61]
Poudel, P.P.; Arimitsu, K.; Yamamoto, K. Self-assembled ion-pair organocatalysis-asymmetric Baeyer-Villiger oxidation mediated by flavinium-cinchona alkaloid dimer. Chem. Commun. (Camb.), 2016, 52(22), 4163-4166.
[http://dx.doi.org/10.1039/C6CC00663A] [PMID: 26902149]
[62]
Adam, W.; Rao, P.B.; Degen, H.G.; Levai, A.; Patonay, T.; Saha-Möller, C.R. Asymmetric Weitz-Scheffer epoxidation of isoflavones with hydroperoxides mediated by optically active phase-transfer catalysts. J. Org. Chem., 2002, 67(1), 259-264.
[http://dx.doi.org/10.1021/jo0162078] [PMID: 11777469]
[63]
Adam, W.; Rao, P.B.; Degen, H.G.; Saha-Möller, C.R. Asymmetric weitz-scheffer epoxidation of conformationally flexible and fixed enones with sterically demanding hydroperoxides mediated by optically active phase-transfer catalysts. Tetrahedron Asymmetry, 2001, 12, 121-125.
[http://dx.doi.org/10.1016/S0957-4166(00)00497-3]
[64]
Kawai, H.; Okusu, S.; Yuan, Z.; Tokunaga, E.; Yamano, A.; Shiro, M.; Shibata, N. Enantioselective synthesis of epoxides having a tetrasubstituted trifluoromethylated carbon center: Methylhydrazine-induced aerobic epoxidation of β,β-disubstituted enones. Angew. Chem. Int. Ed. Engl., 2013, 52(8), 2221-2225.
[http://dx.doi.org/10.1002/anie.201209355] [PMID: 23339133]
[65]
Bakó, P.; Bakó, T.; Mészáros, A.; Keglevich, G.; Szöllősy, Á.; Bodor, S.; Makó, A.; Tőke, L. Phase transfer catalysed asymmetric epoxidation of chalcones using chiral crown ethers derived from D-Glucose and D-Mannose. Synlett, 2004, 643-646.
[http://dx.doi.org/10.1055/s-2004-817751]
[66]
Makó, A.; Rapi, Z.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Hegedűs, L.; Bakó, P. Asymmetric epoxidation of substituted chalcones and chalcone analogues catalyzed by α-d-glucose-and α-d- mannose-based crown ethers. Tetrahedron Asymmetry, 2010, 21, 919-925.
[http://dx.doi.org/10.1016/j.tetasy.2010.05.009]
[67]
Salimon, J.; Salih, N.; Yousif, E. Triester derivatives of oleic acid: The effect of chemical structure on low temperature, thermo-oxidation and tribological properties. Ind. Crops Prod., 2012, 38, 107-114.
[http://dx.doi.org/10.1016/j.indcrop.2012.01.019]
[68]
Salih, N.; Salimon, J.; Abdullah, B.M.; Yousif, E. Thermo-oxidation, friction-reducing and physicochemical properties of ricinoleic acid based-diester biolubricants. Arab. J. Chem., 2014, 10, S2273-S2280.
[http://dx.doi.org/10.1016/j.arabjc.2013.08.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy