Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Computational Investigation on the MDM2-Idasanutlin Interaction Using the Potential of Mean Force Method

Author(s): Pundarikaksha Das and Venkata Satish Kumar Mattaparthi*

Volume 15, Issue 3, 2021

Published on: 16 July, 2021

Page: [262 - 270] Pages: 9

DOI: 10.2174/2212796815666210716151211

Price: $65

Abstract

Background: The Murine Double Minute 2 (MDM2) protein is a well-studied primary negative regulator of the tumor suppressor p53 molecule. Therefore, nowadays many research studies have focused on the inhibition of MDM2 with potent inhibitors. Idasanutlin (RG7388) is a well-studied small molecule, the antagonist of MDM2 with potential antineoplastic activity. Nevertheless, the highly significant information pertaining to the free energy profile, intermediates, and the association of receptor and ligand components in the MDM2-idasanutlin complex remains unclear.

Objective: To study the free energy profile of the MDM2-idasanutlin complex in terms of the Potential of Mean Force (PMF) method.

Methods: We have used the PMF method coupled with umbrella sampling simulations to generate the free energy profile for the association of N-Terminal Domain (NTD) of MDM2 and idasanutlin along with a specific reaction coordinate for identifying transition states, intermediates as well as the relative stabilities of the endpoints. We also have determined the binding characteristics and interacting residues at the interface of the MDM2-idasanutlin complex from the Binding Free Energy (BFE) and Per Residue Energy Decomposition (PRED) analyses.

Results: The PMF minima for the MDM2-idasanutlin complex was observed at a center of mass (CoM) distance of separation of 11 Å with dissociation energy of 17.5 kcal mol-1. As a function of the distance of separation of MDM2 from idasanutlin, we also studied the conformational dynamics as well as stability of the NTD of MDM2. We found that there is indeed a high binding affinity between MDM2 and idasanutlin (ΔGbinding = -3.19 kcal mol-1). We found that in MDM2, the residues MET54, VAL67, and LEU58 provide the highest energy input for the interaction between MDM2 and idasanutlin.

Conclusion: Our results in this study illustrate the significant structural and binding features of the MDM2-idasanutlin complex that may be useful in the development of potent inhibitors of MDM2.

Keywords: Potential of mean force, idasanutlin, binding free energy, per residue energy decomposition, MDM2, root mean square deviation.

« Previous
Graphical Abstract

[1]
El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet 1992; 1(1): 45-9.
[http://dx.doi.org/10.1038/ng0492-45] [PMID: 1301998]
[2]
El-Deiry WSJ. Regulation of p53 downstream genes. Semin Cancer Biol 1998; 8: 345-57.
[3]
Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 1994; 265(5170): 346-55.
[http://dx.doi.org/10.1126/science.8023157] [PMID: 8023157]
[4]
Clore GM, Omichinski JG, Sakaguchi K, et al. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 1994; 265(5170): 386-91.
[http://dx.doi.org/10.1126/science.8023159] [PMID: 8023159]
[5]
Jeffrey PD, Gorina S, Pavletich NP. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 1995; 267(5203): 1498-502.
[http://dx.doi.org/10.1126/science.7878469] [PMID: 7878469]
[6]
Prives C, Hall PA. The p53 pathway. J Pathol 1999; 187(1): 112-26.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3] [PMID: 10341712]
[7]
Oda K, Arakawa H, Tanaka T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000; 102(6): 849-62.
[http://dx.doi.org/10.1016/S0092-8674(00)00073-8] [PMID: 11030628]
[8]
Barlev NA, Liu L, Chehab NH, et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 2001; 8(6): 1243-54.
[http://dx.doi.org/10.1016/S1097-2765(01)00414-2] [PMID: 11779500]
[9]
Zheng H, You H, Zhou XZ, et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 2002; 419(6909): 849-53.
[http://dx.doi.org/10.1038/nature01116] [PMID: 12397361]
[10]
Zacchi P, Gostissa M, Uchida T, et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 2002; 419(6909): 853-7.
[http://dx.doi.org/10.1038/nature01120] [PMID: 12397362]
[11]
Samuels-Lev Y, O’Connor DJ, Bergamaschi D, et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 2001; 8(4): 781-94.
[http://dx.doi.org/10.1016/S1097-2765(01)00367-7] [PMID: 11684014]
[12]
Kato S, Han SY, Liu W, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 2003; 100(14): 8424-9.
[http://dx.doi.org/10.1073/pnas.1431692100] [PMID: 12826609]
[13]
Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993; 7(7A): 1126-32.
[http://dx.doi.org/10.1101/gad.7.7a.1126] [PMID: 8319905]
[14]
Juven-Gershon T, Oren M. Mdm2: The ups and downs. Mol Med 1999; 5(2): 71-83.
[http://dx.doi.org/10.1007/BF03402141] [PMID: 10203572]
[15]
Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999; 55(1): 96-107.
[http://dx.doi.org/10.1007/s000180050273] [PMID: 10065155]
[16]
Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem 1999; 274(51): 36031-4.
[http://dx.doi.org/10.1074/jbc.274.51.36031] [PMID: 10593882]
[17]
Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378(6553): 203-6.
[http://dx.doi.org/10.1038/378203a0] [PMID: 7477326]
[18]
Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378(6553): 206-8.
[http://dx.doi.org/10.1038/378206a0] [PMID: 7477327]
[19]
Lundgren K, Montes de Oca Luna R, McNeill YB, et al. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev 1997; 11(6): 714-25.
[http://dx.doi.org/10.1101/gad.11.6.714] [PMID: 9087426]
[20]
Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA 1998; 95(26): 15608-12.
[http://dx.doi.org/10.1073/pnas.95.26.15608] [PMID: 9861017]
[21]
Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358(6381): 80-3.
[http://dx.doi.org/10.1038/358080a0] [PMID: 1614537]
[22]
Oliner JD, Saiki AY, Caenepeel S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb Perspect Med 2016; 6(6): a026336.
[http://dx.doi.org/10.1101/cshperspect.a026336] [PMID: 27194168]
[23]
Wasylishen AR, Lozano G. Attenuating the p53 pathway in human cancers: Many means to the same end. Cold Spring Harb Perspect Med 2016; 6(8): a026211.
[http://dx.doi.org/10.1101/cshperspect.a026211] [PMID: 27329033]
[24]
Shvarts A, Steegenga WT, Riteco N, et al. MDMX: A novel p53-binding protein with some functional properties of MDM2. EMBO J 1996; 15(19): 5349-57.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00919.x] [PMID: 8895579]
[25]
Zhang B, Golding BT, Hardcastle IR. Small-molecule MDM2-p53 inhibitors: Recent advances. Future Med Chem 2015; 7(5): 631-45.
[http://dx.doi.org/10.4155/fmc.15.13] [PMID: 25921402]
[26]
Ding Q, Zhang Z, Liu JJ, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem 2013; 56(14): 5979-83.
[http://dx.doi.org/10.1021/jm400487c] [PMID: 23808545]
[27]
Tovar C, Graves B, Packman K, et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res 2013; 73(8): 2587-97.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2807] [PMID: 23400593]
[28]
Hansen MJ, Feringa FM, Kobauri P, Szymanski W, Medema RH, Feringa BL. Photoactivation of MDM2 inhibitors: Controlling protein-protein interaction with light. J Am Chem Soc 2018; 140(41): 13136-41.
[http://dx.doi.org/10.1021/jacs.8b04870] [PMID: 30284823]
[29]
Roux B. The calculation of the potential of mean force using computer simulations. Comput Phys Commun 1995; 91: 275-82.
[http://dx.doi.org/10.1016/0010-4655(95)00053-I]
[30]
Das P, Mattaparthi VSK. Computational investigation on the molecular interactions between MDM2 and its photoactivatable inhibitor. Biointerface Res Appl Chem 2019; 9: 4671-84.
[http://dx.doi.org/10.33263/BRIAC96.671684]
[31]
Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 1992; 13: 1011-21.
[http://dx.doi.org/10.1002/jcc.540130812]
[32]
Souaille M, Roux B. Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations. Comput Phys Commun 2001; 135: 40-57.
[http://dx.doi.org/10.1016/S0010-4655(00)00215-0]
[33]
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph 1996; 14(1): 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[34]
Woo HJ, Roux B. Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci USA 2005; 102(19): 6825-30.
[http://dx.doi.org/10.1073/pnas.0409005102] [PMID: 15867154]
[35]
Martins SA, Perez MA, Moreira IS, Sousa SF, Ramos MJ, Fernandes PA. Computational alanine scanning mutagenesis: MM-PBSAvsTI. J Chem Theory Comput 2013; 9(3): 1311-9.
[http://dx.doi.org/10.1021/ct4000372] [PMID: 26587593]
[36]
Li M, Cong Y, Li Y, et al. Insight into the binding mechanism of p53/pDIQ-MDMX/MDM2 with the interaction entropy method. Front Chem 2019; 7: 33.
[http://dx.doi.org/10.3389/fchem.2019.00033] [PMID: 30761293]
[37]
Simões IC, Costa IP, Coimbra JT, Ramos MJ, Fernandes PA. New parameters for higher accuracy in the computation of binding free energy differences upon alanine scanning mutagenesis on protein–protein interfaces. J Chem Inf Model 2017; 57(1): 60-72.
[http://dx.doi.org/10.1021/acs.jcim.6b00378] [PMID: 27936711]
[38]
Appiah-Kubi P, Soliman M. Hybrid receptor-bound/MM-GBSA-Per-residue energy-based pharmacophore modelling: Enhanced approach for identification of selective LTA4H inhibitors as potential anti-inflammatory drugs. Cell Biochem Biophys 2017; 75(1): 35-48.
[http://dx.doi.org/10.1007/s12013-016-0772-3] [PMID: 27914004]
[39]
Chaudhary N, Aparoy P. Deciphering the mechanism behind the varied binding activities of COXIBs through molecular dynamic simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies. J Biomol Struct Dyn 2017; 35(4): 868-82.
[http://dx.doi.org/10.1080/07391102.2016.1165736] [PMID: 26982261]
[40]
Case DA, Babin V, Berryman JT, et al. AMBER 14. University of California: San Francisco 2014.
[41]
Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate− DNA helices. J Am Chem Soc 1998; 120: 9401-9.
[http://dx.doi.org/10.1021/ja981844+]
[42]
Wang W, Kollman PA. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J Mol Biol 2000; 303(4): 567-82.
[http://dx.doi.org/10.1006/jmbi.2000.4057] [PMID: 11054292]
[43]
Wang J, Morin P, Wang W, Kollman PA. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 2001; 123(22): 5221-30.
[http://dx.doi.org/10.1021/ja003834q] [PMID: 11457384]
[44]
Sun H, Li Y, Tian S, Xu L, Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 2014; 16(31): 16719-29.
[http://dx.doi.org/10.1039/C4CP01388C] [PMID: 24999761]
[45]
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015; 10(5): 449-61.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[46]
Chen F, Liu H, Sun H, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys Chem Chem Phys 2016; 18(32): 22129-39.
[http://dx.doi.org/10.1039/C6CP03670H] [PMID: 27444142]
[47]
Wang C, Greene D, Xiao L, Qi R, Luo R. Recent developments and applications of the MMPBSA method. Front Mol Biosci 2018; 4: 87.
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[48]
Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA. py: An efficient program for end-state free energy calculations. J Chem Theory Comput 2012; 8(9): 3314-21.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[49]
Case DA. Normal mode analysis of protein dynamics. Curr Opin Struct Biol 1994; 4: 285-90.
[http://dx.doi.org/10.1016/S0959-440X(94)90321-2]
[50]
Karplus M, Kushick JN. Method for estimating the configurational entropy of macromolecules. Macromol 1981; 14: 325-32.
[http://dx.doi.org/10.1021/ma50003a019]
[51]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera- A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[52]
Das P, Mattaparthi VSK. Computational investigation on the p53-MDM2 interaction using the potential of mean force study. ACS Omega 2020; 5(15): 8449-62.
[http://dx.doi.org/10.1021/acsomega.9b03372] [PMID: 32337406]
[53]
Ngo ST, Vu KB, Bui LM, Vu VV. Effective estimation of ligand-binding affinity using biased sampling method. ACS Omega 2019; 4(2): 3887-93.
[http://dx.doi.org/10.1021/acsomega.8b03258] [PMID: 31459599]
[54]
Ngo ST, Hung HM, Nguyen MT. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work. J Comput Chem 2016; 37(31): 2734-42.
[http://dx.doi.org/10.1002/jcc.24502] [PMID: 27709639]
[55]
Tam NM, Vu KB, Vu VV, Ngo ST. Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme. Chem Phys Lett 2018; 701: 65-71.
[http://dx.doi.org/10.1016/j.cplett.2018.04.024]
[56]
Chen J, Wang J, Lai F, Wang W, Pang L, Zhu W. Dynamics revelation of conformational changes and binding modes of heat shock protein 90 induced by inhibitor associations. RSC Advances 2018; 8: 25456-67.
[http://dx.doi.org/10.1039/C8RA05042B]
[57]
Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc Chem Res 2000; 33(12): 889-97.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[58]
Lee MS, Olson MA. Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys J 2006; 90(3): 864-77.
[http://dx.doi.org/10.1529/biophysj.105.071589] [PMID: 16284269]
[59]
Zeller F, Zacharias M. Efficient calculation of relative binding free energies by umbrella sampling perturbation. J Comput Chem 2014; 35(31): 2256-62.
[http://dx.doi.org/10.1002/jcc.23744] [PMID: 25266275]
[60]
Brice AR, Dominy BN. Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions. J Comput Chem 2011; 32(7): 1431-40.
[http://dx.doi.org/10.1002/jcc.21727] [PMID: 21284003]
[61]
Swanson JM, Henchman RH, McCammon JA. Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 2004; 86(1 Pt 1): 67-74.
[http://dx.doi.org/10.1016/S0006-3495(04)74084-9] [PMID: 14695250]
[62]
Banavali NK, Roux B. Free energy landscape of A-DNA to B-DNA conversion in aqueous solution. J Am Chem Soc 2005; 127(18): 6866-76.
[http://dx.doi.org/10.1021/ja050482k] [PMID: 15869310]
[63]
Charlier L, Nespoulous C, Fiorucci S, Antonczak S, Golebiowski J. Binding free energy prediction in strongly hydrophobic biomolecular systems. Phys Chem Chem Phys 2007; 9(43): 5761-71.
[http://dx.doi.org/10.1039/b710186d] [PMID: 19462571]
[64]
Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, Ryde U. Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 2006; 49(22): 6596-606.
[http://dx.doi.org/10.1021/jm0608210] [PMID: 17064078]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy