Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances on Multivalent Carbon Nanoform-Based Glycoconjugates

Author(s): Javier Ramos-Soriano*, Mattia Ghirardello and M. Carmen Galan*

Volume 29, Issue 7, 2022

Published on: 14 July, 2021

Page: [1232 - 1257] Pages: 26

DOI: 10.2174/0929867328666210714160954

Price: $65

Abstract

Multivalent carbohydrate-mediated interactions are key to many biological processes including disease mechanisms. In order to study these important glycan-mediated interactions at a molecular level, carbon nanoforms such as fullerenes, carbon nanotubes or graphene and their derivatives have been identified as promising biocompatible scaffolds that can mimic the multivalent presentation of biologically relevant glycans. In this mini-review, we will summarize the most relevant examples of the last few years in the context of their applications.

Keywords: Multivalency, carbon nanoforms, carbon-based probes, nanomaterials, glycoconjugates, nanomedicine.

[1]
Zhang, X.T.; Liu, G.J.; Ning, Z.W.; Xing, G.W. Boronic acid-based chemical sensors for saccharides. Carbohydr. Res., 2017, 452, 129-148.
[http://dx.doi.org/10.1016/j.carres.2017.10.010] [PMID: 29096186]
[2]
Varki, A. Biological roles of glycans. Glycobiology, 2017, 27(1), 3-49.
[http://dx.doi.org/10.1093/glycob/cww086] [PMID: 27558841]
[3]
Kaltner, H.; Abad-Rodriguez, J.; Corfield, A.P.; Kopitz, J.; Gabius, H.J. The sugar code: Letters and vocabulary, writers, editors and readers and biosignificance of functional glycan-lectin pairing.Biochem J; , 2019, 476, pp. 2623-2655.
[4]
Lundquist, J.J.; Toone, E.J. The cluster glycoside effect. Chem. Rev., 2002, 102(2), 555-578.
[http://dx.doi.org/10.1021/cr000418f] [PMID: 11841254]
[5]
Lee, R.T.; Lee, Y.C. Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj. J., 2000, 17(7-9), 543-551.
[http://dx.doi.org/10.1023/A:1011070425430] [PMID: 11421347]
[6]
Müller, C.; Despras, G.; Lindhorst, T.K. Organizing multivalency in carbohydrate recognition. Chem. Soc. Rev., 2016, 45(11), 3275-3302.
[http://dx.doi.org/10.1039/C6CS00165C] [PMID: 27146554]
[7]
Jayaraman, N. Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. Chem. Soc. Rev., 2009, 38(12), 3463-3483.
[http://dx.doi.org/10.1039/b815961k] [PMID: 20449063]
[8]
Richards, S-J.; Otten, L.; Gibson, M.I. Glycosylated gold nanoparticle libraries for label-free multiplexed lectin biosensing. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(18), 3046-3053.
[http://dx.doi.org/10.1039/C5TB01994J] [PMID: 27162639]
[9]
Khan, H.; Mirzaei, H.R.; Amiri, A.; Kupeli Akkol, E.; Ashhad Halimi, S.M.; Mirzaei, H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin. Cancer Biol., 2021, 69, 24-42.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.004] [PMID: 31870939]
[10]
Zhang, X.; Huang, G.; Huang, H. The glyconanoparticle as carrier for drug delivery. Drug Deliv., 2018, 25(1), 1840-1845.
[http://dx.doi.org/10.1080/10717544.2018.1519001] [PMID: 30799659]
[11]
Shengju, Z.; Piotr, T.; Lili, S.; Sen, H.; Hongguang, L. Sugar-functionalized fullerenes. Curr. Org. Chem., 2016, 20(14), 1490-1501.
[http://dx.doi.org/10.2174/1385272820666151207194235]
[12]
Castro, E.; Hernandez Garcia, A.; Zavala, G.; Echegoyen, L. Fullerenes in biology and medicine. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6523-6535.
[http://dx.doi.org/10.1039/C7TB00855D] [PMID: 29225883]
[13]
Illescas, B.M.; Rojo, J.; Delgado, R.; Martín, N. Multivalent glycosylated nanostructures to inhibit ebola virus infection. J. Am. Chem. Soc., 2017, 139(17), 6018-6025.
[http://dx.doi.org/10.1021/jacs.7b01683] [PMID: 28394600]
[14]
Nierengarten, I.; Nierengarten, J-F. Fullerene sugar balls: A new class of biologically active fullerene derivatives. Chem. Asian J., 2014, 9(6), 1436-1444.
[http://dx.doi.org/10.1002/asia.201400133] [PMID: 24678063]
[15]
Muñoz, A.; Illescas, B.M.; Luczkowiak, J.; Lasala, F.; Ribeiro-Viana, R.; Rojo, J.; Delgado, R.; Martín, N. Antiviral activity of self-assembled glycodendro[60]fullerene monoadducts. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6566-6571.
[http://dx.doi.org/10.1039/C7TB01379E] [PMID: 32264418]
[16]
Nierengarten, J-F.; Iehl, J.; Oerthel, V.; Holler, M.; Illescas, B.M.; Muñoz, A.; Martín, N.; Rojo, J.; Sánchez-Navarro, M.; Cecioni, S.; Vidal, S.; Buffet, K.; Durka, M.; Vincent, S.P. Fullerene sugar balls. Chem. Commun. (Camb.), 2010, 46(22), 3860-3862.
[http://dx.doi.org/10.1039/c0cc00034e] [PMID: 20414495]
[17]
Sánchez-Navarro, M.; Muñoz, A.; Illescas, B.M.; Rojo, J.; Martín, N. [60]Fullerene as multivalent scaffold: Efficient molecular recognition of globular glycofullerenes by concanavalin A. Chemistry, 2011, 17(3), 766-769.
[http://dx.doi.org/10.1002/chem.201002816] [PMID: 21226088]
[18]
Luczkowiak, J.; Muñoz, A.; Sánchez-Navarro, M.; Ribeiro-Viana, R.; Ginieis, A.; Illescas, B.M.; Martín, N.; Delgado, R.; Rojo, J. Glycofullerenes inhibit viral infection. Biomacromolecules, 2013, 14(2), 431-437.
[http://dx.doi.org/10.1021/bm3016658] [PMID: 23281578]
[19]
Alvarez, C.P.; Lasala, F.; Carrillo, J.; Muñiz, O.; Corbí, A.L.; Delgado, R. C-type lectins dc-sign and l-sign mediate cellular entry by ebola virus in <em>cis</em> and in <em>trans</em&gt. J. Virol., 2002, 76(13), 6841.
[http://dx.doi.org/10.1128/JVI.76.13.6841-6844.2002] [PMID: 12050398]
[20]
Lüdtke, A.; Ruibal, P.; Wozniak, D.M.; Pallasch, E.; Wurr, S.; Bockholt, S.; Gómez-Medina, S.; Qiu, X.; Kobinger, G.P.; Rodríguez, E.; Günther, S.; Krasemann, S.; Idoyaga, J.; Oestereich, L.; Muñoz-Fontela, C. Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination. Sci. Rep., 2017, 7(1), 43776.
[http://dx.doi.org/10.1038/srep43776] [PMID: 28256637]
[21]
Perera-Lecoin, M.; Meertens, L.; Carnec, X.; Amara, A. Flavivirus entry receptors: An update. Viruses, 2013, 6(1), 69-88.
[http://dx.doi.org/10.3390/v6010069] [PMID: 24381034]
[22]
Hamel, R.; Dejarnac, O.; Wichit, S.; Ekchariyawat, P.; Neyret, A.; Luplertlop, N.; Perera-Lecoin, M.; Surasombatpattana, P.; Talignani, L.; Thomas, F.; Cao-Lormeau, V-M.; Choumet, V.; Briant, L.; Desprès, P.; Amara, A.; Yssel, H.; Missé, D. Biology of zika virus infection in human skin cells. J. Virol., 2015, 89(17), 8880-8896.
[http://dx.doi.org/10.1128/JVI.00354-15] [PMID: 26085147]
[23]
Ramos-Soriano, J.; de la Fuente, M.C.; de la Cruz, N.; Figueiredo, R.C.; Rojo, J.; Reina, J.J. Straightforward synthesis of Man9, the relevant epitope of the high-mannose oligosaccharide. Org. Biomol. Chem., 2017, 15(42), 8877-8882.
[http://dx.doi.org/10.1039/C7OB02286G] [PMID: 29051951]
[24]
Muñoz, A.; Sigwalt, D.; Illescas, B.M.; Luczkowiak, J.; Rodríguez-Pérez, L.; Nierengarten, I.; Holler, M.; Remy, J-S.; Buffet, K.; Vincent, S.P.; Rojo, J.; Delgado, R.; Nierengarten, J-F.; Martín, N. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem., 2016, 8(1), 50-57.
[http://dx.doi.org/10.1038/nchem.2387] [PMID: 27055288]
[25]
Engström, O.; Muñoz, A.; Illescas, B.M.; Martín, N.; Ribeiro-Viana, R.; Rojo, J.; Widmalm, G. Investigation of glycofullerene dynamics by NMR spectroscopy. Org. Biomol. Chem., 2015, 13(32), 8750-8755.
[http://dx.doi.org/10.1039/C5OB00929D] [PMID: 26186577]
[26]
Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; de la Cruz, N.; Rodríguez-Pérez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Synthesis of highly efficient multivalent disaccharide/[60]fullerene nanoballs for emergent viruses. J. Am. Chem. Soc., 2019, 141(38), 15403-15412.
[http://dx.doi.org/10.1021/jacs.9b08003] [PMID: 31469952]
[27]
Ramos-Soriano, J.; Reina, J.J.; Pérez-Sánchez, A.; Illescas, B.M.; Rojo, J.; Martín, N. Cyclooctyne [60]fullerene hexakis adducts: A globular scaffold for copper-free click chemistry. Chem. Commun. (Camb.), 2016, 52(69), 10544-10546.
[http://dx.doi.org/10.1039/C6CC05484F] [PMID: 27492263]
[28]
Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; Rojo, J.; Martín, N. Maleimide and cyclooctyne-based hexakis-adducts of fullerene: Multivalent scaffolds for copper-free click chemistry on fullerenes. J. Org. Chem., 2018, 83(4), 1727-1736.
[http://dx.doi.org/10.1021/acs.joc.7b02402] [PMID: 29310437]
[29]
Wadood, A.; Ghufran, M.; Khan, A.; Azam, S.S.; Jelani, M.; Uddin, R. Selective glycosidase inhibitors: A patent review (2012-present). Int. J. Biol. Macromol., 2018, 111, 82-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.148] [PMID: 29305216]
[30]
Dehoux-Baudoin, C.; Génisson, Y. C-branched imino sugars: Synthesis and biological relevance. Eur. J. Org. Chem., 2019, 2019(30), 4765-4777.
[http://dx.doi.org/10.1002/ejoc.201900605]
[31]
Greimel, P.; Spreitz, J.; Stütz, A.E.; Wrodnigg, T.M. Iminosugars and relatives as antiviral and potential anti-infective agents. Curr. Top. Med. Chem., 2003, 3(5), 513-523.
[http://dx.doi.org/10.2174/1568026033452456] [PMID: 12570863]
[32]
Rye, P.D.; Bovin, N.V.; Vlasova, E.V.; Walker, R.A. Monoclonal antibody LU-BCRU-G7 against a breast tumour-associated glycoprotein recognizes the disaccharide Gal β 1-3GlcNAc. Glycobiology, 1995, 5(4), 385-389.
[http://dx.doi.org/10.1093/glycob/5.4.385] [PMID: 7579792]
[33]
Singh, A.; Mhlongo, N.; Soliman, M.E. Anti-cancer glycosidase inhibitors from natural products: A computational and molecular modelling perspective. Anticancer. Agents Med. Chem., 2015, 15(8), 933-946.
[http://dx.doi.org/10.2174/1871520615666150223123622] [PMID: 25706917]
[34]
Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med., 2005, 353(13), 1363-1373.
[http://dx.doi.org/10.1056/NEJMra050740] [PMID: 16192481]
[35]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng., 2017, 40(6), 943-957.
[http://dx.doi.org/10.1007/s00449-017-1758-2] [PMID: 28361361]
[36]
Balan, K.; Qing, W.; Wang, Y.; Liu, X.; Palvannan, T.; Wang, Y.; Ma, F.; Zhang, Y. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Advances, 2016, 6(46), 40162-40168.
[http://dx.doi.org/10.1039/C5RA24391B]
[37]
Naik, M.Z.; Meena, S.N.; Ghadi, S.C.; Naik, M.M.; Salker, A.V. Evaluation of silver-doped indium oxide nanoparticles as in vitro α-amylase and α-glucosidase inhibitors. Med. Chem. Res., 2016, 25(3), 381-389.
[http://dx.doi.org/10.1007/s00044-015-1494-6]
[38]
Yuzwa, S.A.; Vocadlo, D.J. O-GlcNAc and neurodegeneration: Biochemical mechanisms and potential roles in Alzheimer’s disease and beyond. Chem. Soc. Rev., 2014, 43(19), 6839-6858.
[http://dx.doi.org/10.1039/C4CS00038B] [PMID: 24759912]
[39]
Wennekes, T.; van den Berg, R.J.B.H.N.; Boot, R.G.; van der Marel, G.A.; Overkleeft, H.S.; Aerts, J.M.F.G. Glycosphingolipids-nature, function, and pharmacological modulation. Angew. Chem. Int. Ed. Engl., 2009, 48(47), 8848-8869.
[http://dx.doi.org/10.1002/anie.200902620] [PMID: 19862781]
[40]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[41]
Ahmed, K.B.A.; Raman, T.; Veerappan, A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater. Sci. Eng. C, 2016, 68, 939-947.
[http://dx.doi.org/10.1016/j.msec.2016.06.034] [PMID: 27524096]
[42]
Decroocq, C.; Rodríguez-Lucena, D.; Russo, V.; Mena Barragán, T.; Ortiz Mellet, C.; Compain, P. The multivalent effect in glycosidase inhibition: Probing the influence of architectural parameters with cyclodextrin-based iminosugar click clusters. Chemistry, 2011, 17(49), 13825-13831.
[http://dx.doi.org/10.1002/chem.201102266] [PMID: 22052823]
[43]
Decroocq, C.; Rodríguez-Lucena, D.; Ikeda, K.; Asano, N.; Compain, P. Cyclodextrin-based iminosugar click clusters: The first examples of multivalent pharmacological chaperones for the treatment of lysosomal storage disorders. ChemBioChem, 2012, 13(5), 661-664.
[http://dx.doi.org/10.1002/cbic.201200005] [PMID: 22344719]
[44]
Decroocq, C.; Joosten, A.; Sergent, R.; Mena Barragán, T.; Ortiz Mellet, C.; Compain, P. The multivalent effect in glycosidase inhibition: Probing the influence of valency, peripheral ligand structure, and topology with cyclodextrin-based iminosugar click clusters. ChemBioChem, 2013, 14(15), 2038-2049.
[http://dx.doi.org/10.1002/cbic.201300283] [PMID: 24014313]
[45]
Joosten, A.; Schneider, J.P.; Lepage, M.L.; Tarnus, C.; Bodlenner, A.; Compain, P. A convergent strategy for the synthesis of second-generation iminosugar clusters using “clickable” trivalent dendrons. Eur. J. Org. Chem., 2014, 2014(9), 1866-1872.
[http://dx.doi.org/10.1002/ejoc.201301583]
[46]
Brissonnet, Y.; Ortiz Mellet, C.; Morandat, S.; Garcia Moreno, M.I.; Deniaud, D.; Matthews, S.E.; Vidal, S.; Šesták, S.; El Kirat, K.; Gouin, S.G. Topological effects and binding modes operating with multivalent iminosugar-based glycoclusters and mannosidases. J. Am. Chem. Soc., 2013, 135(49), 18427-18435.
[http://dx.doi.org/10.1021/ja406931w] [PMID: 24224682]
[47]
Bonduelle, C.; Huang, J.; Mena-Barragán, T.; Ortiz Mellet, C.; Decroocq, C.; Etamé, E.; Heise, A.; Compain, P.; Lecommandoux, S. Iminosugar-based glycopolypeptides: Glycosidase inhibition with bioinspired glycoprotein analogue micellar self-assemblies. Chem. Commun. (Camb.), 2014, 50(25), 3350-3352.
[http://dx.doi.org/10.1039/C3CC48190E] [PMID: 24535213]
[48]
Lepage, M.L.; Meli, A.; Bodlenner, A.; Tarnus, C.; De Riccardis, F.; Izzo, I.; Compain, P. Synthesis of the first examples of iminosugar clusters based on cyclopeptoid cores. Beilstein J. Org. Chem., 2014, 10, 1406-1412.
[http://dx.doi.org/10.3762/bjoc.10.144] [PMID: 24991295]
[49]
Lepage, M.L.; Schneider, J.P.; Bodlenner, A.; Meli, A.; De Riccardis, F.; Schmitt, M.; Tarnus, C.; Nguyen-Huynh, N-T.; Francois, Y-N.; Leize-Wagner, E.; Birck, C.; Cousido-Siah, A.; Podjarny, A.; Izzo, I.; Compain, P. Iminosugar-cyclopeptoid conjugates raise multivalent effect in glycosidase inhibition at unprecedented high levels. Chemistry, 2016, 22(15), 5151-5155.
[http://dx.doi.org/10.1002/chem.201600338] [PMID: 26917097]
[50]
Brissonnet, Y.; Ladevèze, S.; Tezé, D.; Fabre, E.; Deniaud, D.; Daligault, F.; Tellier, C.; Šesták, S.; Remaud-Simeon, M.; Potocki-Veronese, G.; Gouin, S.G. Polymeric iminosugars improve the activity of carbohydrate-processing enzymes. Bioconjug. Chem., 2015, 26(4), 766-772.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00081] [PMID: 25741759]
[51]
Siriwardena, A.; Khanal, M.; Barras, A.; Bande, O.; Mena-Barragán, T.; Mellet, C.O.; Garcia Fernández, J.M.; Boukherroub, R.; Szunerits, S. Unprecedented inhibition of glycosidase-catalyzed substrate hydrolysis by nanodiamond-grafted O-glycosides. RSC Advances, 2015, 5(122), 100568-100578.
[http://dx.doi.org/10.1039/C5RA21390H]
[52]
Compain, P.; Bodlenner, A. The multivalent effect in glycosidase inhibition: A new, rapidly emerging topic in glycoscience. ChemBioChem, 2014, 15(9), 1239-1251.
[http://dx.doi.org/10.1002/cbic.201402026] [PMID: 24807298]
[53]
Kanfar, N.; Bartolami, E.; Zelli, R.; Marra, A.; Winum, J-Y.; Ulrich, S.; Dumy, P. Emerging trends in enzyme inhibition by multivalent nanoconstructs. Org. Biomol. Chem., 2015, 13(39), 9894-9906.
[http://dx.doi.org/10.1039/C5OB01405K] [PMID: 26338715]
[54]
Gouin, S.G. Multivalent inhibitors for carbohydrate-processing enzymes: Beyond the “lock-and-key” concept. Chemistry, 2014, 20(37), 11616-11628.
[http://dx.doi.org/10.1002/chem.201402537] [PMID: 25081380]
[55]
Nierengarten, J.F.; Schneider, J.P.; Trinh, T.M.N.; Joosten, A.; Holler, M.; Lepage, M.L.; Bodlenner, A.; García-Moreno, M.I.; Ortiz Mellet, C.; Compain, P. Giant glycosidase inhibitors: First- and second-generation fullerodendrimers with a dense iminosugar shell. Chemistry, 2018, 24(10), 2483-2492.
[http://dx.doi.org/10.1002/chem.201705600] [PMID: 29281149]
[56]
Trinh, T.M.N.; Holler, M.; Schneider, J.P.; García-Moreno, M.I.; García Fernández, J.M.; Bodlenner, A.; Compain, P.; Ortiz Mellet, C.; Nierengarten, J.F. Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6546-6556.
[http://dx.doi.org/10.1039/C7TB01052D] [PMID: 32264416]
[57]
Abellán Flos, M.; García Moreno, M.I.; Ortiz Mellet, C.; García Fernández, J.M.; Nierengarten, J-F.; Vincent, S.P. Potent glycosidase inhibition with heterovalent fullerenes: Unveiling the binding modes triggering multivalent inhibition. Chemistry, 2016, 22(32), 11450-11460.
[http://dx.doi.org/10.1002/chem.201601673] [PMID: 27374430]
[58]
Compain, P.; Decroocq, C.; Iehl, J.; Holler, M.; Hazelard, D.; Mena Barragán, T.; Ortiz Mellet, C.; Nierengarten, J-F. Glycosidase inhibition with fullerene iminosugar balls: A dramatic multivalent effect. Angew. Chem. Int. Ed. Engl., 2010, 49(33), 5753-5756.
[http://dx.doi.org/10.1002/anie.201002802] [PMID: 20818758]
[59]
Mena-Barragán, T.; Narita, A.; Matias, D.; Tiscornia, G.; Nanba, E.; Ohno, K.; Suzuki, Y.; Higaki, K.; Garcia Fernández, J.M.; Ortiz Mellet, C. pH-responsive pharmacological chaperones for rescuing mutant glycosidases. Angew. Chem. Int. Ed. Engl., 2015, 54(40), 11696-11700.
[http://dx.doi.org/10.1002/anie.201505147] [PMID: 26386364]
[60]
Arroba, A.I.; Alcalde-Estevez, E.; García-Ramírez, M.; Cazzoni, D.; de la Villa, P.; Sánchez-Fernández, E.M.; Mellet, C.O.; García Fernández, J.M.; Hernández, C.; Simó, R.; Valverde, Á.M. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice. Biochim. Biophys. Acta, 2016, 1862(9), 1663-1674.
[http://dx.doi.org/10.1016/j.bbadis.2016.05.024] [PMID: 27267343]
[61]
Sánchez-Fernández, E.M.; Gonçalves-Pereira, R.; Rísquez-Cuadro, R.; Plata, G.B.; Padrón, J.M.; García Fernández, J.M.; Ortiz Mellet, C. Influence of the configurational pattern of sp(2)-iminosugar pseudo N-, S-, O- and C-glycosides on their glycoside inhibitory and antitumor properties. Carbohydr. Res., 2016, 429, 113-122.
[http://dx.doi.org/10.1016/j.carres.2016.01.006] [PMID: 26850915]
[62]
Fernández, E.M.S.; Navo, C.D.; Martínez-Sáez, N.; Gonçalves-Pereira, R.; Somovilla, V.J.; Avenoza, A.; Busto, J.H.; Bernardes, G.J.L.; Jiménez-Osés, G.; Corzana, F.; Fernández, J.M.G.; Mellet, C.O.; Peregrina, J.M. Tn antigen mimics based on sp(2)-iminosugars with affinity for an anti-muc1 antibody. Org. Lett., 2016, 18(15), 3890-3893.
[http://dx.doi.org/10.1021/acs.orglett.6b01899] [PMID: 27453399]
[63]
García-Moreno, M.I.; de la Mata, M.; Sánchez-Fernández, E.M.; Benito, J.M.; Díaz-Quintana, A.; Fustero, S.; Nanba, E.; Higaki, K.; Sánchez-Alcázar, J.A.; García Fernández, J.M.; Ortiz Mellet, C. Fluorinated chaperone-β-cyclodextrin formulations for β-glucocerebrosidase activity enhancement in neuronopathic gaucher disease. J. Med. Chem., 2017, 60(5), 1829-1842.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01550] [PMID: 28171725]
[64]
Stauffert, F.; Bodlenner, A.; Nguyet Trinh, T.M.; García-Moreno, M.I.; Ortiz Mellet, C.; Nierengarten, J-F.; Compain, P. Understanding multivalent effects in glycosidase inhibition using C-glycoside click clusters as molecular probes. New J. Chem., 2016, 40(9), 7421-7430.
[http://dx.doi.org/10.1039/C6NJ01311B]
[65]
Videira, P.A.; Marcelo, F.; Grewal, R.K. Glycosyltransferase inhibitors: A promising strategy to pave a path from laboratory to therapy.Carbohydrate chemistry: Chemical and biological approaches.The Royal Society of Chemistry; , 2018, 43, pp. 135-158.
[66]
Durka, M.; Buffet, K.; Iehl, J.; Holler, M.; Nierengarten, J-F.; Vincent, S.P. The inhibition of liposaccharide heptosyltransferase WaaC with multivalent glycosylated fullerenes: A new mode of glycosyltransferase inhibition. Chemistry, 2012, 18(2), 641-651.
[http://dx.doi.org/10.1002/chem.201102052] [PMID: 22147564]
[67]
Tikad, A.; Fu, H.; Sevrain, C.M.; Laurent, S.; Nierengarten, J-F.; Vincent, S.P. Mechanistic insight into heptosyltransferase inhibition by using kdo multivalent glycoclusters. Chemistry, 2016, 22(37), 13147-13155.
[http://dx.doi.org/10.1002/chem.201602190] [PMID: 27516128]
[68]
Buffet, K.; Gillon, E.; Holler, M.; Nierengarten, J-F.; Imberty, A.; Vincent, S.P. Fucofullerenes as tight ligands of RSL and LecB, two bacterial lectins. Org. Biomol. Chem., 2015, 13(23), 6482-6492.
[http://dx.doi.org/10.1039/C5OB00689A] [PMID: 25967393]
[69]
Nierengarten, J.F. Fullerene hexa-adduct scaffolding for the construction of giant molecules. Chem. Commun. (Camb.), 2017, 53(87), 11855-11868.
[http://dx.doi.org/10.1039/C7CC07479D] [PMID: 29051931]
[70]
Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev., 2015, 115(1), 525-561.
[http://dx.doi.org/10.1021/cr500303t] [PMID: 25495138]
[71]
Buffet, K.; Nierengarten, I.; Galanos, N.; Gillon, E.; Holler, M.; Imberty, A.; Matthews, S.E.; Vidal, S.; Vincent, S.P.; Nierengarten, J-F. Pillar[5]arene-based glycoclusters: Synthesis and multivalent binding to pathogenic bacterial lectins. Chemistry, 2016, 22(9), 2955-2963.
[http://dx.doi.org/10.1002/chem.201504921] [PMID: 26845383]
[72]
Galanos, N.; Gillon, E.; Imberty, A.; Matthews, S.E.; Vidal, S. Pentavalent pillar[5]arene-based glycoclusters and their multivalent binding to pathogenic bacterial lectins. Org. Biomol. Chem., 2016, 14(13), 3476-3481.
[http://dx.doi.org/10.1039/C6OB00220J] [PMID: 26972051]
[73]
Serda, M.; Malarz, K.; Mrozek-Wilczkiewicz, A.; Wojtyniak, M.; Musioł, R.; Curley, S.A. Glycofullerenes as non-receptor tyrosine kinase inhibitors- towards better nanotherapeutics for pancreatic cancer treatment. Sci. Rep., 2020, 10(1), 260-260.
[http://dx.doi.org/10.1038/s41598-019-57155-7] [PMID: 31937861]
[74]
Serda, M.; Ware, M.J.; Newton, J.M.; Sachdeva, S.; Krzykawska-Serda, M.; Nguyen, L.; Law, J.; Anderson, A.O.; Curley, S.A.; Wilson, L.J.; Corr, S.J. Development of photoactive Sweet-C60 for pancreatic cancer stellate cell therapy. Nanomedicine (Lond.), 2018, 13(23), 2981-2993.
[http://dx.doi.org/10.2217/nnm-2018-0239] [PMID: 30501557]
[75]
Bartelmess, J.; Quinn, S.J.; Giordani, S. Carbon nanomaterials: Multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev., 2015, 44(14), 4672-4698.
[http://dx.doi.org/10.1039/C4CS00306C] [PMID: 25406743]
[76]
Baptista, F.R.; Belhout, S.A.; Giordani, S.; Quinn, S.J. Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev., 2015, 44(13), 4433-4453.
[http://dx.doi.org/10.1039/C4CS00379A] [PMID: 25980819]
[77]
Liu, H.; Zhang, L.; Yan, M.; Yu, J. Carbon nanostructures in biology and medicine. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6437-6450.
[http://dx.doi.org/10.1039/C7TB00891K] [PMID: 32264410]
[78]
Benzigar, M.R.; Talapaneni, S.N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev., 2018, 47(8), 2680-2721.
[http://dx.doi.org/10.1039/C7CS00787F] [PMID: 29577123]
[79]
Kwon, O.S.; Song, H.S.; Park, T.H.; Jang, J. Conducting nanomaterial sensor using natural receptors. Chem. Rev., 2019, 119(1), 36-93.
[http://dx.doi.org/10.1021/acs.chemrev.8b00159] [PMID: 30372041]
[80]
Ibrahim, K.S. Carbon nanotubes-properties and applications: A review. Carbon Letters, 2013, 14, 131-134.
[http://dx.doi.org/10.5714/CL.2013.14.3.131]
[81]
Kong, N.; Shimpi, M.R.; Ramström, O.; Yan, M.; Yan, M. Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides. Carbohydr. Res., 2015, 405, 33-38.
[http://dx.doi.org/10.1016/j.carres.2014.09.006] [PMID: 25746392]
[82]
Dinesh, B.; Bianco, A.; Ménard-Moyon, C. Designing multimodal carbon nanotubes by covalent multi-functionalization. Nanoscale, 2016, 8(44), 18596-18611.
[http://dx.doi.org/10.1039/C6NR06728J] [PMID: 27805213]
[83]
Mallakpour, S.; Soltanian, S. Surface functionalization of carbon nanotubes: Fabrication and applications. RSC Advances, 2016, 6(111), 109916-109935.
[http://dx.doi.org/10.1039/C6RA24522F]
[84]
Alshehri, R.; Ilyas, A.M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon nanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity. J. Med. Chem., 2016, 59(18), 8149-8167.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01770] [PMID: 27142556]
[85]
Pernía Leal, M.; Assali, M.; Cid, J.J.; Valdivia, V.; Franco, J.M.; Fernández, I.; Pozo, D.; Khiar, N. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent-covalent functionalization of single wall carbon nanotubes: A study of their selective interactions with lectins and with live cells. Nanoscale, 2015, 7(45), 19259-19272.
[http://dx.doi.org/10.1039/C5NR05956A] [PMID: 26531801]
[86]
Hussain, S.; Ji, Z.; Taylor, A.J.; DeGraff, L.M.; George, M.; Tucker, C.J.; Chang, C.H.; Li, R.; Bonner, J.C.; Garantziotis, S. Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano, 2016, 10(8), 7675-7688.
[http://dx.doi.org/10.1021/acsnano.6b03013] [PMID: 27459049]
[87]
Dosekova, E.; Filip, J.; Bertok, T.; Both, P.; Kasak, P.; Tkac, J. Nanotechnology in glycomics: Applications in diagnostics, therapy, imaging, and separation processes. Med. Res. Rev., 2017, 37(3), 514-626.
[http://dx.doi.org/10.1002/med.21420] [PMID: 27859448]
[88]
Kasprzak, A.; Poplawska, M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem. Commun. (Camb.), 2018, 54(62), 8547-8562.
[http://dx.doi.org/10.1039/C8CC04120B] [PMID: 29972382]
[89]
Nazarzadeh Zare, E.; Makvandi, P.; Borzacchiello, A.; Tay, F.R.; Ashtari, B.; V T Padil, V. Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem. Commun. (Camb.), 2019, 55(99), 14871-14885.
[http://dx.doi.org/10.1039/C9CC08207G] [PMID: 31776528]
[90]
Dong, Z.; Wang, Q.; Huo, M.; Zhang, N.; Li, B.; Li, H.; Xu, Y.; Chen, M.; Hong, H.; Wang, Y. Mannose-modified multi-walled carbon nanotubes as a delivery nanovector optimizing the antigen presentation of dendritic cells. ChemistryOpen, 2019, 8(7), 915-921.
[http://dx.doi.org/10.1002/open.201900126] [PMID: 31338275]
[91]
Rodríguez-Pérez, L.; Ramos-Soriano, J.; Pérez-Sánchez, A.; Illescas, B.M.; Muñoz, A.; Luczkowiak, J.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Nanocarbon-based glycoconjugates as multivalent inhibitors of ebola virus infection. J. Am. Chem. Soc., 2018, 140(31), 9891-9898.
[http://dx.doi.org/10.1021/jacs.8b03847] [PMID: 30014698]
[92]
Cid Martín, J.J.; Assali, M.; Fernández-García, E.; Valdivia, V.; Sánchez-Fernández, E.M.; Garcia Fernández, J.M.; Wellinger, R.E.; Fernández, I.; Khiar, N. Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(11), 2028-2037.
[http://dx.doi.org/10.1039/C5TB02488A] [PMID: 32263080]
[93]
Pramanik, A.; Jones, S.; Gao, Y.; Sweet, C.; Begum, S.; Shukla, M.K.; Buchanan, J.P.; Moser, R.D.; Ray, P.C. A bio-conjugated chitosan wrapped CNT based 3D nanoporous architecture for separation and inactivation of Rotavirus and Shigella waterborne pathogens. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(48), 9522-9531.
[http://dx.doi.org/10.1039/C7TB02815F] [PMID: 32264567]
[94]
Romero-Ben, E.; Cid, J.J.; Assali, M.; Fernández-García, E.; Wellinger, R.E.; Khiar, N. Surface modulation of single-walled carbon nanotubes for selective bacterial cell agglutination. Int. J. Nanomedicine, 2019, 14, 3245-3263.
[http://dx.doi.org/10.2147/IJN.S179202] [PMID: 31190792]
[95]
Datir, S.R.; Das, M.; Singh, R.P.; Jain, S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug. Chem., 2012, 23(11), 2201-2213.
[http://dx.doi.org/10.1021/bc300248t] [PMID: 23039830]
[96]
Hou, L.; Zhang, H.; Wang, Y.; Wang, L.; Yang, X.; Zhang, Z. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent. Int. J. Nanomedicine, 2015, 10, 4507-4520.
[PMID: 26213465]
[97]
Cao, X.; Tao, L.; Wen, S.; Hou, W.; Shi, X. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr. Res., 2015, 405, 70-77.
[http://dx.doi.org/10.1016/j.carres.2014.06.030] [PMID: 25500334]
[98]
Arosio, P.; Comito, G.; Orsini, F.; Lascialfari, A.; Chiarugi, P.; Ménard-Moyon, C.; Nativi, C.; Richichi, B. Conjugation of a GM3 lactone mimetic on carbon nanotubes enhances the related inhibition of melanoma-associated metastatic events. Org. Biomol. Chem., 2018, 16(33), 6086-6095.
[http://dx.doi.org/10.1039/C8OB01817K] [PMID: 30091781]
[99]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[100]
Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(4), 1198-1224.
[http://dx.doi.org/10.1039/C9TC04916A]
[101]
Cheng, C.; Li, S.; Thomas, A.; Kotov, N.A.; Haag, R. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chem. Rev., 2017, 117(3), 1826-1914.
[http://dx.doi.org/10.1021/acs.chemrev.6b00520] [PMID: 28075573]
[102]
Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem., 2018, 8(2), 123-137.
[http://dx.doi.org/10.1007/s40097-018-0265-6]
[103]
Ruhl, G.; Wittmann, S.; Koenig, M.; Neumaier, D. The integration of graphene into microelectronic devices. Beilstein J. Nanotechnol., 2017, 8(1), 1056-1064.
[http://dx.doi.org/10.3762/bjnano.8.107] [PMID: 28685106]
[104]
Akinwande, D.; Kireev, D. Wearable graphene sensors use ambient light to monitor health. Nature, 2019, 576(7786), 220-221.
[http://dx.doi.org/10.1038/d41586-019-03483-7] [PMID: 31822826]
[105]
Kong, N.; Park, J.; Yang, X.; Ramström, O.; Yan, M. Carbohydrate functionalization of few-layer graphene through microwave-assisted reaction of perfluorophenyl azide. ACS Applied Bio Materials, 2019, 2(1), 284-291.
[http://dx.doi.org/10.1021/acsabm.8b00597]
[106]
Sharma, D.; Rao, N.N.M.; Arasaretnam, S.; Sesha Sainath, A.V.; Dhayal, M. Functionalization of structurally diverse glycopolymers on graphene oxide surfaces and their quantification through fluorescence resonance energy transfer with fluorescein isothiocyanate. Colloid Polym. Sci., 2020, 298, 365-375.
[http://dx.doi.org/10.1007/s00396-020-04611-w]
[107]
Sayyar, S.; Murray, E.; Gambhir, S.; Spinks, G.; Wallace, G.G.; Officer, D.L. Synthesis and characterization of covalently linked graphene/chitosan composites. JOM, 2016, 68(1), 384-390.
[http://dx.doi.org/10.1007/s11837-015-1549-7]
[108]
Kim, J.; Lee, M-S.; Jeon, S.; Kim, M.; Kim, S.; Kim, K.; Bien, F.; Hong, S.Y.; Park, J-U. Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater., 2015, 27(21), 3292-3297.
[http://dx.doi.org/10.1002/adma.201500710] [PMID: 25885929]
[109]
He, X-P.; Zang, Y.; James, T.D.; Li, J.; Chen, G-R. Xie, J. Fluorescent glycoprobes: A sweet addition for improved sensing. Chem. Commun. (Camb.), 2016, 53(1), 82-90.
[http://dx.doi.org/10.1039/C6CC06875H] [PMID: 27740660]
[110]
Jiang, T.; Tan, H.; Sun, Y.; Wang, J.; Hang, Y.; Lu, N.; Yang, J.; Qu, X.; Hua, J. Graphene oxide-based NIR fluorescence probe with aggregation-induced emission property for lectins detection and liver cells targeting. Sens. Actuators B Chem., 2018, 261, 115-126.
[http://dx.doi.org/10.1016/j.snb.2017.10.163]
[111]
He, X-P.; Zhu, B-W.; Zang, Y.; Li, J.; Chen, G-R.; Tian, H.; Long, Y-T. Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes. Chem. Sci. (Camb.), 2015, 6(3), 1996-2001.
[http://dx.doi.org/10.1039/C4SC03614J] [PMID: 28706649]
[112]
Xie, D.; Feng, X-Q.; Hu, X-L.; Liu, L.; Ye, Z.; Cao, J.; Chen, G-R.; He, X-P.; Long, Y-T. Probing mannose-binding proteins that express on live cells and pathogens with a diffusion-to-surface ratiometric graphene electrosensor. ACS Appl. Mater. Interfaces, 2016, 8(38), 25137-25141.
[http://dx.doi.org/10.1021/acsami.6b08566] [PMID: 27588680]
[113]
He, X-P.; Tian, H. Lightening up membrane receptors with fluorescent molecular probes and supramolecular materials. Chem, 2018, 4(2), 246-268.
[http://dx.doi.org/10.1016/j.chempr.2017.11.006]
[114]
Ji, D-K.; Chen, G-R.; He, X-P.; Tian, H. Simultaneous detection of diverse glycoligand-receptor recognitions using a single-excitation, dual-emission graphene composite. Adv. Funct. Mater., 2015, 25(23), 3483-3487.
[http://dx.doi.org/10.1002/adfm.201500448]
[115]
Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 2011, 5(9), 6971-6980.
[http://dx.doi.org/10.1021/nn202451x] [PMID: 21851105]
[116]
Chandler, C.I.R. Current accounts of antimicrobial resistance: Stabilisation, individualisation and antibiotics as infrastructure. Palgrave Commun., 2019, 5(1), 53.
[http://dx.doi.org/10.1057/s41599-019-0263-4] [PMID: 31157116]
[117]
Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials (Basel), 2019, 9(5), 737.
[http://dx.doi.org/10.3390/nano9050737] [PMID: 31086043]
[118]
Szunerits, S.; Boukherroub, R. Antibacterial activity of graphene-based materials. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(43), 6892-6912.
[http://dx.doi.org/10.1039/C6TB01647B] [PMID: 32263558]
[119]
Nizet, V.; Varki, A.; Aebi, M. Microbial lectins: Hemagglutinins, adhesins, and toxins.Essentials of glycobiology; Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H., Eds.; Cold Spring Harbor Laboratory Press. , 2015.
[120]
Khodadadi Chegeni, B.; Dadkhah Tehrani, A.; Adeli, M. Glyco-functionalized graphene oxides as green antibacterial absorbent materials. J. Taiwan Inst. Chem. Eng., 2019, 96, 176-184.
[http://dx.doi.org/10.1016/j.jtice.2018.11.003]
[121]
Qi, Z.; Bharate, P.; Lai, C-H.; Ziem, B.; Böttcher, C.; Schulz, A.; Beckert, F.; Hatting, B.; Mülhaupt, R.; Seeberger, P.H.; Haag, R. Multivalency at interfaces: Supramolecular carbohydrate-functionalized graphene derivatives for bacterial capture, release, and disinfection. Nano Lett., 2015, 15(9), 6051-6057.
[http://dx.doi.org/10.1021/acs.nanolett.5b02256] [PMID: 26237059]
[122]
Maruthupandy, M.; Rajivgandhi, G.; Muneeswaran, T.; Anand, M.; Quero, F. Highly efficient antibacterial activity of graphene/chitosan/magnetite nanocomposites against ESBL-producing Pseudomonas aeruginosa and Klebsiella pneumoniae. Colloids Surf. B Biointerfaces, 2021, 202, 111690.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111690] [PMID: 33721803]
[123]
Shende, P.; Pathan, N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohydr. Polym., 2021, 255, 117385.
[http://dx.doi.org/10.1016/j.carbpol.2020.117385] [PMID: 33436214]
[124]
Rostami, S.; Puza, F.; Ucak, M.; Ozgur, E.; Gul, O.; Ercan, U.K.; Garipcan, B. Bifunctional sharkskin mimicked chitosan/graphene oxide membranes: Reduced biofilm formation and improved cytocompatibility. Appl. Surf. Sci., 2021, 544, 148828.
[http://dx.doi.org/10.1016/j.apsusc.2020.148828]
[125]
Rahnamaee, S.Y.; Bagheri, R.; Heidarpour, H.; Vossoughi, M.; Golizadeh, M.; Samadikuchaksaraei, A. Nanofibrillated chitosan coated highly ordered titania nanotubes array/graphene nanocomposite with improved biological characters. Carbohydr. Polym., 2021, 254, 117465.
[http://dx.doi.org/10.1016/j.carbpol.2020.117465] [PMID: 33357924]
[126]
Diaz-Galvez, K.R.; Teran-Saavedra, N.G.; Burgara-Estrella, A.J.; Fernandez-Quiroz, D.; Silva-Campa, E.; Acosta-Elias, M.; Sarabia-Sainz, H.M.; Pedroza-Montero, M.R.; Sarabia-Sainz, J.A. Specific capture of glycosylated graphene oxide by an asialoglycoprotein receptor: A strategic approach for liver-targeting. RSC Advances, 2019, 9(18), 9899-9906.
[http://dx.doi.org/10.1039/C8RA09732A]
[127]
Ji, D-K.; Zhang, Y.; Zang, Y.; Liu, W.; Zhang, X.; Li, J.; Chen, G-R.; James, T.D.; He, X-P. Receptor-targeting fluorescence imaging and theranostics using a graphene oxide based supramolecular glycocomposite. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(47), 9182-9185.
[http://dx.doi.org/10.1039/C5TB02057C] [PMID: 32263133]
[128]
Wang, C.; Zhang, Z.; Chen, B.; Gu, L.; Li, Y.; Yu, S. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J. Colloid Interface Sci., 2018, 516, 332-341.
[http://dx.doi.org/10.1016/j.jcis.2018.01.073] [PMID: 29408121]
[129]
de Sousa, M.; Martins, C.H.Z.; Franqui, L.S.; Fonseca, L.C.; Delite, F.S.; Lanzoni, E.M.; Martinez, D.S.T.; Alves, O.L. Covalent functionalization of graphene oxide with d-mannose: Evaluating the hemolytic effect and protein corona formation. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(18), 2803-2812.
[http://dx.doi.org/10.1039/C7TB02997G] [PMID: 32254233]
[130]
Oh, B.; Lee, C.H. Development of man-rgo for targeted eradication of macrophage ablation. Mol. Pharm., 2015, 12(9), 3226-3236.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00181] [PMID: 26161461]
[131]
Lima-Sousa, R.; de Melo-Diogo, D.; Alves, C.G.; Costa, E.C.; Ferreira, P.; Louro, R.O.; Correia, I.J. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr. Polym., 2018, 200, 93-99.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.066] [PMID: 30177213]
[132]
Kang, S.; Hong, Y.L.; Ku, B-C.; Lee, S.; Ryu, S.; Min, D-H.; Jang, H.; Kim, Y-K. Synthesis of biologically-active reduced graphene oxide by using fucoidan as a multifunctional agent for combination cancer therapy. Nanotechnology, 2018, 29(47), 475604.
[http://dx.doi.org/10.1088/1361-6528/aadfa5] [PMID: 30191889]
[133]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[134]
Liang, W.; Huang, Y.; Lu, D.; Ma, X.; Gong, T.; Cui, X.; Yu, B.; Yang, C.; Dong, C.; Shuang, S. β-cyclodextrinhyaluronic acid polymer functionalized magnetic graphene oxide nanocomposites for targeted photo-chemotherapy of tumor cells. Polymers (Basel), 2019, 11(1), 133.
[http://dx.doi.org/10.3390/polym11010133] [PMID: 30960117]
[135]
Yin, T.; Liu, J.; Zhao, Z.; Zhao, Y.; Dong, L.; Yang, M.; Zhou, J.; Huo, M. Redox sensitive hyaluronic acid-decorated graphene oxide for photothermally controlled tumor-cytoplasm-selective rapid drug delivery. Adv. Funct. Mater., 2017, 27(14), 1604620.
[http://dx.doi.org/10.1002/adfm.201604620]
[136]
Hill, S.; Galan, M.C. Fluorescent carbon dots from mono- and polysaccharides: Synthesis, properties and applications. Beilstein J. Org. Chem., 2017, 13, 675-693.
[http://dx.doi.org/10.3762/bjoc.13.67] [PMID: 28503203]
[137]
Hill, S.A.; Benito-Alifonso, D.; Davis, S.A.; Morgan, D.J.; Berry, M.; Galan, M.C. Practical three-minute synthesis of acid-coated fluorescent carbon dots with tuneable core structure. Sci. Rep., 2018, 8(1), 12234.
[http://dx.doi.org/10.1038/s41598-018-29674-2] [PMID: 30111806]
[138]
Hill, S.A.; Benito-Alifonso, D.; Morgan, D.J.; Davis, S.A.; Berry, M.; Galan, M.C. Three-minute synthesis of sp3 nanocrystalline carbon dots as non-toxic fluorescent platforms for intracellular delivery. Nanoscale, 2016, 8(44), 18630-18634.
[http://dx.doi.org/10.1039/C6NR07336K] [PMID: 27801469]
[139]
Hill, S.A.; Sheikh, S.; Zhang, Q.; Sueiro Ballesteros, L.; Herman, A.; Davis, S.A.; Morgan, D.J.; Berry, M.; Benito-Alifonso, D.; Galan, M.C. Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. Nanoscale Adv., 2019, 1(8), 2840-2846.
[http://dx.doi.org/10.1039/C9NA00293F]
[140]
Swift, T.A.; Duchi, M.; Hill, S.A.; Benito-Alifonso, D.; Harniman, R.L.; Sheikh, S.; Davis, S.A.; Seddon, A.M.; Whitney, H.M.; Galan, M.C.; Oliver, T.A.A. Surface functionalisation significantly changes the physical and electronic properties of carbon nano-dots. Nanoscale, 2018, 10(29), 13908-13912.
[http://dx.doi.org/10.1039/C8NR03430C] [PMID: 29999508]
[141]
Swift, T.A.; Oliver, T.A.A.; Galan, M.C.; Whitney, H.M. Functional nanomaterials to augment photosynthesis: Evidence and considerations for their responsible use in agricultural applications. Interface Focus, 2019, 9(1), 20180048.
[http://dx.doi.org/10.1098/rsfs.2018.0048] [PMID: 30603068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy