Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

circPUM1 Activates the PI3K/AKT Signaling Pathway by Sponging to Promote the Proliferation, Invasion and Glycolysis of Pancreatic Cancer

Author(s): Yang Chen, Yuhong Liu, Qiang Tao, YouWen Fan, Chao Ma, Dong Li , Fei Huang* and Di Tang*

Volume 23, Issue 11, 2022

Published on: 11 August, 2021

Page: [1405 - 1414] Pages: 10

DOI: 10.2174/1389201022666210713152457

Price: $65

Abstract

Background: Our study seeks to obtain data to assess the impact of circPUM1 on pancreatic cancer (PC) and its mechanism.

Methods: The expression of circPUM1 and miR-200c-3p in PC and normal tissues and PC cell lines was collected and detected, and subsequently dual-luciferase assay-based verification of the binding site of the two was carried out. After interfering with circPUM1 expression in MIAPaCa-2 and PANC-1 cells, cell proliferation, viability, apoptosis rate, invasion ability, glucose consumption, and lactate production were measured by MTT, colony formation, flow cytometry, Transwell assays, and glucose and lactate assay kits. Additionally, western blot was utilized for assessing PI3K/AKT signaling pathway-related proteins. From the results, highly expressed circPUM1 and miR-200c-3p in PC tissues and cells were proved.

Results: Down-regulation of circPUM1 expression significantly inhibited cell proliferation, cell viability, invasion and glycolysis, while increasing the apoptosis rate. Down-regulated circPUM1 led to the inhibition of the PI3K/AKT signaling pathway activity in PC cells; while up-regulated circPUM1 increased its activity. Further experiments revealed that down-regulation of miR-200c-3p expression reversed the inhibitory effect of lowly expressed circPUM1 on PC cells.

Conclusion: In summary, circPUM1 activates PI3K/AKT signaling pathway by sponging miR-200c-3p and promotes PC progression.

Keywords: Pancreatic cancer, circPUM1, miR-200c-3p, dual-luciferase assay, molecular sponge, flow cytometry.

« Previous
Graphical Abstract

[1]
Adamska, A.; Domenichini, A.; Falasca, M. Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int. J. Mol. Sci., 2017, 18(7), E1338.
[http://dx.doi.org/10.3390/ijms18071338] [PMID: 28640192]
[2]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[3]
Li, C.; Heidt, D.G.; Dalerba, P.; Burant, C.F.; Zhang, L.; Adsay, V.; Wicha, M.; Clarke, M.F.; Simeone, D.M. Identification of pancreatic cancer stem cells. Cancer Res., 2007, 67(3), 1030-1037.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2030] [PMID: 17283135]
[4]
Shin, E.J.; Canto, M.I. Pancreatic cancer screening. Gastroenterol. Clin. North Am., 2012, 41(1), 143-157.
[http://dx.doi.org/10.1016/j.gtc.2011.12.001] [PMID: 22341255]
[5]
Tsutsumi, H.; Hara, K.; Mizuno, N.; Hijioka, S.; Imaoka, H.; Tajika, M.; Tanaka, T.; Ishihara, M.; Yoshimura, K.; Shimizu, Y.; Niwa, Y.; Sasaki, Y.; Yamao, K. Clinical impact of preoperative endoscopic ultrasound-guided fine-needle aspiration for pancreatic ductal adenocarcinoma. Endosc. Ultrasound, 2016, 5(2), 94-100.
[http://dx.doi.org/10.4103/2303-9027.180472] [PMID: 27080607]
[6]
Du, W.W.; Zhang, C.; Yang, W.; Yong, T.; Awan, F.M.; Yang, B.B. Identifying and characterizing circrna-protein interaction. Theranostics, 2017, 7(17), 4183-4191.
[http://dx.doi.org/10.7150/thno.21299] [PMID: 29158818]
[7]
Wei, S.; Zheng, Y.; Jiang, Y.; Li, X.; Geng, J.; Shen, Y.; Li, Q.; Wang, X.; Zhao, C.; Chen, Y.; Qian, Z.; Zhou, J.; Li, W. The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine, 2019, 44, 182-193.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.032] [PMID: 31160270]
[8]
Panda, A.C. Circular RNAs Act as miRNA Sponges. Adv. Exp. Med. Biol., 2018, 1087, 67-79.
[http://dx.doi.org/10.1007/978-981-13-1426-1_6] [PMID: 30259358]
[9]
Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ action through miRNA editing. Int. J. Mol. Sci., 2019, 20(24), E6249.
[PMID: 31835747]
[10]
Li, F.; Zhang, L.; Li, W.; Deng, J.; Zheng, J.; An, M.; Lu, J.; Zhou, Y.; Circular, R.N.A. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget, 2015, 6(8), 6001-6013.
[http://dx.doi.org/10.18632/oncotarget.3469] [PMID: 25749389]
[11]
Zhang, Y.G.; Yang, H.L.; Long, Y.; Li, W.L. Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG, 2016, 123(13), 2113-2118.
[http://dx.doi.org/10.1111/1471-0528.13897] [PMID: 26846540]
[12]
Bahn, J.H.; Zhang, Q.; Li, F.; Chan, T.M.; Lin, X.; Kim, Y.; Wong, D.T.; Xiao, X. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem., 2015, 61(1), 221-230.
[http://dx.doi.org/10.1373/clinchem.2014.230433] [PMID: 25376581]
[13]
Yang, F.; Liu, D.Y.; Guo, J.T.; Ge, N.; Zhu, P.; Liu, X.; Wang, S.; Wang, G.X.; Sun, S.Y. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J. Gastroenterol., 2017, 23(47), 8345-8354.
[http://dx.doi.org/10.3748/wjg.v23.i47.8345] [PMID: 29307994]
[14]
Chen, J.; Xu, S.; Chen, S.; Zong, Z.; Han, X.; Zhao, Y.; Shang, H. CircPUM1 promotes the malignant behavior of lung adenocarcinoma by regulating miR-326. Biochem. Biophys. Res. Commun., 2019, 508(3), 844-849.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.176] [PMID: 30528736]
[15]
Guan, X.; Zong, Z.H.; Liu, Y.; Chen, S.; Wang, L.L.; Zhao, Y. circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging mir-615-5p and mir-6753-5p. Mol. Ther. Nucleic Acids, 2019, 18, 882-892.
[http://dx.doi.org/10.1016/j.omtn.2019.09.032] [PMID: 31751911]
[16]
Wang, C.; Ding, M.; Xia, M.; Chen, S.; Van Le, A.; Soto-Gil, R.; Shen, Y.; Wang, N.; Wang, J.; Gu, W.; Wang, X.; Zhang, Y.; Zen, K.; Chen, X.; Zhang, C.; Zhang, C.Y. A five-mirna panel identified from a multicentric case-control study serves as a novel diagnostic tool for ethnically diverse non-small-cell lung cancer patients. EBioMedicine, 2015, 2(10), 1377-1385.
[http://dx.doi.org/10.1016/j.ebiom.2015.07.034] [PMID: 26629532]
[17]
Zhang, H.D.; Jiang, L.H.; Sun, D.W.; Hou, J.C.; Ji, Z.L. CircRNA: a novel type of biomarker for cancer. Breast Cancer, 2018, 25(1), 1-7.
[http://dx.doi.org/10.1007/s12282-017-0793-9] [PMID: 28721656]
[18]
Verduci, L.; Strano, S.; Yarden, Y.; Blandino, G. The circRNA-microRNA code: Emerging implications for cancer diagnosis and treatment. Mol. Oncol., 2019, 13(4), 669-680.
[http://dx.doi.org/10.1002/1878-0261.12468] [PMID: 30719845]
[19]
Chen, S.; Li, T.; Zhao, Q.; Xiao, B.; Guo, J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin. Chim. Acta, 2017, 466, 167-171.
[http://dx.doi.org/10.1016/j.cca.2017.01.025] [PMID: 28130019]
[20]
Qin, M.; Liu, G.; Huo, X.; Tao, X.; Sun, X.; Ge, Z.; Yang, J.; Fan, J.; Liu, L.; Qin, W. Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark., 2016, 16(1), 161-169.
[http://dx.doi.org/10.3233/CBM-150552] [PMID: 26600397]
[21]
Qu, S.; Hao, X.; Song, W.; Niu, K.; Yang, X.; Zhang, X.; Shang, R.; Wang, Q.; Li, H.; Liu, Z. Circular RNA circRHOT1 is upregulated and promotes cell proliferation and invasion in pancreatic cancer. Epigenomics, 2019, 11(1), 53-63.
[http://dx.doi.org/10.2217/epi-2018-0051] [PMID: 30444423]
[22]
Huang, M.B.; Xia, M.; Gao, Z.; Zhou, H.; Liu, M.; Huang, S.; Zhen, R.; Wu, J.Y.; Roth, W.W.; Bond, V.C.; Xiao, J.; Leng, J. Characterization of exosomes in plasma of patients with breast, ovarian, prostate, hepatic, gastric, colon, and pancreatic cancers. J. Cancer Ther., 2019, 10(5), 382-399.
[http://dx.doi.org/10.4236/jct.2019.105032] [PMID: 33833900]
[23]
Ardila, H.J.; Sanabria-Salas, M.C.; Meneses, X.; Rios, R.; Huertas-Salgado, A.; Serrano, M.L. Circulating miR-141-3p, miR-143-3p and miR-200c-3p are differentially expressed in colorectal cancer and advanced adenomas. Mol. Clin. Oncol., 2019, 11(2), 201-207.
[http://dx.doi.org/10.3892/mco.2019.1876] [PMID: 31316774]
[24]
Liu, Z.; Zhou, Y.; Liang, G.; Ling, Y.; Tan, W.; Tan, L.; Andrews, R.; Zhong, W.; Zhang, X.; Song, E.; Gong, C. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis., 2019, 10(2), 55.
[http://dx.doi.org/10.1038/s41419-018-1287-1] [PMID: 30670688]
[25]
Li, T.; Zhao, P.; Li, Z.; Wang, C.C.; Wang, Y.L.; Gu, Q. miR-200c-3p suppresses the proliferative, migratory, and invasive capacities of nephroblastoma cells via targeting frs2. Biopreserv. Biobank., 2019, 17(5), 444-451.
[http://dx.doi.org/10.1089/bio.2019.0009] [PMID: 31194576]
[26]
Zhuo, M.; Yuan, C.; Han, T.; Cui, J.; Jiao, F.; Wang, L. A novel feedback loop between high MALAT-1 and low miR-200c-3p promotes cell migration and invasion in pancreatic ductal adenocarcinoma and is predictive of poor prognosis. BMC Cancer, 2018, 18(1), 1032.
[http://dx.doi.org/10.1186/s12885-018-4954-9] [PMID: 30352575]
[27]
Du, Y.; Chi, X.; An, W. Downregulation of microRNA-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating expression of RECK and inactivating the AKT signaling pathway. Chem. Biol. Interact., 2019, 307, 223-233.
[http://dx.doi.org/10.1016/j.cbi.2019.04.027] [PMID: 31018114]
[28]
Chen, H.; Zhou, L.; Wu, X.; Li, R.; Wen, J.; Sha, J.; Wen, X. The PI3K/AKT pathway in the pathogenesis of prostate cancer. Front. Biosci., 2016, 21, 1084-1091.
[http://dx.doi.org/10.2741/4443] [PMID: 27100493]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy