Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Progression in Moyamoya Disease: Clinical Features, Neuroimaging Evaluation, and Treatment

Author(s): Xin Zhang *, Weiping Xiao*, Qing Zhang, Ding Xia, Peng Gao , Jiabin Su, Heng Yang , Xinjie Gao, Wei Ni, Yu Lei* and Yuxiang Gu*

Volume 20, Issue 2, 2022

Published on: 07 February, 2022

Page: [292 - 308] Pages: 17

DOI: 10.2174/1570159X19666210716114016

Price: $65

Abstract

Moyamoya disease (MMD) is a chronic cerebrovascular disease characterized by progressive stenosis of the arteries of the circle of Willis, with the formation of collateral vascular network at the base of the brain. Its clinical manifestations are complicated. Numerous studies have attempted to clarify the clinical features of MMD, including its epidemiology, genetic characteristics, and pathophysiology. With the development of neuroimaging techniques, various neuroimaging modalities with different advantages have deepened the understanding of MMD in terms of structural, functional, spatial, and temporal dimensions. At present, the main treatment for MMD focuses on neurological protection, cerebral blood flow reconstruction, and neurological rehabilitation, such as pharmacological treatment, surgical revascularization, and cognitive rehabilitation. In this review, we discuss recent progress in understanding the clinical features, in the neuroimaging evaluation and treatment of MMD.

Keywords: Epidemiology, genetic characteristics, Moyamoya disease, neuroimaging, pathogenesis, progression, treatment.

Graphical Abstract

[1]
Scott, R.M.; Smith, E.R. Moyamoya disease and moyamoya syndrome. N. Engl. J. Med., 2009, 360(12), 1226-1237.
[http://dx.doi.org/10.1056/NEJMra0804622] [PMID: 19297575]
[2]
Birkeland, P.; Tharmabalan, V.; Lauritsen, J.; Ganesan, V.; Bjarkam, C.R.; von Weitzel-Mudersbach, P. Moyamoya disease in a European setting: A Danish population-based study. Eur. J. Neurol., 2020, 27(12), 2446-2452.
[http://dx.doi.org/10.1111/ene.14439] [PMID: 32668488]
[3]
Miyakoshi, A.; Funaki, T.; Fushimi, Y.; Nakae, T.; Okawa, M.; Kikuchi, T.; Kataoka, H.; Yoshida, K.; Mineharu, Y.; Matsuhashi, M.; Nakatani, E.; Miyamoto, S. Cortical distribution of fragile periventricular anastomotic collateral vessels in moyamoya disease: An exploratory cross-sectional study of japanese patients with moyamoya disease. AJNR Am. J. Neuroradiol., 2020, 41(12), 2243-2249.
[http://dx.doi.org/10.3174/ajnr.A6861] [PMID: 33154076]
[4]
Kwon, H.S.; Kim, Y.S.; Lee, J.M.; Koh, S.H.; Kim, H.Y.; Kim, C.; Lee, S.H.; Jung, K.H.; Kim, Y.D.; Kwon, H.M.; Kim, B.J.; Kim, J.M.; Kim, B.J.; Heo, S.H.; Chang, D.I.; Investigators, S.K.Y. Causes, risk factors, and clinical outcomes of stroke in Korean young adults: Systemic lupus erythematosus is associated with unfavorable outcomes. J. Clin. Neurol., 2020, 16(4), 605-611.
[http://dx.doi.org/10.3988/jcn.2020.16.4.605] [PMID: 33029967]
[5]
Ge, P.; Ye, X.; Zhang, Q.; Liu, X.; Deng, X.; Zhao, M.; Wang, J.; Wang, R.; Zhang, Y.; Zhang, D.; Zhao, J. Clinical features, surgical treatment, and outcome of intracranial aneurysms associated with moyamoya disease. J. Clin. Neurosci., 2020, 80, 274-279.
[http://dx.doi.org/10.1016/j.jocn.2020.09.006] [PMID: 33099360]
[6]
Zhu, B.; Liu, X.; Zhen, X.; Li, X.; Wu, M.; Zhang, Y.; Zhao, Z.; Zhang, D.; Zhao, J. RNF213 gene polymorphism rs9916351 and rs8074015 significantly associated with moyamoya disease in Chinese population. Ann. Transl. Med., 2020, 8(14), 851.
[http://dx.doi.org/10.21037/atm-20-1040] [PMID: 32793695]
[7]
Kuribara, T.; Mikami, T.; Komatsu, K.; Kimura, Y.; Kim, S.; Miyata, K.; Akiyama, Y.; Enatsu, R.; Hirano, T.; Mikuni, N. Preoperatively estimated graft flow rate contributes to the improvement of hemodynamics in revascularization for Moyamoya disease. J. Stroke Cerebrovasc. Dis., 2021, 30(1)105450
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105450] [PMID: 33171424]
[8]
Fan, H.; Su, P.; Huang, J.; Liu, P.; Lu, H. Multi-band MR fingerprinting (MRF) ASL imaging using artificial-neural-network trained with high-fidelity experimental data. Magn. Reson. Med., 2021, 85(4), 1974-1985.
[http://dx.doi.org/10.1002/mrm.28560] [PMID: 33107100]
[9]
Eisenmenger, L.B.; Rivera-Rivera, L.A.; Johnson, K.M.; Drolet, B.A. Utilisation of advanced MRI techniques to understand neurovascular complications of PHACE syndrome: A case of arterial stenosis and dissection. BMJ Case Rep., 2020, 13(9)e235992
[http://dx.doi.org/10.1136/bcr-2020-235992] [PMID: 32928832]
[10]
Qiu, S.; Gao, J.; Liu, J.; Wang, C.; Li, A.; Wang, J. Study on Novel Nanoparticle Slow-Release Drugs for Moyamoya Disease. J. Nanosci. Nanotechnol., 2021, 21(2), 1008-1017.
[http://dx.doi.org/10.1166/jnn.2021.18682] [PMID: 33183437]
[11]
Raper, D.M.S.; Rutledge, W.C.; Winkler, E.A.; Meisel, K.; Callen, A.L.; Cooke, D.L.; Abla, A.A. Controversies and Advances in Adult Intracranial Bypass Surgery in 2020. Oper. Neurosurg. (Hagerstown), 2020, 20(1), 1-7.
[http://dx.doi.org/10.1093/ons/opaa276] [PMID: 32895706]
[12]
Krisht, K.; Orenday-Barraza, J.M.; Saad, H.; Krisht, A.F. Continuous interrupted double throw suturing method: a novel suturing technique for extracranial-intracranial Bypass. World Neurosurg., 2021, 146, 113-117.
[http://dx.doi.org/10.1016/j.wneu.2020.10.167] [PMID: 33171321]
[13]
Wakai, K.; Tamakoshi, A.; Ikezaki, K.; Fukui, M.; Kawamura, T.; Aoki, R.; Kojima, M.; Lin, Y.; Ohno, Y. Epidemiological features of moyamoya disease in Japan: Findings from a nationwide survey. Clin. Neurol. Neurosurg., 1997, 99(Suppl. 2), S1-S5.
[http://dx.doi.org/10.1016/S0303-8467(97)00031-0] [PMID: 9409395]
[14]
Kuriyama, S.; Kusaka, Y.; Fujimura, M.; Wakai, K.; Tamakoshi, A.; Hashimoto, S.; Tsuji, I.; Inaba, Y.; Yoshimoto, T. Prevalence and clinicoepidemiological features of moyamoya disease in Japan: Findings from a nationwide epidemiological survey. Stroke, 2008, 39(1), 42-47.
[http://dx.doi.org/10.1161/STROKEAHA.107.490714] [PMID: 18048855]
[15]
Hayashi, K.; Horie, N.; Suyama, K.; Nagata, I. An epidemiological survey of moyamoya disease, unilateral moyamoya disease and quasi-moyamoya disease in Japan. Clin. Neurol. Neurosurg., 2013, 115(7), 930-933.
[http://dx.doi.org/10.1016/j.clineuro.2012.09.020] [PMID: 23041378]
[16]
Ahn, I.M.; Park, D.H.; Hann, H.J.; Kim, K.H.; Kim, H.J.; Ahn, H.S. Incidence, prevalence, and survival of moyamoya disease in Korea: A nationwide, population-based study. Stroke, 2014, 45(4), 1090-1095.
[http://dx.doi.org/10.1161/STROKEAHA.113.004273] [PMID: 24595588]
[17]
Miao, W.; Zhao, P.L.; Zhang, Y.S.; Liu, H.Y.; Chang, Y.; Ma, J.; Huang, Q.J.; Lou, Z.X. Epidemiological and clinical features of Moyamoya disease in Nanjing, China. Clin. Neurol. Neurosurg., 2010, 112(3), 199-203.
[http://dx.doi.org/10.1016/j.clineuro.2009.11.009] [PMID: 20004511]
[18]
Chen, P.C.; Yang, S.H.; Chien, K.L.; Tsai, I.J.; Kuo, M.F. Epidemiology of moyamoya disease in Taiwan: A nationwide population-based study. Stroke, 2014, 45(5), 1258-1263.
[http://dx.doi.org/10.1161/STROKEAHA.113.004160] [PMID: 24676775]
[19]
Bao, X.Y.; Wang, Q.N.; Zhang, Y.; Zhang, Q.; Li, D.S.; Yang, W.Z.; Zhang, Z.S.; Zong, R.; Han, C.; Duan, L. Epidemiology of Moyamoya Disease in China: Single-Center, Population-Based Study. World Neurosurg., 2019, 122, e917-e923.
[http://dx.doi.org/10.1016/j.wneu.2018.10.175] [PMID: 30404059]
[20]
Doherty, R.J.; Caird, J.; Crimmins, D.; Kelly, P.; Murphy, S.; McGuigan, C.; Tubridy, N.; King, M.D.; Lynch, B.; Webb, D.; O’Neill, D.; McCabe, D.J.H.; Boers, P.; O’Regan, M.; Moroney, J.; Williams, D.J.; Cronin, S.; Javadpour, M. Moyamoya disease and moyamoya syndrome in Ireland: Patient demographics, mode of presentation and outcomes of EC-IC bypass surgery. Ir. J. Med. Sci., 2021, 190(1), 335-344.
[http://dx.doi.org/10.1007/s11845-020-02280-w] [PMID: 32562218]
[21]
Graham, J.F.; Matoba, A. A survey of moyamoya disease in Hawaii. Clin. Neurol. Neurosurg., 1997, 99(Suppl. 2), S31-S35.
[http://dx.doi.org/10.1016/S0303-8467(97)00037-1] [PMID: 9409401]
[22]
Kleinloog, R.; Regli, L.; Rinkel, G.J.; Klijn, C.J. Regional differences in incidence and patient characteristics of moyamoya disease: A systematic review. J. Neurol. Neurosurg. Psychiatry, 2012, 83(5), 531-536.
[http://dx.doi.org/10.1136/jnnp-2011-301387] [PMID: 22378916]
[23]
Uchino, K.; Johnston, S.C.; Becker, K.J.; Tirschwell, D.L. Moyamoya disease in Washington State and California. Neurology, 2005, 65(6), 956-958.
[http://dx.doi.org/10.1212/01.wnl.0000176066.33797.82] [PMID: 16186547]
[24]
Wetjen, N.M.; Garell, P.C.; Stence, N.V.; Loftus, C.M. Moyamoya disease in the midwestern United States. Neurosurg. Focus, 1998, 5(5)e1
[http://dx.doi.org/10.3171/foc.1998.5.5.4] [PMID: 17112204]
[25]
Kainth, D.; Chaudhry, S.A.; Kainth, H.; Suri, F.K.; Qureshi, A.I. Epidemiological and clinical features of moyamoya disease in the USA. Neuroepidemiology, 2013, 40(4), 282-287.
[http://dx.doi.org/10.1159/000345957] [PMID: 23445954]
[26]
Acker, G.; Goerdes, S.; Schneider, U.C.; Schmiedek, P.; Czabanka, M.; Vajkoczy, P. Distinct clinical and radiographic characteristics of moyamoya disease amongst European Caucasians. Eur. J. Neurol., 2015, 22(6), 1012-1017.
[http://dx.doi.org/10.1111/ene.12702] [PMID: 25847099]
[27]
Kraemer, M.; Schwitalla, J.C.; Diesner, F.; Aktas, O.; Hartung, H.P.; Berlit, P. Clinical presentation of Moyamoya angiopathy in Europeans: Experiences from Germany with 200 patients. J. Neurol., 2019, 266(6), 1421-1428.
[http://dx.doi.org/10.1007/s00415-019-09277-1] [PMID: 30868219]
[28]
Savolainen, M.; Mustanoja, S.; Pekkola, J.; Tyni, T.; Uusitalo, A.M.; Ruotsalainen, S.; Poutiainen, E.; Hernesniemi, J.; Kivipelto, L.; Tatlisumak, T. Moyamoya angiopathy: Long-term follow-up study in a Finnish population. J. Neurol., 2019, 266(3), 574-581.
[http://dx.doi.org/10.1007/s00415-018-9154-7] [PMID: 30560456]
[29]
Kraemer, M.; Heienbrok, W.; Berlit, P. Moyamoya disease in Europeans. Stroke, 2008, 39(12), 3193-3200.
[http://dx.doi.org/10.1161/STROKEAHA.107.513408] [PMID: 18787200]
[30]
Kuroda, S.; Houkin, K. Moyamoya disease: Current concepts and future perspectives. Lancet Neurol., 2008, 7(11), 1056-1066.
[http://dx.doi.org/10.1016/S1474-4422(08)70240-0] [PMID: 18940695]
[31]
Byworth, M.T.; Moffatt, J.I.; Perera, K.S. Novel vascular anastomoses and moyamoya disease in a woman with down syndrome. Can. J. Neurol. Sci., 2021, 48(3), 417-418.
[http://dx.doi.org/10.1017/cjn.2020.195] [PMID: 32892767]
[32]
Santoro, C.; Palladino, F.; Bernardo, P.; Cinalli, G.; Mirone, G.; Giugliano, T.; Piluso, G.; Perrotta, S. Report on a child with neurofibromatosis type 2 and unilateral moyamoya: Further evidence of cerebral vasculopathy in NF2. Neurol. Sci., 2019, 40(7), 1475-1476.
[http://dx.doi.org/10.1007/s10072-019-3728-8] [PMID: 30666475]
[33]
Bower, R.S.; Mallory, G.W.; Nwojo, M.; Kudva, Y.C.; Flemming, K.D.; Meyer, F.B. Moyamoya disease in a primarily white, midwestern US population: Increased prevalence of autoimmune disease. Stroke, 2013, 44(7), 1997-1999.
[http://dx.doi.org/10.1161/STROKEAHA.111.000307] [PMID: 23652271]
[34]
Ikeda, H.; Sasaki, T.; Yoshimoto, T.; Fukui, M.; Arinami, T. Mapping of a familial moyamoya disease gene to chromosome 3p24.2-p26. Am. J. Hum. Genet., 1999, 64(2), 533-537.
[http://dx.doi.org/10.1086/302243] [PMID: 9973290]
[35]
Zafeiriou, D.I.; Ikeda, H.; Anastasiou, A.; Vargiami, E.; Vougiouklis, N.; Katzos, G.; Gombakis, N.; Gioula, G.; Matsushima, Y.; Kirkham, F.J. Familial moyamoya disease in a Greek family. Brain Dev., 2003, 25(4), 288-290.
[http://dx.doi.org/10.1016/s0387-7604(02)00224-3] [PMID: 12767463]
[36]
Inoue, T.K.; Ikezaki, K.; Sasazuki, T.; Matsushima, T.; Fukui, M. Linkage analysis of moyamoya disease on chromosome 6. J. Child Neurol., 2000, 15(3), 179-182.
[http://dx.doi.org/10.1177/088307380001500307] [PMID: 10757474]
[37]
Sakurai, K.; Horiuchi, Y.; Ikeda, H.; Ikezaki, K.; Yoshimoto, T.; Fukui, M.; Arinami, T. A novel susceptibility locus for moyamoya disease on chromosome 8q23. J. Hum. Genet., 2004, 49(5), 278-281.
[http://dx.doi.org/10.1007/s10038-004-0143-6] [PMID: 15362573]
[38]
Yamauchi, T.; Tada, M.; Houkin, K.; Tanaka, T.; Nakamura, Y.; Kuroda, S.; Abe, H.; Inoue, T.; Ikezaki, K.; Matsushima, T.; Fukui, M. Linkage of familial moyamoya disease (spontaneous occlusion of the circle of Willis) to chromosome 17q25. Stroke, 2000, 31(4), 930-935.
[http://dx.doi.org/10.1161/01.STR.31.4.930] [PMID: 10754001]
[39]
Liu, W.; Hashikata, H.; Inoue, K.; Matsuura, N.; Mineharu, Y.; Kobayashi, H.; Kikuta, K.; Takagi, Y.; Hitomi, T.; Krischek, B.; Zou, L.P.; Fang, F.; Herzig, R.; Kim, J.E.; Kang, H.S.; Oh, C.W.; Tregouet, D.A.; Hashimoto, N.; Koizumi, A. A rare asian founder polymorphism of raptor may explain the high prevalence of moyamoya disease among east asians and its low prevalence among caucasians. Environ. Health Prev. Med., 2010, 15(2), 94-104.
[http://dx.doi.org/10.1007/s12199-009-0116-7] [PMID: 19921495]
[40]
Inoue, T.K.; Ikezaki, K.; Sasazuki, T.; Matsushima, T.; Fukui, M. Analysis of class II genes of human leukocyte antigen in patients with moyamoya disease. Clin. Neurol. Neurosurg., 1997, 99(Suppl. 2), S234-S237.
[http://dx.doi.org/10.1016/S0303-8467(97)00051-6] [PMID: 9409445]
[41]
Aoyagi, M.; Ogami, K.; Matsushima, Y.; Shikata, M.; Yamamoto, M.; Yamamoto, K. Human leukocyte antigen in patients with moyamoya disease. Stroke, 1995, 26(3), 415-417.
[http://dx.doi.org/10.1161/01.STR.26.3.415] [PMID: 7886716]
[42]
Hong, S.H.; Wang, K.C.; Kim, S.K.; Cho, B.K.; Park, M.H. Association of HLA-DR and -DQ genes with familial moyamoya disease in koreans. J. Korean Neurosurg. Soc., 2009, 46(6), 558-563.
[http://dx.doi.org/10.3340/jkns.2009.46.6.558] [PMID: 20062572]
[43]
Han, H.; Pyo, C.W.; Yoo, D.S.; Huh, P.W.; Cho, K.S.; Kim, D.S. Associations of Moyamoya patients with HLA class I and class II alleles in the Korean population. J. Korean Med. Sci., 2003, 18(6), 876-880.
[http://dx.doi.org/10.3346/jkms.2003.18.6.876] [PMID: 14676447]
[44]
Kraemer, M.; Horn, P.A.; Roder, C.; Khan, N.; Diehl, R.R.; Berlit, P.; Heinemann, F.M. Analysis of human leucocyte antigen genes in Caucasian patients with idiopathic moyamoya angiopathy. Acta Neurochir. (Wien), 2012, 154(3), 445-454.
[http://dx.doi.org/10.1007/s00701-011-1261-5] [PMID: 22234791]
[45]
Kang, H.S.; Kim, S.K.; Cho, B.K.; Kim, Y.Y.; Hwang, Y.S.; Wang, K.C. Single nucleotide polymorphisms of tissue inhibitor of metalloproteinase genes in familial moyamoya disease. Neurosurgery, 2006, 58(6), 1074-1080.
[http://dx.doi.org/10.1227/01.NEU.0000215854.66011.4F] [PMID: 16723886]
[46]
Guo, D.C.; Papke, C.L.; Tran-Fadulu, V.; Regalado, E.S.; Avidan, N.; Johnson, R.J.; Kim, D.H.; Pannu, H.; Willing, M.C.; Sparks, E.; Pyeritz, R.E.; Singh, M.N.; Dalman, R.L.; Grotta, J.C.; Marian, A.J.; Boerwinkle, E.A.; Frazier, L.Q.; LeMaire, S.A.; Coselli, J.S.; Estrera, A.L.; Safi, H.J.; Veeraraghavan, S.; Muzny, D.M.; Wheeler, D.A.; Willerson, J.T.; Yu, R.K.; Shete, S.S.; Scherer, S.E.; Raman, C.S.; Buja, L.M.; Milewicz, D.M. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet., 2009, 84(5), 617-627.
[http://dx.doi.org/10.1016/j.ajhg.2009.04.007] [PMID: 19409525]
[47]
Morito, D.; Nishikawa, K.; Hoseki, J.; Kitamura, A.; Kotani, Y.; Kiso, K.; Kinjo, M.; Fujiyoshi, Y.; Nagata, K. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state. Sci. Rep., 2014, 4, 4442.
[http://dx.doi.org/10.1038/srep04442] [PMID: 24658080]
[48]
Lin, J.; Sheng, W. RNF213 Variant diversity predisposes distinct populations to dissimilar cerebrovascular diseases. BioMed Res. Int., 2018, 20186359174
[http://dx.doi.org/10.1155/2018/6359174] [PMID: 30671466]
[49]
Kim, J.; Park, Y.S.; Woo, M.H.; An, H.J.; Kim, J.O.; Park, H.S.; Ryu, C.S.; Kim, O.J.; Kim, N.K. Distribution of intracranial major artery stenosis/occlusion according to RNF213 Polymorphisms. Int. J. Mol. Sci., 2020, 21(6), 1956.
[http://dx.doi.org/10.3390/ijms21061956] [PMID: 32182997]
[50]
Lee, M.J.; Fallen, S.; Zhou, Y.; Baxter, D.; Scherler, K.; Kuo, M.F.; Wang, K. The Impact of Moyamoya Disease and RNF213 mutations on the spectrum of plasma protein and microrna. J. Clin. Med., 2019, 8(10), 1648.
[http://dx.doi.org/10.3390/jcm8101648] [PMID: 31658621]
[51]
Kamada, F.; Aoki, Y.; Narisawa, A.; Abe, Y.; Komatsuzaki, S.; Kikuchi, A.; Kanno, J.; Niihori, T.; Ono, M.; Ishii, N.; Owada, Y.; Fujimura, M.; Mashimo, Y.; Suzuki, Y.; Hata, A.; Tsuchiya, S.; Tominaga, T.; Matsubara, Y.; Kure, S. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J. Hum. Genet., 2011, 56(1), 34-40.
[http://dx.doi.org/10.1038/jhg.2010.132] [PMID: 21048783]
[52]
Wang, Y.; Zhang, Z.; Wei, L.; Zhang, Q.; Zou, Z.; Yang, L.; Li, D.; Shang, M.; Han, C.; Mambiya, M.; Bao, X.; Li, Q.; Hao, F.; Zhang, K.; Wang, H.; Liu, S.; Liu, M.; Zeng, F.; Nie, F.; Wang, K.; Liu, W.; Duan, L. Predictive role of heterozygous p.R4810K of RNF213 in the phenotype of Chinese moyamoya disease. Neurology, 2020, 94(7), e678-e686.
[http://dx.doi.org/10.1212/WNL.0000000000008901] [PMID: 31949090]
[53]
Liu, W.; Morito, D.; Takashima, S.; Mineharu, Y.; Kobayashi, H.; Hitomi, T.; Hashikata, H.; Matsuura, N.; Yamazaki, S.; Toyoda, A.; Kikuta, K.; Takagi, Y.; Harada, K.H.; Fujiyama, A.; Herzig, R.; Krischek, B.; Zou, L.; Kim, J.E.; Kitakaze, M.; Miyamoto, S.; Nagata, K.; Hashimoto, N.; Koizumi, A. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One, 2011, 6(7)e22542
[http://dx.doi.org/10.1371/journal.pone.0022542] [PMID: 21799892]
[54]
Wu, Z.; Jiang, H.; Zhang, L.; Xu, X.; Zhang, X.; Kang, Z.; Song, D.; Zhang, J.; Guan, M.; Gu, Y. Molecular analysis of RNF213 gene for moyamoya disease in the Chinese Han population. PLoS One, 2012, 7(10)e48179
[http://dx.doi.org/10.1371/journal.pone.0048179] [PMID: 23110205]
[55]
Masuda, J.; Ogata, J.; Yutani, C. Smooth muscle cell proliferation and localization of macrophages and T cells in the occlusive intracranial major arteries in moyamoya disease. Stroke, 1993, 24(12), 1960-1967.
[http://dx.doi.org/10.1161/01.STR.24.12.1960] [PMID: 7902623]
[56]
Mikami, T.; Suzuki, H.; Komatsu, K.; Mikuni, N. Influence of inflammatory disease on the pathophysiology of moyamoya disease and quasi-moyamoya disease. Neurol. Med. Chir. (Tokyo), 2019, 59(10), 361-370.
[http://dx.doi.org/10.2176/nmc.ra.2019-0059] [PMID: 31281171]
[57]
Huang, X.; Chen, M.; Wu, H.; Jiao, Y.; Zhou, C. Macrophage Polarization Mediated by Chitooligosaccharide (COS) and Associated Osteogenic and Angiogenic Activities. ACS Biomater. Sci. Eng., 2020, 6(3), 1614-1629.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01550] [PMID: 33455368]
[58]
Zhang, J.; Zhao, W.S.; Xu, L.; Wang, X.; Li, X.L.; Yang, X.C. Endothelium-specific endothelin-1 expression promotes pro-inflammatory macrophage activation by regulating miR-33/NR4A axis. Exp. Cell Res., 2021, 399(1)112443
[http://dx.doi.org/10.1016/j.yexcr.2020.112443] [PMID: 33340492]
[59]
Han, L.; Zhang, Y.; Zhang, M.; Guo, L.; Wang, J.; Zeng, F.; Xu, D.; Yin, Z.; Xu, Y.; Wang, D.; Zhou, H. Interleukin-1β-Induced Senescence Promotes Osteoblastic Transition of Vascular Smooth Muscle Cells. Kidney Blood Press. Res., 2020, 45(2), 314-330.
[http://dx.doi.org/10.1159/000504298] [PMID: 32126555]
[60]
Sharma, N.; Hans, C.P. Interleukin 12p40 Deficiency promotes abdominal aortic aneurysm by activating CCN2/MMP2 Pathways. J. Am. Heart Assoc., 2021, 10(3)e017633
[http://dx.doi.org/10.1161/JAHA.120.017633] [PMID: 33470127]
[61]
Icli, B.; Li, H.; Pérez-Cremades, D.; Wu, W.; Ozdemir, D.; Haemmig, S.; Guimaraes, R.B.; Manica, A.; Marchini, J.F.; Orgill, D.P.; Feinberg, M.W. MiR-4674 regulates angiogenesis in tissue injury by targeting p38K signaling in endothelial cells. Am. J. Physiol. Cell Physiol., 2020, 318(3), C524-C535.
[http://dx.doi.org/10.1152/ajpcell.00542.2019] [PMID: 31913696]
[62]
Abarca-Buis, R.F.; Mandujano-Tinoco, E.A.; Cabrera-Wrooman, A.; Krötzsch, E. The complexity of TGFβ/activin signaling in regeneration. J. Cell Commun. Signal., 2021, 15(1), 7-23.
[http://dx.doi.org/10.1007/s12079-021-00605-7] [PMID: 33481173]
[63]
Weng, L.; Cao, X.; Han, L.; Zhao, H.; Qiu, S.; Yan, Y.; Wang, X.; Chen, X.; Zheng, W.; Xu, X.; Gao, Y.; Chen, Y.; Li, J.; Yang, Y.; Xu, Y. Association of increased Treg and Th17 with pathogenesis of moyamoya disease. Sci. Rep., 2017, 7(1), 3071.
[http://dx.doi.org/10.1038/s41598-017-03278-8] [PMID: 28596558]
[64]
Nabel, E.G.; Shum, L.; Pompili, V.J.; Yang, Z.Y.; San, H.; Shu, H.B.; Liptay, S.; Gold, L.; Gordon, D.; Derynck, R. Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia. Proc. Natl. Acad. Sci. USA, 1993, 90(22), 10759-10763.
[http://dx.doi.org/10.1073/pnas.90.22.10759] [PMID: 8248168]
[65]
Han, W.; Jin, F.; Zhang, H.; Yang, M.; Cui, C.; Wang, C.; Jiang, P. Association of brain-gut peptides with inflammatory cytokines in moyamoya disease. Mediators Inflamm., 2020, 20205847478
[http://dx.doi.org/10.1155/2020/5847478] [PMID: 32410857]
[66]
Sarkar, P.; Thirumurugan, K. New insights into TNFα/PTP1B and PPARγ pathway through RNF213- a link between inflammation, obesity, insulin resistance, and Moyamoya disease. Gene, 2021, 771145340
[http://dx.doi.org/10.1016/j.gene.2020.145340] [PMID: 33333224]
[67]
Chen, J.B.; Liu, Y.; Zhou, L.X.; Sun, H.; He, M.; You, C. Prevalence of autoimmune disease in moyamoya disease patients in Western Chinese population. J. Neurol. Sci., 2015, 351(1-2), 184-186.
[http://dx.doi.org/10.1016/j.jns.2015.02.037] [PMID: 25743224]
[68]
Hayashi, T.; Akioka, N.; Kashiwazaki, D.; Kuwayama, N.; Kuroda, S. Ischemic stroke in pediatric moyamoya disease associated with immune thrombocytopenia--a case report. Childs Nerv. Syst., 2015, 31(6), 991-996.
[http://dx.doi.org/10.1007/s00381-015-2619-4] [PMID: 25663502]
[69]
Yanagawa, Y.; Sugiura, T.; Suzuki, K.; Okada, Y. Moyamoya disease associated with positive findings for rheumatoid factor and myeloperoxidase-anti-neutrophil cytoplasmic antibody. West Indian Med. J., 2007, 56(3), 282-284.
[http://dx.doi.org/10.1590/S0043-31442007000300019] [PMID: 18072414]
[70]
Sigdel, T.K.; Shoemaker, L.D.; Chen, R.; Li, L.; Butte, A.J.; Sarwal, M.M.; Steinberg, G.K. Immune response profiling identifies autoantibodies specific to Moyamoya patients. Orphanet J. Rare Dis., 2013, 8, 45.
[http://dx.doi.org/10.1186/1750-1172-8-45] [PMID: 23518061]
[71]
Lin, R.; Xie, Z.; Zhang, J.; Xu, H.; Su, H.; Tan, X.; Tian, D.; Su, M. Clinical and immunopathological features of Moyamoya disease. PLoS One, 2012, 7(4)e36386
[http://dx.doi.org/10.1371/journal.pone.0036386] [PMID: 22558457]
[72]
Czabanka, M.; Petrilli, L.L.; Elvers-Hornung, S.; Bieback, K.; Albert Imhof, B.; Vajkoczy, P.; Vinci, M. Junctional adhesion molecule-c mediates the recruitment of embryonic-endothelial progenitor cells to the perivascular niche during tumor angiogenesis. Int. J. Mol. Sci., 2020, 21(4), 1209.
[http://dx.doi.org/10.3390/ijms21041209] [PMID: 32054130]
[73]
Crosby, C.O.; Hillsley, A.; Kumar, S.; Stern, B.; Parekh, S.H.; Rosales, A.; Zoldan, J. Phototunable interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors. Acta Biomater., 2021, 122, 133-144.
[http://dx.doi.org/10.1016/j.actbio.2020.12.041] [PMID: 33359297]
[74]
Alwjwaj, M.; Kadir, R.R.A.; Bayraktutan, U. The secretome of endothelial progenitor cells: A potential therapeutic strategy for ischemic stroke. Neural Regen. Res., 2021, 16(8), 1483-1489.
[http://dx.doi.org/10.4103/1673-5374.303012] [PMID: 33433461]
[75]
Nouri Barkestani, M.; Shamdani, S.; Afshar Bakshloo, M.; Arouche, N.; Bambai, B.; Uzan, G.; Naserian, S. TNFα priming through its interaction with TNFR2 enhances endothelial progenitor cell immunosuppressive effect: New hope for their widespread clinical application. Cell Commun. Signal., 2021, 19(1), 1.
[http://dx.doi.org/10.1186/s12964-020-00683-x] [PMID: 33397378]
[76]
Khakoo, A.Y.; Finkel, T. Endothelial progenitor cells. Annu. Rev. Med., 2005, 56, 79-101.
[http://dx.doi.org/10.1146/annurev.med.56.090203.104149] [PMID: 15660503]
[77]
Rafat, N.; Beck, G.Ch.; Peña-Tapia, P.G.; Schmiedek, P.; Vajkoczy, P. Increased levels of circulating endothelial progenitor cells in patients with Moyamoya disease. Stroke, 2009, 40(2), 432-438.
[http://dx.doi.org/10.1161/STROKEAHA.108.529420] [PMID: 19095988]
[78]
Yoshihara, T.; Taguchi, A.; Matsuyama, T.; Shimizu, Y.; Kikuchi-Taura, A.; Soma, T.; Stern, D.M.; Yoshikawa, H.; Kasahara, Y.; Moriwaki, H.; Nagatsuka, K.; Naritomi, H. Increase in circulating CD34-positive cells in patients with angiographic evidence of moyamoya-like vessels. J. Cereb. Blood Flow Metab., 2008, 28(6), 1086-1089.
[http://dx.doi.org/10.1038/jcbfm.2008.1] [PMID: 18231114]
[79]
Wang, Q.N.; Zou, Z.X.; Wang, X.P.; Zhang, Q.; Zhao, Y.Q.; Duan, L.; Bao, X.Y. Endothelial progenitor cells induce angiogenesis: a potential mechanism underlying neovascularization in Encephaloduroarteriosynangiosis. Transl. Stroke Res., 2021, 12(2), 357-365.
[http://dx.doi.org/10.1007/s12975-020-00834-9] [PMID: 32632776]
[80]
Tinelli, F.; Nava, S.; Arioli, F.; Bedini, G.; Scelzo, E.; Lisini, D.; Faragò, G.; Gioppo, A.; Ciceri, E.F.; Acerbi, F.; Ferroli, P.; Vetrano, I.G.; Esposito, S.; Saletti, V.; Pantaleoni, C.; Zibordi, F.; Nardocci, N.; Zedde, M.L.; Pezzini, A.; Di Lazzaro, V.; Capone, F.; Dell’Acqua, M.L.; Vajkoczy, P.; Tournier-Lasserve, E.; Parati, E.A.; Bersano, A.; Gatti, L. Vascular remodeling in moyamoya angiopathy: from peripheral blood mononuclear cells to endothelial cells. Int. J. Mol. Sci., 2020, 21(16), 5763.
[http://dx.doi.org/10.3390/ijms21165763] [PMID: 32796702]
[81]
Kim, J.H.; Jung, J.H.; Phi, J.H.; Kang, H.S.; Kim, J.E.; Chae, J.H.; Kim, S.J.; Kim, Y.H.; Kim, Y.Y.; Cho, B.K.; Wang, K.C.; Kim, S.K. Decreased level and defective function of circulating endothelial progenitor cells in children with moyamoya disease. J. Neurosci. Res., 2010, 88(3), 510-518.
[http://dx.doi.org/10.1002/jnr.22228] [PMID: 19774676]
[82]
Yu, J.; Du, Q.; Hu, M.; Zhang, J.; Chen, J. Endothelial progenitor cells in moyamoya disease: current situation and controversial issues. Cell Transplant., 2020, 29963689720913259
[http://dx.doi.org/10.1177/0963689720913259] [PMID: 32193953]
[83]
Beneventi, F.; De Maggio, I.; Cavagnoli, C.; Bellingeri, C.; Ruspini, B.; Riceputi, G.; Viarengo, G.; Ramoni, V.; Spinillo, A. Endothelial Progenitor Cell CD34+ and CD133+ Concentrations and Soluble HLA-G concentrations during pregnancy and in cord blood in undifferentiated connective tissue diseases compared to controls. Reprod. Sci., 2021, 28(5), 1382-1389.
[http://dx.doi.org/10.1007/s43032-020-00405-1] [PMID: 33237511]
[84]
Yu, M.; Feng, H.J.; Abdalla, A.M.E.; Teng, Y.F.; Li, Q. Apelin-13 promotes late endothelial progenitor cells differentiation by regulating Krüppel-like factor 4. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(16), 7098-7109.
[http://dx.doi.org/10.26355/eurrev_201908_18755] [PMID: 31486512]
[85]
Petrova, O.N.; Lamarre, I.; Fasani, F.; Grillon, C.; Negrerie, M. Soluble guanylate cyclase inhibitors discovered among natural compounds. J. Nat. Prod., 2020, 83(12), 3642-3651.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00854] [PMID: 33290062]
[86]
Costa, T.J.; Barros, P.R.; Arce, C.; Santos, J.D.; da Silva-Neto, J.; Egea, G.; Dantas, A.P.; Tostes, R.C.; Jiménez-Altayó, F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic. Biol. Med., 2021, 162, 615-635.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.021] [PMID: 33248264]
[87]
Gebauer, P.H.; Turzo, M.; Lasitschka, F.; Weigand, M.A.; Busch, C.J. Inhibition of ornithine decarboxylase restores hypoxic pulmonary vasoconstriction in endotoxemic mice. Pulm. Circ., 2020, 10(4)2045894020915831
[http://dx.doi.org/10.1177/2045894020915831] [PMID: 33403098]
[88]
Kolijn, D.; Kovács, Á.; Herwig, M.; Lódi, M.; Sieme, M.; Alhaj, A.; Sandner, P.; Papp, Z.; Reusch, P.H.; Haldenwang, P.; Falcão-Pires, I.; Linke, W.A.; Jaquet, K.; Van Linthout, S.; Mügge, A.; Tschöpe, C.; Hamdani, N. Enhanced cardiomyocyte function in hypertensive rats with diastolic dysfunction and human heart failure patients after acute treatment With soluble Guanylyl Cyclase (sGC). Activator. Front. Physiol., 2020, 11, 345.
[http://dx.doi.org/10.3389/fphys.2020.00345] [PMID: 32523538]
[89]
Takayasu, M.; Kajita, Y.; Suzuki, Y.; Shibuya, M.; Sugita, K.; Hidaka, H. A role of nitric oxide in vasomotor control of cerebral parenchymal arterioles in rats. J. Auton. Nerv. Syst., 1994, 49(Suppl.), S63-S66.
[http://dx.doi.org/10.1016/0165-1838(94)90089-2] [PMID: 7836689]
[90]
Hervé, D.; Philippi, A.; Belbouab, R.; Zerah, M.; Chabrier, S.; Collardeau-Frachon, S.; Bergametti, F.; Essongue, A.; Berrou, E.; Krivosic, V.; Sainte-Rose, C.; Houdart, E.; Adam, F.; Billiemaz, K.; Lebret, M.; Roman, S.; Passemard, S.; Boulday, G.; Delaforge, A.; Guey, S.; Dray, X.; Chabriat, H.; Brouckaert, P.; Bryckaert, M.; Tournier-Lasserve, E. Loss of α1β1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am. J. Hum. Genet., 2014, 94(3), 385-394.
[http://dx.doi.org/10.1016/j.ajhg.2014.01.018] [PMID: 24581742]
[91]
Wallace, S.; Guo, D.C.; Regalado, E.; Mellor-Crummey, L.; Bamshad, M.; Nickerson, D.A.; Dauser, R.; Hanchard, N.; Marom, R.; Martin, E.; Berka, V.; Sharina, I.; Ganesan, V.; Saunders, D.; Morris, S.A.; Milewicz, D.M. Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension. Clin. Genet., 2016, 90(4), 351-360.
[http://dx.doi.org/10.1111/cge.12739] [PMID: 26777256]
[92]
Kang, H.S.; Kim, J.H.; Phi, J.H.; Kim, Y.Y.; Kim, J.E.; Wang, K.C.; Cho, B.K.; Kim, S.K. Plasma matrix metalloproteinases, cytokines and angiogenic factors in moyamoya disease. J. Neurol. Neurosurg. Psychiatry, 2010, 81(6), 673-678.
[http://dx.doi.org/10.1136/jnnp.2009.191817] [PMID: 19965844]
[93]
Qing, Z.; Huang, H.; Yang, S.; Lin, J.; Zeng, Z.; Duan, J.; Yuan, B.; Ming, T. Hypoxia maintains the fenestration of liver sinusoidal endothelial cells and promotes their proliferation through the SENP1/HIF-1α/VEGF signaling axis. Biochem. Biophys. Res. Commun., 2021, 540, 42-50.
[http://dx.doi.org/10.1016/j.bbrc.2020.12.104] [PMID: 33445109]
[94]
Bernaudin, M.; Nedelec, A.S.; Divoux, D.; MacKenzie, E.T.; Petit, E.; Schumann-Bard, P. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J. Cereb. Blood Flow Metab., 2002, 22(4), 393-403.
[http://dx.doi.org/10.1097/00004647-200204000-00003] [PMID: 11919510]
[95]
Shao, W.; Li, X.; Peng, J.; Fan, S.; Liang, M.; Huang, K. Apatinib attenuates phenotypic switching of arterial smooth muscle cells in vascular remodelling by targeting the PDGF Receptor-β. J. Cell. Mol. Med., 2020, 24(17), 10128-10139.
[http://dx.doi.org/10.1111/jcmm.15623] [PMID: 32697395]
[96]
Suzuki, J.; Takaku, A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch. Neurol., 1969, 20(3), 288-299.
[http://dx.doi.org/10.1001/archneur.1969.00480090076012] [PMID: 5775283]
[97]
Hwang, I.; Cho, W.S.; Yoo, R.E.; Kang, K.M.; Yoo, D.H.; Yun, T.J.; Choi, S.H.; Kim, J.H.; Kim, J.E.; Sohn, C.H. Revascularization evaluation in adult-onset moyamoya disease after bypass surgery: superselective arterial spin labeling perfusion mri compared with digital subtraction angiography. Radiology, 2020, 297(3), 630-637.
[http://dx.doi.org/10.1148/radiol.2020201448] [PMID: 32960727]
[98]
Robert, T.; Cicciò, G.; Sylvestre, P.; Chiappini, A.; Weil, A.G.; Smajda, S.; Chaalala, C.; Blanc, R.; Reinert, M.; Piotin, M.; Bojanowski, M.W. Anatomic and angiographic analyses of ophthalmic artery collaterals in moyamoya disease. AJNR Am. J. Neuroradiol., 2018, 39(6), 1121-1126.
[http://dx.doi.org/10.3174/ajnr.A5622] [PMID: 29650781]
[99]
Ge, P.; Zhang, Q.; Ye, X.; Liu, X.; Deng, X.; Wang, J.; Wang, R.; Zhang, Y.; Zhang, D.; Zhao, J.Z. Digital subtraction angiographic characteristics of progression of moyamoya disease 6 months prior to surgical revascularisation. Stroke Vasc. Neurol., 2020, 5(1), 97-102.
[http://dx.doi.org/10.1136/svn-2019-000316] [PMID: 32411414]
[100]
Bonasia, S.; Ciccio, G.; Smajda, S.; Weil, A.G.; Chaalala, C.; Blanc, R.; Reinert, M.; Piotin, M.; Bojanowski, M.; Robert, T. Angiographic analysis of natural anastomoses between the posterior and anterior cerebral arteries in moyamoya disease and syndrome. AJNR Am. J. Neuroradiol., 2019, 40(12), 2066-2072.
[http://dx.doi.org/10.3174/ajnr.A6291] [PMID: 31672836]
[101]
Yeon, J.Y.; Shin, H.J.; Kong, D.S.; Seol, H.J.; Kim, J.S.; Hong, S.C.; Park, K. The prediction of contralateral progression in children and adolescents with unilateral moyamoya disease. Stroke, 2011, 42(10), 2973-2976.
[http://dx.doi.org/10.1161/STROKEAHA.111.622522] [PMID: 21836096]
[102]
Chen, Y.; Ma, L.; Lu, J.; Chen, X.; Ye, X.; Zhang, D.; Zhang, Y.; Wang, R.; Zhao, Y. Postoperative hemorrhage during the acute phase after direct or combined revascularization for moyamoya disease: Risk factors, prognosis, and literature review. J. Neurosurg., 2019, 1-10.
[http://dx.doi.org/10.3171/2019.7.JNS19885] [PMID: 31628285]
[103]
Hou, K.; Li, G.; Luan, T.; Xu, K.; Xu, B.; Yu, J. Anatomical study of anterior inferior cerebellar artery and its reciprocal relationship with posterior inferior cerebellar artery based on angiographic data. World Neurosurg., 2020, 133, e459-e472.
[http://dx.doi.org/10.1016/j.wneu.2019.09.047] [PMID: 31526888]
[104]
Funaki, T.; Takahashi, J.C.; Houkin, K.; Kuroda, S.; Takeuchi, S.; Fujimura, M.; Tomata, Y.; Miyamoto, S. Angiographic features of hemorrhagic moyamoya disease with high recurrence risk: A supplementary analysis of the Japan Adult Moyamoya Trial. J. Neurosurg., 2018, 128(3), 777-784.
[http://dx.doi.org/10.3171/2016.11.JNS161650] [PMID: 28409736]
[105]
Yamamoto, S.; Hori, S.; Kashiwazaki, D.; Akioka, N.; Kuwayama, N.; Kuroda, S. Longitudinal anterior-to-posterior shift of collateral channels in patients with moyamoya disease: An implication for its hemorrhagic onset. J. Neurosurg., 2018, 130(3), 884-890.
[http://dx.doi.org/10.3171/2017.9.JNS172231] [PMID: 29570010]
[106]
Hori, S.; Kashiwazaki, D.; Yamamoto, S.; Acker, G.; Czabanka, M.; Akioka, N.; Kuwayama, N.; Vajkoczy, P.; Kuroda, S. Impact of interethnic difference of collateral angioarchitectures on prevalence of hemorrhagic stroke in moyamoya disease. Neurosurgery, 2019, 85(1), 134-146.
[http://dx.doi.org/10.1093/neuros/nyy236] [PMID: 29889273]
[107]
Zhang, J.; Li, S.; Fujimura, M.; Lau, T.Y.; Wu, X.; Hu, M.; Zheng, H.; Xu, H.; Zhao, W.; Li, X.; Chen, J. Hemodynamic analysis of the recipient parasylvian cortical arteries for predicting postoperative hyperperfusion during STA-MCA bypass in adult patients with moyamoya disease. J. Neurosurg., 2019, 1-8.
[http://dx.doi.org/10.3171/2019.10.JNS191207] [PMID: 31881540]
[108]
Liu, Z.W.; Han, C.; Wang, H.; Zhang, Q.; Li, S.J.; Bao, X.Y.; Zhang, Z.S.; Duan, L. Clinical characteristics and leptomeningeal collateral status in pediatric and adult patients with ischemic moyamoya disease. CNS Neurosci. Ther., 2020, 26(1), 14-20.
[http://dx.doi.org/10.1111/cns.13130] [PMID: 31875482]
[109]
Karakama, J.; Nariai, T.; Hara, S.; Hayashi, S.; Sumita, K.; Inaji, M.; Tanaka, Y.; Wagatsuma, K.; Ishii, K.; Nemoto, S.; Maehara, T. Unique angiographic appearances of moyamoya disease detected with 3-dimensional rotational digital subtraction angiography imaging showing the hemodynamic status. J. Stroke Cerebrovasc. Dis., 2018, 27(8), 2147-2157.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.03.006] [PMID: 29653803]
[110]
Kashiwazaki, D.; Akioka, N.; Kuwayama, N.; Houkin, K.; Czabanka, M.; Vajkoczy, P.; Kuroda, S. Berlin grading system can stratify the onset and predict perioperative complications in adult moyamoya disease. Neurosurgery, 2017, 81(6), 986-991.
[http://dx.doi.org/10.1093/neuros/nyx140] [PMID: 28605471]
[111]
Liu, Z.W.; Han, C.; Zhao, F.; Qiao, P.G.; Wang, H.; Bao, X.Y.; Zhang, Z.S.; Yang, W.Z.; Li, D.S.; Duan, L. Collateral circulation in moyamoya disease: a new grading system. Stroke, 2019, 50(10), 2708-2715.
[http://dx.doi.org/10.1161/STROKEAHA.119.024487] [PMID: 31409266]
[112]
Li, Y.; Esene, I.; Mandel, M.; Bigder, M.; Steinberg, G.K. Incidental De Novo cerebral microhemorrhages are predictive of future symptomatic macrohemorrhages after surgical revascularization in moyamoya disease. Neurosurgery, 2020, 88(1), 74-81.
[http://dx.doi.org/10.1093/neuros/nyaa319] [PMID: 32717035]
[113]
Lehman, V.T.; Cogswell, P.M.; Rinaldo, L.; Brinjikji, W.; Huston, J.; Klaas, J.P.; Lanzino, G. Contemporary and emerging magnetic resonance imaging methods for evaluation of moyamoya disease. Neurosurg. Focus, 2019, 47(6)E6
[http://dx.doi.org/10.3171/2019.9.FOCUS19616] [PMID: 31786551]
[114]
Liu, Z.; He, S.; Xu, Z.; Duan, R.; Yuan, L.; Xiao, C.; Yi, Z.; Wang, R. Association between white matter impairment and cognitive dysfunction in patients with ischemic Moyamoya disease. BMC Neurol., 2020, 20(1), 302.
[http://dx.doi.org/10.1186/s12883-020-01876-0] [PMID: 32799829]
[115]
Hirano, Y.; Miyawaki, S.; Imai, H.; Hongo, H.; Ohara, K.; Dofuku, S.; Teranishi, Y.; Nakatomi, H.; Saito, N. Association between the onset pattern of adult moyamoya disease and risk factors for stroke. Stroke, 2020, 51(10), 3124-3128.
[http://dx.doi.org/10.1161/STROKEAHA.120.030653] [PMID: 32867597]
[116]
Quon, J.L.; Kim, L.H.; MacEachern, S.J.; Maleki, M.; Steinberg, G.K.; Madhugiri, V.; Edwards, M.S.B.; Grant, G.A.; Yeom, K.W.; Forkert, N.D. Early diffusion magnetic resonance imaging changes in normal-appearing brain in pediatric moyamoya disease. Neurosurgery, 2020, 86(4), 530-537.
[http://dx.doi.org/10.1093/neuros/nyaa265] [PMID: 31245817]
[117]
Su, J.B.; Xi, S.D.; Zhou, S.Y.; Zhang, X.; Jiang, S.H.; Xu, B.; Chen, L.; Lei, Y.; Gao, C.; Gu, Y.X. Microstructural damage pattern of vascular cognitive impairment: A comparison between moyamoya disease and cerebrovascular atherosclerotic disease. Neural Regen. Res., 2019, 14(5), 858-867.
[http://dx.doi.org/10.4103/1673-5374.249234] [PMID: 30688272]
[118]
Kazumata, K.; Tokairin, K.; Ito, M.; Uchino, H.; Sugiyama, T.; Kawabori, M.; Osanai, T.; Tha, K.K.; Houkin, K. Combined structural and diffusion tensor imaging detection of ischemic injury in moyamoya disease: Relation to disease advancement and cerebral hypoperfusion. J. Neurosurg., 2020, 1-10.
[http://dx.doi.org/10.3171/2020.1.JNS193260] [PMID: 32244209]
[119]
Horie, N.; Morikawa, M.; Nozaki, A.; Hayashi, K.; Suyama, K.; Nagata, I. “Brush Sign” on susceptibility-weighted MR imaging indicates the severity of moyamoya disease. AJNR Am. J. Neuroradiol., 2011, 32(9), 1697-1702.
[http://dx.doi.org/10.3174/ajnr.A2568] [PMID: 21799039]
[120]
Miyakoshi, A.; Funaki, T.; Fushimi, Y.; Kikuchi, T.; Kataoka, H.; Yoshida, K.; Mineharu, Y.; Takahashi, J.C.; Miyamoto, S. Identification of the bleeding point in hemorrhagic moyamoya disease using fusion images of susceptibility-weighted imaging and time-of-flight mra. AJNR Am. J. Neuroradiol., 2019, 40(10), 1674-1680.
[http://dx.doi.org/10.3174/ajnr.A6207] [PMID: 31515213]
[121]
Ya, J.; Zhou, D.; Ding, J.; Ding, Y.; Ji, X.; Yang, Q.; Meng, R. High-resolution combined arterial spin labeling MR for identifying cerebral arterial stenosis induced by moyamoya disease or atherosclerosis. Ann. Transl. Med., 2020, 8(4), 87.
[http://dx.doi.org/10.21037/atm.2019.12.140] [PMID: 32175380]
[122]
Kathuveetil, A.; Sylaja, P.N.; Senthilvelan, S.; Kesavadas, C.; Banerjee, M.; Jayanand Sudhir, B. Vessel wall thickening and enhancement in high-resolution intracranial vessel wall imaging: a predictor of future ischemic events in moyamoya Disease. AJNR Am. J. Neuroradiol., 2020, 41(1), 100-105.
[http://dx.doi.org/10.3174/ajnr.A6360] [PMID: 31896569]
[123]
Lei, Y.; Su, J.; Jiang, H.; Guo, Q.; Ni, W.; Yang, H.; Gu, Y.; Mao, Y. Aberrant regional homogeneity of resting-state executive control, default mode, and salience networks in adult patients with moyamoya disease. Brain Imaging Behav., 2017, 11(1), 176-184.
[http://dx.doi.org/10.1007/s11682-016-9518-5] [PMID: 26843005]
[124]
Qiao, P.G.; Cheng, X.; Zuo, Z.W.; Han, C.; Yang, Z.H.; Li, G.J. Blood Oxygen Level-dependent response changes in the ipsilateral primary somatosensory cortex and thalamus of patients with moyamoya disease during median nerve electrical stimulation. J. Comput. Assist. Tomogr., 2019, 43(4), 539-546.
[http://dx.doi.org/10.1097/RCT.0000000000000891] [PMID: 31268874]
[125]
Taneja, K.; Lu, H.; Welch, B.G.; Thomas, B.P.; Pinho, M.; Lin, D.; Hillis, A.E.; Liu, P. Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study. Magn. Reson. Imaging, 2019, 59, 46-52.
[http://dx.doi.org/10.1016/j.mri.2019.03.003] [PMID: 30849484]
[126]
Dlamini, N.; Shah-Basak, P.; Leung, J.; Kirkham, F.; Shroff, M.; Kassner, A.; Robertson, A.; Dirks, P.; Westmacott, R.; deVeber, G.; Logan, W. Breath-Hold Blood Oxygen Level-Dependent MRI: a tool for the assessment of cerebrovascular reserve in children with moyamoya disease. AJNR Am. J. Neuroradiol., 2018, 39(9), 1717-1723.
[http://dx.doi.org/10.3174/ajnr.A5739] [PMID: 30139753]
[127]
Hauser, T.K.; Seeger, A.; Bender, B.; Klose, U.; Thurow, J.; Ernemann, U.; Tatagiba, M.; Meyer, P.T.; Khan, N.; Roder, C. Hypercapnic BOLD MRI compared to H215O PET/CT for the hemodynamic evaluation of patients with Moyamoya Disease. Neuroimage Clin., 2019, 22101713
[http://dx.doi.org/10.1016/j.nicl.2019.101713] [PMID: 30743136]
[128]
Sakamoto, Y.; Okamoto, S.; Maesawa, S.; Bagarinao, E.; Araki, Y.; Izumi, T.; Watanabe, H.; Sobue, G.; Wakabayashi, T. Default mode network changes in moyamoya disease before and after bypass surgery: preliminary report. World Neurosurg., 2018, 112, e652-e661.
[http://dx.doi.org/10.1016/j.wneu.2018.01.117] [PMID: 29374613]
[129]
Lei, Y.; Chen, X.; Su, J.B.; Zhang, X.; Yang, H.; Gao, X.J.; Ni, W.; Chen, L.; Yu, J.H.; Gu, Y.X.; Mao, Y. Recognition of Cognitive Impairment in Adult Moyamoya Disease: A Classifier Based on High-Order Resting-State Functional Connectivity Network. Front. Neural Circuits, 2020, 14603208
[http://dx.doi.org/10.3389/fncir.2020.603208] [PMID: 33408614]
[130]
Lei, Y.; Song, B.; Chen, L.; Su, J.; Zhang, X.; Ni, W.; Yu, Y.; Xu, B.; Yu, L.; Gu, Y.; Mao, Y. Reconfigured functional network dynamics in adult moyamoya disease: A resting-state fMRI study. Brain Imaging Behav., 2020, 14(3), 715-727.
[http://dx.doi.org/10.1007/s11682-018-0009-8] [PMID: 30511114]
[131]
Togao, O.; Hiwatashi, A.; Obara, M.; Yamashita, K.; Kikuchi, K.; Kamei, R.; Nishimura, A.; Arimura, K.; Yoshimoto, K.; Iihara, K.; Van Cauteren, M.; Honda, H. Acceleration-selective arterial spin-labeling mr angiography used to visualize distal cerebral arteries and collateral vessels in moyamoya disease. Radiology, 2018, 286(2), 611-621.
[http://dx.doi.org/10.1148/radiol.2017162279] [PMID: 28915102]
[132]
Quon, J.L.; Kim, L.H.; Lober, R.M.; Maleki, M.; Steinberg, G.K.; Yeom, K.W. Arterial spin-labeling cerebral perfusion changes after revascularization surgery in pediatric moyamoya disease and syndrome. J. Neurosurg. Pediatr., 2019, 23(4), 486-492.
[http://dx.doi.org/10.3171/2018.11.PEDS18498] [PMID: 30738390]
[133]
Lin, Y.H.; Kuo, M.F.; Lu, C.J.; Lee, C.W.; Yang, S.H.; Huang, Y.C.; Liu, H.M.; Chen, Y.F.; Standardized, M.R. Standardized MR perfusion scoring system for evaluation of sequential perfusion changes and surgical outcome of moyamoya disease. AJNR Am. J. Neuroradiol., 2019, 40(2), 260-266.
[http://dx.doi.org/10.3174/ajnr.A5945] [PMID: 30655253]
[134]
Kronenburg, A.; Bulder, M.M.M.; Bokkers, R.P.H.; Hartkamp, N.S.; Hendrikse, J.; Vonken, E.J.; Kappelle, L.J.; van der Zwan, A.; Klijn, C.J.M.; Braun, K.P.J. Cerebrovascular Reactivity Measured with ASL Perfusion MRI, ivy sign, and regional tissue vascularization in moyamoya. World Neurosurg., 2019, 125, e639-e650.
[http://dx.doi.org/10.1016/j.wneu.2019.01.140] [PMID: 30716498]
[135]
Lee, S.; Yun, T.J.; Yoo, R.E.; Yoon, B.W.; Kang, K.M.; Choi, S.H.; Kim, J.H.; Kim, J.E.; Sohn, C.H.; Han, M.H. Monitoring cerebral perfusion changes after revascularization in patients with moyamoya disease by using arterial spin-labeling MR Imaging. Radiology, 2018, 288(2), 565-572.
[http://dx.doi.org/10.1148/radiol.2018170509] [PMID: 29714677]
[136]
Togao, O.; Hiwatashi, A.; Obara, M.; Yamashita, K.; Momosaka, D.; Nishimura, A.; Arimura, K.; Hata, N.; Yoshimoto, K.; Iihara, K.; Van Cauteren, M.; Honda, H. 4D ASL-based MR angiography for visualization of distal arteries and leptomeningeal collateral vessels in moyamoya disease: A comparison of techniques. Eur. Radiol., 2018, 28(11), 4871-4881.
[http://dx.doi.org/10.1007/s00330-018-5462-7] [PMID: 29737389]
[137]
Bolar, D.S.; Gagoski, B.; Orbach, D.B.; Smith, E.; Adalsteinsson, E.; Rosen, B.R.; Grant, P.E.; Robertson, R.L. Comparison of CBF measured with combined velocity-selective arterial spin-labeling and pulsed arterial spin-labeling to blood flow patterns assessed by conventional angiography in pediatric moyamoya. AJNR Am. J. Neuroradiol., 2019, 40(11), 1842-1849.
[http://dx.doi.org/10.3174/ajnr.A6262] [PMID: 31694821]
[138]
Yamasaki, M.; Yoshioka, H.; Kanemaru, K.; Yagi, T.; Hashimoto, K.; Senbokuya, N.; Kinouchi, H. Detection of transient increase of cerebral blood flow and reversible neuronal dysfunction by iodine-123-iomazenil single photon emission computed tomography after cerebral hyperperfusion syndrome after revascularization surgery for moyamoya disease. World Neurosurg., 2020, 141, 335-338.
[http://dx.doi.org/10.1016/j.wneu.2020.06.014] [PMID: 32526363]
[139]
Setta, K.; Kojima, D.; Shimada, Y.; Yoshida, J.; Oshida, S.; Fujimoto, K.; Tsutsui, S.; Chiba, T.; Fujiwara, S.; Terasaki, K.; Ogasawara, K. Accuracy of brain perfusion single-photon emission computed tomography for detecting misery perfusion in adult patients with symptomatic ischemic moyamoya disease. Ann. Nucl. Med., 2018, 32(9), 611-619.
[http://dx.doi.org/10.1007/s12149-018-1283-7] [PMID: 30030783]
[140]
Chen, D.Y.T.; Ishii, Y.; Fan, A.P.; Guo, J.; Zhao, M.Y.; Steinberg, G.K.; Zaharchuk, G. Predicting PET cerebrovascular reserve with deep learning by using Baseline MRI: a pilot investigation of a drug-free brain stress test. Radiology, 2020, 296(3), 627-637.
[http://dx.doi.org/10.1148/radiol.2020192793] [PMID: 32662761]
[141]
Fan, A.P.; Khalighi, M.M.; Guo, J.; Ishii, Y.; Rosenberg, J.; Wardak, M.; Park, J.H.; Shen, B.; Holley, D.; Gandhi, H.; Haywood, T.; Singh, P.; Steinberg, G.K.; Chin, F.T.; Zaharchuk, G. Identifying hypoperfusion in moyamoya disease with arterial spin Labeling and an [15O]-Water positron emission tomography/magnetic resonance Imaging normative database. Stroke, 2019, 50(2), 373-380.
[http://dx.doi.org/10.1161/STROKEAHA.118.023426] [PMID: 30636572]
[142]
Roder, C.; Haas, P.; Fudali, M.; Milian, M.; Ernemann, U.; Meyer, P.T.; Tatagiba, M.; Khan, N. Neuropsychological impairment in adults with moyamoya angiopathy: Preoperative assessment and correlation to MRI and H215O PET. Neurosurg. Rev., 2020, 43(6), 1615-1622.
[http://dx.doi.org/10.1007/s10143-019-01192-3] [PMID: 31728848]
[143]
Hara, S.; Hori, M.; Ueda, R.; Hayashi, S.; Inaji, M.; Tanaka, Y.; Maehara, T.; Ishii, K.; Aoki, S.; Nariai, T. Unraveling specific brain microstructural damage in moyamoya disease using diffusion magnetic resonance imaging and positron emission Tomography. J. Stroke Cerebrovasc. Dis., 2019, 28(4), 1113-1125.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.038] [PMID: 30679013]
[144]
Lee, J.J.; Shimony, J.S.; Jafri, H.; Zazulia, A.R.; Dacey, R.G., Jr; Zipfel, G.R.; Derdeyn, C.P. Hemodynamic impairment measured by positron-emission tomography is regionally associated with decreased cortical thickness in moyamoya phenomenon. AJNR Am. J. Neuroradiol., 2018, 39(11), 2037-2044.
[http://dx.doi.org/10.3174/ajnr.A5812] [PMID: 30361434]
[145]
Miyoshi, K.; Chida, K.; Kobayashi, M.; Kubo, Y.; Yoshida, K.; Terasaki, K.; Ogasawara, K. Two-Year clinical, cerebral hemodynamic, and cognitive outcomes of adult patients undergoing medication alone for symptomatically ischemic moyamoya disease without cerebral misery perfusion: a prospective cohort study. Neurosurgery, 2019, 84(6), 1233-1241.
[http://dx.doi.org/10.1093/neuros/nyy234] [PMID: 29850833]
[146]
Yanagihara, W.; Chida, K.; Kobayashi, M.; Kubo, Y.; Yoshida, K.; Terasaki, K.; Ogasawara, K. Impact of cerebral blood flow changes due to arterial bypass surgery on cognitive function in adult patients with symptomatic ischemic moyamoya disease. J. Neurosurg., 2018, 131(6), 1716-1724.
[http://dx.doi.org/10.3171/2018.7.JNS18149] [PMID: 30554180]
[147]
Hara, S.; Tanaka, Y.; Hayashi, S.; Inaji, M.; Maehara, T.; Hori, M.; Aoki, S.; Ishii, K.; Nariai, T. Bayesian Estimation of CBF Measured by DSC-MRI in patients with moyamoya disease: comparison with 15o-gas pet and singular value decomposition. AJNR Am. J. Neuroradiol., 2019, 40(11), 1894-1900.
[http://dx.doi.org/10.3174/ajnr.A6248] [PMID: 31601573]
[148]
Cho, A.; Chae, J.H.; Kim, H.M.; Lim, B.C.; Hwang, H.; Hwang, Y.S.; Phi, J.H.; Kim, S.K.; Wang, K.C.; Cho, B.K.; Kim, K.J. Electroencephalography in pediatric moyamoya disease: Reappraisal of clinical value. Childs Nerv. Syst., 2014, 30(3), 449-459.
[http://dx.doi.org/10.1007/s00381-013-2215-4] [PMID: 23943190]
[149]
Al-Qazzaz, N.K.; Ali, S.H.B.M.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis. Med. Biol. Eng. Comput., 2018, 56(1), 137-157.
[http://dx.doi.org/10.1007/s11517-017-1734-7] [PMID: 29119540]
[150]
Frechette, E.S.; Bell-Stephens, T.E.; Steinberg, G.K.; Fisher, R.S. Electroencephalographic features of moyamoya in adults. Clin. Neurophysiol., 2015, 126(3), 481-485.
[http://dx.doi.org/10.1016/j.clinph.2014.06.033] [PMID: 25065300]
[151]
Matsuura, H.; Yoshitani, K.; Nakamori, Y.; Tsukinaga, A.; Takahashi, J.C.; Nakai, M.; Ohnishi, Y. Transient neurological events after surgery for pediatric moyamoya disease: a retrospective study of postoperative sedation practices. J. Neurosurg. Anesthesiol., 2020, 32(2), 182-185.
[http://dx.doi.org/10.1097/ANA.0000000000000593] [PMID: 30882554]
[152]
Phi, J.H.; Lee, S.J.; Kang, H.S.; Kim, J.E.; Kim, S.K.; Cho, W.S.; Lee, S.Y. Postoperative transient neurologic dysfunction: a proposal for pathophysiology. J. Clin. Neurol., 2018, 14(3), 393-400.
[http://dx.doi.org/10.3988/jcn.2018.14.3.393] [PMID: 29971980]
[153]
Silver, J.H.; Jaffe, R.A.; López, J.R. Plasma nitrite as an indicator of cerebral ischemia during extracranial/intracranial bypass surgery in moyamoya patients. J. Stroke Cerebrovasc. Dis., 2020, 29(9)104830
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104830] [PMID: 32807407]
[154]
Ma, Y.; Zhao, M.; Zhang, Q.; Liu, X.; Zhang, D.; Wang, S.; Zhang, Y.; Li, M.; Zhao, J. Risk factors for epilepsy recurrence after revascularization in pediatric patients with Moyamoya Disease. J. Stroke Cerebrovasc. Dis., 2018, 27(3), 740-746.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.10.012] [PMID: 29128331]
[155]
Noshiro, S.; Mikami, T.; Komatsu, K.; Kanno, A.; Enatsu, R.; Yazawa, S.; Nagamine, T.; Matsuhashi, M.; Mikuni, N. Neuromodulatory role of revascularization Surgery in Moyamoya Disease. World Neurosurg., 2016, 91, 473-482.
[http://dx.doi.org/10.1016/j.wneu.2016.04.087] [PMID: 27150656]
[156]
Vendrame, M.; Kaleyias, J.; Loddenkemper, T.; Smith, E.; McClain, C.; Rockoff, M.; Manganaro, S.; McKenzie, B.; Gao, L.; Scott, M.; Bourgeois, B.; Kothare, S.V. Electroencephalogram monitoring during intracranial surgery for moyamoya disease. Pediatr. Neurol., 2011, 44(6), 427-432.
[http://dx.doi.org/10.1016/j.pediatrneurol.2011.01.004] [PMID: 21555053]
[157]
Zhang, X.; Su, J.; Gao, C.; Ni, W.; Gao, X.; Li, Y.; Zhang, J.; Lei, Y.; Gu, Y. Progression in vascular cognitive impairment: pathogenesis, neuroimaging evaluation, and treatment. Cell Transplant., 2019, 28(1), 18-25.
[http://dx.doi.org/10.1177/0963689718815820] [PMID: 30488737]
[158]
Hara, S.; Hori, M.; Hagiwara, A.; Tsurushima, Y.; Tanaka, Y.; Maehara, T.; Aoki, S.; Nariai, T. Myelin and axonal damage in normal-appearing white matter in patients with moyamoya disease. AJNR Am. J. Neuroradiol., 2020, 41(9), 1618-1624.
[http://dx.doi.org/10.3174/ajnr.A6708] [PMID: 32855183]
[159]
Donahue, M.J.; Dlamini, N.; Bhatia, A.; Jordan, L.C. Neuroimaging advances in pediatric stroke. Stroke, 2019, 50(2), 240-248.
[http://dx.doi.org/10.1161/STROKEAHA.118.020478] [PMID: 30661496]
[160]
Teo, M.; Furtado, S.; Kaneko, O.F.; Azad, T.D.; Madhugiri, V.; Do, H.M.; Steinberg, G.K. Validation and application for the berlin grading system of moyamoya disease in adult patients. Neurosurgery, 2020, 86(2), 203-212.
[http://dx.doi.org/10.1093/neuros/nyz025] [PMID: 30864668]
[161]
Oki, K.; Katsumata, M.; Izawa, Y.; Takahashi, S.; Suzuki, N.; Houkin, K. Trends of antiplatelet therapy for the management of moyamoya disease in japan: results of a nationwide survey. J. Stroke Cerebrovasc. Dis., 2018, 27(12), 3605-3612.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.030] [PMID: 30220629]
[162]
Sato, Y.; Kazumata, K.; Nakatani, E.; Houkin, K.; Kanatani, Y. Characteristics of moyamoya disease based on national registry data in japan. Stroke, 2019, 50(8), 1973-1980.
[http://dx.doi.org/10.1161/STROKEAHA.119.024689] [PMID: 31234758]
[163]
Chiba, T.; Setta, K.; Shimada, Y.; Yoshida, J.; Fujimoto, K.; Tsutsui, S.; Yoshida, K.; Kobayashi, M.; Kubo, Y.; Fujiwara, S.; Terasaki, K.; Ogasawara, K. Comparison of Effects between clopidogrel and cilostazol on cerebral perfusion in nonsurgical adult patients with symptomatically ischemic moyamoya disease: subanalysis of a prospective Cohort. J. Stroke Cerebrovasc. Dis., 2018, 27(11), 3373-3379.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.07.041] [PMID: 30174225]
[164]
Yamamoto, S.; Funaki, T.; Fujimura, M.; Takahashi, J.C.; Uchino, H.; Houkin, K.; Tominaga, T.; Miyamoto, S.; Kuroda, S. Development of hemorrhage-prone anastomoses in asymptomatic moyamoya disease-a comparative study with japan adult moyamoya trial. J. Stroke Cerebrovasc. Dis., 2019, 28(11)104328
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.104328] [PMID: 31471213]
[165]
Ando, S.; Tsutsui, S.; Miyoshi, K.; Sato, S.; Yanagihara, W.; Setta, K.; Chiba, T.; Fujiwara, S.; Kobayashi, M.; Yoshida, K.; Kubo, Y.; Ogasawara, K. Cilostazol may improve cognition better than clopidogrel in non-surgical adult patients with ischemic moyamoya disease: Subanalysis of a prospective cohort. Neurol. Res., 2019, 41(5), 480-487.
[http://dx.doi.org/10.1080/01616412.2019.1580455] [PMID: 30774013]
[166]
Farooq, M.U.; Min, J.; Goshgarian, C.; Gorelick, P.B. Pharmacotherapy for Vascular Cognitive Impairment. CNS Drugs, 2017, 31(9), 759-776.
[http://dx.doi.org/10.1007/s40263-017-0459-3] [PMID: 28786085]
[167]
Li, Z.; Lu, J.; Ma, L.; Wu, C.; Xu, Z.; Chen, X.; Ye, X.; Wang, R.; Zhao, Y. dl-3-n-butylphthalide for alleviation of neurological deficit after combined extracranial-intracranial revascularization for moyamoya disease: A propensity score-matched analysis. J. Neurosurg., 2019, 132(2), 421-433.
[http://dx.doi.org/10.3171/2018.10.JNS182152] [PMID: 30771781]
[168]
Porras, J.L.; Yang, W.; Xu, R.; Garzon-Muvdi, T.; Caplan, J.M.; Colby, G.P.; Coon, A.L.; Ahn, E.S.; Tamargo, R.J.; Huang, J. Effectiveness of ipsilateral stroke prevention between conservative management and indirect revascularization for moyamoya disease in a north american cohort. World Neurosurg., 2018, 110, e928-e936.
[http://dx.doi.org/10.1016/j.wneu.2017.11.113] [PMID: 29196251]
[169]
Gao, B.; Kang, K.; Zhang, J.; Zhang, D.; Zhao, X. Clinical characteristics and long-term outcome of headaches associated with moyamoya disease in the chinese population-a cohort study. Front. Neurol., 2020, 11605636
[http://dx.doi.org/10.3389/fneur.2020.605636] [PMID: 33324340]
[170]
Acker, G.; Fekonja, L.; Vajkoczy, P. Surgical management of moyamoya disease. Stroke, 2018, 49(2), 476-482.
[http://dx.doi.org/10.1161/STROKEAHA.117.018563] [PMID: 29343587]
[171]
Morshed, R.A.; Abla, A.A.; Murph, D.; Dao, J.M.; Winkler, E.A.; Burkhardt, J.K.; Colao, K.; Hetts, S.W.; Fullerton, H.J.; Lawton, M.T.; Gupta, N.; Fox, C.K. Clinical outcomes after revascularization for pediatric moyamoya disease and syndrome: A single-center series. J. Clin. Neurosci., 2020, 79, 137-143.
[http://dx.doi.org/10.1016/j.jocn.2020.07.016] [PMID: 33070883]
[172]
Ni, W.; Jiang, H.; Xu, B.; Lei, Y.; Yang, H.; Su, J.; Gu, Y.; Mao, Y. Treatment of aneurysms in patients with moyamoya disease: A 10-year single-center experience. J. Neurosurg., 2018, 128(6), 1813-1822.
[http://dx.doi.org/10.3171/2017.3.JNS162290] [PMID: 28841118]
[173]
Fukuda, N.; Kanemaru, K.; Hashimoto, K.; Yoshioka, H.; Senbokuya, N.; Yagi, T.; Kinouchi, H. Embolization of a peripheral cerebral aneurysm associated with intracranial major artery occlusion through a transdural anastomotic artery: Case report. Interv. Neuroradiol., 2019, 25(2), 172-176.
[http://dx.doi.org/10.1177/1591019918801539] [PMID: 30231796]
[174]
Yamada, H.; Saga, I.; Kojima, A.; Horiguchi, T. Short-term spontaneous resolution of ruptured peripheral aneurysm in moyamoya disease. World Neurosurg., 2019, 126, 247-251.
[http://dx.doi.org/10.1016/j.wneu.2019.02.193] [PMID: 30877003]
[175]
Sayyahmelli, S.; Ozaydin, B.; Sahin, B.; Erginoglu, U.; Cikla, U.; Baskaya, M.K. Surgical strategies for cerebral revascularization in patients with limited bypass conduit options and unexpected intraoperative difficulties. World Neurosurg., 2020, 141, e959-e970.
[http://dx.doi.org/10.1016/j.wneu.2020.06.095] [PMID: 32585374]
[176]
Kolb, B.; Fadel, H.; Rajah, G.; Saber, H.; Luqman, A.; Rangel-Castilla, L. Effect of revascularization on cognitive outcomes in intracranial steno-occlusive disease: A systematic review. Neurosurg. Focus, 2019, 46(2)E14
[http://dx.doi.org/10.3171/2018.11.FOCUS18517] [PMID: 30717064]
[177]
Larson, A.; Rinaldo, L.; Brinjikji, W.; Meyer, F.; Lanzino, G. Intracranial Aneurysms in white patients with moyamoya disease: a u.s. single-center case series and review. World Neurosurg., 2020, 138, e749-e758.
[http://dx.doi.org/10.1016/j.wneu.2020.03.072] [PMID: 32201292]
[178]
Tashiro, R.; Fujimura, M.; Kameyama, M.; Mugikura, S.; Endo, H.; Takeuchi, Y.; Tomata, Y.; Niizuma, K.; Tominaga, T. Incidence and risk factors of the watershed shift phenomenon after superficial temporal artery-middle cerebral artery anastomosis for adult moyamoya disease. Cerebrovasc. Dis., 2019, 47(3-4), 178-187.
[http://dx.doi.org/10.1159/000500802] [PMID: 31121577]
[179]
Arnone, G.D.; Hage, Z.A.; Charbel, F.T. Single vessel double anastomosis for flow augmentation - a novel technique for direct extracranial to intracranial bypass Surgery. Oper. Neurosurg. (Hagerstown), 2019, 17(4), 365-375.
[http://dx.doi.org/10.1093/ons/opy396] [PMID: 30690506]
[180]
Li, Q.; Gao, Y.; Xin, W.; Zhou, Z.; Rong, H.; Qin, Y.; Li, K.; Zhou, Y.; Wang, J.; Xiong, J.; Dong, X.; Yang, M.; Liu, Y.; Shen, J.; Wang, G.; Song, A.; Zhang, J. Meta-analysis of prognosis of different treatments for symptomatic moyamoya disease. World Neurosurg., 2019, 127, 354-361.
[http://dx.doi.org/10.1016/j.wneu.2019.04.062] [PMID: 30995556]
[181]
Kurihara, H.; Yamaguchi, K.; Ishikawa, T.; Funatsu, T.; Matsuoka, G.; Omura, Y.; Okada, Y.; Kawamata, T. Direct double bypass using the posterior auricular artery as initial surgery for moyamoya disease: Technical note. J. Neurosurg., 2019, 1-4, 1-4.
[http://dx.doi.org/10.3171/2019.5.JNS19173] [PMID: 31443070]
[182]
Nielsen, T.H.; Abhinav, K.; Sussman, E.S.; Han, S.S.; Weng, Y.; Bell-Stephens, T.; Heit, J.J.; Steinberg, G.K. Direct versus indirect bypass procedure for the treatment of ischemic moyamoya disease: Results of an individualized selection strategy. J. Neurosurg., 2020, 1-12.
[http://dx.doi.org/10.3171/2020.3.JNS192847] [PMID: 32534489]
[183]
Ong, J. A.; Low, S. Y.; Seow, W. T.; Goh, C. P.; Yeo, T. T.; Chou, N.; Low, D. C.; Nga, V. Revascularisation surgery for paediatric moyamoya disease: The Singapore experience. J. Clin. Neurosci.,, 2020, 82(Pt B), 207-213.
[http://dx.doi.org/10.1016/j.jocn.2020.11.008]
[184]
Deng, X.; Gao, F.; Zhang, D.; Zhang, Y.; Wang, R.; Wang, S.; Cao, Y.; Zhao, Y.; Pan, Y.; Liu, X.; Zhang, Q.; Zhao, J. Direct versus indirect bypasses for adult ischemic-type moyamoya disease: A propensity score-matched analysis. J. Neurosurg., 2018, 128(6), 1785-1791.
[http://dx.doi.org/10.3171/2017.2.JNS162405] [PMID: 28799875]
[185]
Jeon, J.P.; Kim, J.E.; Cho, W.S.; Bang, J.S.; Son, Y.J.; Oh, C.W. Meta-analysis of the surgical outcomes of symptomatic moyamoya disease in adults. J. Neurosurg., 2018, 128(3), 793-799.
[http://dx.doi.org/10.3171/2016.11.JNS161688] [PMID: 28474994]
[186]
Choi, J.W.; Chong, S.; Phi, J.H.; Lee, J.Y.; Kim, H.S.; Chae, J.H.; Lee, J.; Kim, S.K. Postoperative symptomatic cerebral infarction in pediatric moyamoya disease: risk factors and clinical outcome. World Neurosurg., 2020, 136, e158-e164.
[http://dx.doi.org/10.1016/j.wneu.2019.12.072] [PMID: 31870818]
[187]
Hsu, Y.H.; Chen, Y.F.; Yang, S.H.; Yang, C.C.; Kuo, M.F. Postoperative change of neuropsychological function after indirect revascularization in childhood moyamoya disease: A correlation with cerebral perfusion study. Childs Nerv. Syst., 2020, 36(6), 1245-1253.
[http://dx.doi.org/10.1007/s00381-019-04432-5] [PMID: 31797068]
[188]
Ravindran, K.; Wellons, J.C.; Dewan, M.C. Surgical outcomes for pediatric moyamoya: A systematic review and meta-analysis. J. Neurosurg. Pediatr., 2019, 1-10.
[http://dx.doi.org/10.3171/2019.6.PEDS19241] [PMID: 31518973]
[189]
Ha, E.J.; Kim, K.H.; Wang, K.C.; Phi, J.H.; Lee, J.Y.; Choi, J.W.; Cho, B.K.; Yang, J.; Byun, Y.H.; Kim, S.K. Long-term outcomes of indirect bypass for 629 children with moyamoya disease: longitudinal and cross-sectional analysis. Stroke, 2019, 50(11), 3177-3183.
[http://dx.doi.org/10.1161/STROKEAHA.119.025609] [PMID: 31551037]
[190]
Park, S.E.; Kim, J.S.; Park, E.K.; Shim, K.W.; Kim, D.S. Direct versus indirect revascularization in the treatment of moyamoya disease. J. Neurosurg., 2018, 129(2), 480-489.
[http://dx.doi.org/10.3171/2017.5.JNS17353] [PMID: 29076784]
[191]
Mirone, G.; Cicala, D.; Meucci, C.; d’Amico, A.; Santoro, C.; Muto, M.; Cinalli, G. Multiple burr-hole surgery for the treatment of moyamoya disease and quasi-moyamoya disease in children: preliminary surgical and imaging results. World Neurosurg., 2019, 127, e843-e855.
[http://dx.doi.org/10.1016/j.wneu.2019.03.282] [PMID: 30954732]
[192]
Wang, Q.N.; Bao, X.Y.; Zhang, Y.; Zhang, Q.; Li, D.S.; Duan, L. Encephaloduroarteriosynangiosis for hemorrhagic moyamoya disease: Long-term outcome of a consecutive series of 95 adult patients from a single center. J. Neurosurg., 2019, 130(6), 1898-1905.
[http://dx.doi.org/10.3171/2017.12.JNS172246] [PMID: 29999465]
[193]
Zhao, Y.; Yu, S.; Lu, J.; Yu, L.; Li, J.; Zhang, Y.; Zhang, D.; Wang, R.; Zhao, Y. Direct bypass surgery vs. combined bypass surgery for hemorrhagic moyamoya disease: A comparison of angiographic outcomes. Front. Neurol., 2018, 9, 1121.
[http://dx.doi.org/10.3389/fneur.2018.01121] [PMID: 30619072]
[194]
Kuroda, S.; Nakayama, N.; Yamamoto, S.; Kashiwazaki, D.; Uchino, H.; Saito, H.; Hori, E.; Akioka, N.; Kuwayama, N.; Houkin, K. Late (5-20 years) outcomes after STA-MCA anastomosis and encephalo-duro-myo-arterio-pericranial synangiosis in patients with moyamoya disease. J. Neurosurg., 2020, 134(3), 909-916.
[http://dx.doi.org/10.3171/2019.12.JNS192938] [PMID: 32168480]
[195]
Jiang, H.; Yang, H.; Ni, W.; Lei, Y.; Su, J.; Gu, Y.; Xu, B.; Mao, Y. Long-Term Outcomes after combined revascularization surgery in adult hemorrhagic moyamoya disease. World Neurosurg., 2018, 116, e1032-e1041.
[http://dx.doi.org/10.1016/j.wneu.2018.05.153] [PMID: 29859362]
[196]
Kazumata, K.; Tha, K.K.; Tokairin, K.; Ito, M.; Uchino, H.; Kawabori, M.; Sugiyama, T. Brain structure, connectivity, and cognitive changes following revascularization surgery in adult moyamoya disease. Neurosurgery, 2019, 85(5), E943-E952.
[http://dx.doi.org/10.1093/neuros/nyz176] [PMID: 31157394]
[197]
Kim, T.; Oh, C.W.; Bang, J.S.; Kim, J.E.; Cho, W.S. Moyamoya disease: treatment and outcomes. J. Stroke, 2016, 18(1), 21-30.
[http://dx.doi.org/10.5853/jos.2015.01739] [PMID: 26846757]
[198]
Perng, C.H.; Chang, Y.C.; Tzang, R.F. The treatment of cognitive dysfunction in dementia: A multiple treatments meta-analysis. Psychopharmacology (Berl.), 2018, 235(5), 1571-1580.
[http://dx.doi.org/10.1007/s00213-018-4867-y] [PMID: 29502274]
[199]
Formica, C.; Corallo, F.; Morabito, R.; Allone, C.; De Salvo, S.; Micchia, K.; Corallo, F.; Todaro, A.; Marino, S. A multidisciplinary approach to assess recovery of consciousness in a patient with moyamoya disease. Brain Behav., 2019, 9(5)e01241
[http://dx.doi.org/10.1002/brb3.1241] [PMID: 30953395]
[200]
Kalra, N.; Bautista, M.; McCullagh, H.; Tyagi, A.; Peds, Q.L.; Peds, QL Score Post Encephalo-duro-arterio-myo-synangiosis procedure for moyamoya disease: a single center experience. World Neurosurg., 2020, 144, e674-e678.
[http://dx.doi.org/10.1016/j.wneu.2020.09.043] [PMID: 32931995]
[201]
Choi, E.S.; Lee, Y.S.; Park, B.S.; Kim, B.G.; Sohn, H.M.; Jeon, Y.T. Effects of combined remote ischemic pre-and post-conditioning on neurologic complications in moyamoya disease patients undergoing superficial temporal artery-middle cerebral artery anastomosis. J. Clin. Med., 2019, 8(5), 638.
[http://dx.doi.org/10.3390/jcm8050638] [PMID: 31075871]
[202]
Balea, M.; Muresanu, D.; Alvarez, A.; Homberg, V.; Bajenaru, O.; Guekht, A.; Heiss, W.D.; Popa, L.; Vester, J.; Muresanu, I.; Birle, C.; Slavoaca, D. VaD - An integrated framework for cognitive rehabilitation. CNS Neurol. Disord. Drug Targets, 2018, 17(1), 22-33.
[http://dx.doi.org/10.2174/1871527317666180219164545] [PMID: 29468984]
[203]
Watchmaker, J.M.; Frederick, B.D.; Fusco, M.R.; Davis, L.T.; Juttukonda, M.R.; Lants, S.K.; Kirshner, H.S.; Donahue, M.J. Clinical use of cerebrovascular compliance imaging to evaluate revascularization in patients with moyamoya. Neurosurgery, 2019, 84(1), 261-271.
[http://dx.doi.org/10.1093/neuros/nyx635] [PMID: 29528447]
[204]
Zhang, X.; Ni, W.; Feng, R.; Li, Y.; Lei, Y.; Xia, D.; Gao, P.; Yang, S.; Gu, Y. Evaluation of hemodynamic change by indocyanine green-flow 800 videoangiography mapping: prediction of hyperperfusion syndrome in patients with moyamoya disease. Oxid. Med. Cell. Longev., 2020, 20208561609
[http://dx.doi.org/10.1155/2020/8561609] [PMID: 32850003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy