Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Topological Properties of Sierpinski Network and its Application

Author(s): Juanyan Fang, Muhammad Rafiullah and Hafiz Muhammad Afzal Siddiqui*

Volume 25, Issue 3, 2022

Published on: 13 July, 2021

Page: [568 - 578] Pages: 11

DOI: 10.2174/1386207324666210713114755

Price: $65

Abstract

Background: Sierpinski graphs S(n, k) are largely studied because of their fractal nature with applications in topology, chemistry, mathematics of Tower of Hanoi and computer sciences. Applications of molecular structure descriptors are a standard procedure which are used to correlate the biological activity of molecules with their chemical structures, and thus can be helpful in the field of pharmacology.

Objective: The aim of this article is to establish analytically closed computing formulae for eccentricity-based descriptors of Sierpinski networks and their regularizations. These computing formulae are useful to determine a large number of properties like thermodynamic properties, physicochemical properties, chemical and biological activity of chemical graphs

Methods: At first, vertex sets have been partitioned on the basis of their degrees, eccentricities and frequencies of occurrence. Then these partitions are used to compute the eccentricity-based indices with the aid of some combinatorics.

Results: The total eccentric index and eccentric-connectivity index have been computed. We also compute some eccentricity-based Zagreb indices of the Sierpinski networks. Moreover, a comparison has also been presented in the form of graphs.

Conclusion: These computations will help the readers to estimate the thermodynamic properties and physicochemical properties of chemical structure which are of fractal nature and can not be dealt with easily. A 3D graphical representation is also presented to understand the dynamics of the aforementioned topological descriptors.

Keywords: Topological indices, molecular descriptors, Zagrib indices, eccentricity, sierpinski graphs, chemical graphs.

Graphical Abstract

[1]
Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems., 2016, 4(4), 37-47.
[http://dx.doi.org/10.3390/systems4040037]
[2]
Benoit, M. The fractal geometry of nature; Macmillan, 1983.
[3]
Mandelbrot, B. How long is the coast of britain? Statistical self-similarity and fractional dimension. Science, 1967, 156(3775), 636-638.
[http://dx.doi.org/10.1126/science.156.3775.636] [PMID: 17837158]
[4]
Klavžar, S.; Milutinović, U. Graphs S(n,k) and a variant of the Tower of Hanoi problem. Czech. Math. J., 1997, 47(122), 95-104.
[5]
Klavžar, S.; Milutinović, U.; Petr, C. 1-Perfect codes in sierpinski graphs. Bull. Aust. Math. Soc., 2002, 66, 369-384.
[http://dx.doi.org/10.1017/S0004972700040235]
[6]
Lipscomb, S.L. A universal one-dimensional metric space.TOPO 72-general topology and its applications, Second pittsburgh internat. Conf. Lect. Notes Math., 1974, 378, 248-257.
[http://dx.doi.org/10.1007/BFb0068479]
[7]
Gravier, S.; Klavžar, S.; Mollard, M. Codes and L(21)-labelings in Sierpinski graphs. Taiwan. J. Math., 2005, 9, 671-681.
[http://dx.doi.org/10.11650/twjm/1500407890]
[8]
Klavžar, S. Coloring sierpinski graphs and sierpinski gasket graphs. Taiwan. J. Math., 2008, 12, 513-522.
[http://dx.doi.org/10.11650/twjm/1500574171]
[9]
Klavžar, S.; Mohar, B. Crossing numbers of Sierpinski-like graphs. J. Graph Theory, 2005, 50, 671-681.
[http://dx.doi.org/10.1002/jgt.20107]
[10]
Bonchev, D.; Rouvra, D.H. Chemical Graph Theory; Introduction and Fundamentals, 1991.
[11]
Todeschini, R.; Consonni, V. Handbook of molecular descriptors; Wiley-VCH: Weinheim, 2002.
[12]
Lowell, H.; Lemont, B. Molecular connectivity in chemistry and drug research; Academic Press: Boston, 1976.
[13]
Ali, A.; Trinajstić, N.A. Novel/Old modification of the first zagreb index. Mol. Inform., 2018, 37(6-7)e1800008
[http://dx.doi.org/10.1002/minf.201800008] [PMID: 29536645]
[14]
Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947, 69(1), 17-20.
[http://dx.doi.org/10.1021/ja01193a005] [PMID: 20291038]
[15]
Tang, Y.; Zhou, B. On average eccentricity. MATCH Commun. Math. Comput. Chem., 2012, 67, 405-423.
[16]
Ali, H.; Siddiqui, H.M.A.; Shafiq, M.K. On degree-based topological descriptors of oxide and silicate molecular structures. Mag. Res. Rep., 2016, 4(4), 135-145.
[17]
Ashrafi, A.R.; Ghorbani, M.; Jalali, M. Eccentric connectivity polynomial of an infinite family of fullerenes. Optoelectron. Adv. Mater. Rapid Commun., 2009, 3, 823-833.
[18]
Farooq, R.; Malik, M.A. On some eccentricity based indices of nanostar dendrimers, optoelectronics and advanced materials. Rapid Communications, 2015, 9(5), 842-849.
[19]
Gupta, S.; Singh, M.; Madan, A.K. Application of graph theory: Relationship of eccentric connectivity index and wiener’s index with anti-inflammatory activity. J. Math. Anal. Appl., 2002, 266, 259-269.
[http://dx.doi.org/10.1006/jmaa.2000.7243]
[20]
Hayat, S.; Siddiqui, H.M.A. On bipartite edge frustration of carbon and boron nanotubes, Studia. UBB Chemia., 2016, 61(1), 283-290.
[21]
Hayat, S.; Shafiq, M.K.; Khan, A.; Raza, H.; Siddiqui, H.M.A.; Iqbal, N.; Rehman, J. On topological properties of 2-dimensional lattices of carbon nanotubes. J. Comput. Theor. Nanosci., 2016, 13(10), 6606-6615.
[http://dx.doi.org/10.1166/jctn.2016.5606]
[22]
Liu, J.B.; Zhao, J.; He, H.; Shao, Z. Valency-based topological descriptors and structural property of the generalized sierpinski networks. J. Stat. Phys., 2019, 177, 1131-1147.
[http://dx.doi.org/10.1007/s10955-019-02412-2]
[23]
Zhou, B.; Du, Z. On eccentric connectivity index. MATCH Commun. Math. Comput. Chem., 2010, 63, 181-18.
[24]
Gutman, I.; Trinajstic, N. Graph theory and moleclar orbitals, total ð-electron energy of hydrocarbons. Chem. Phys. Lett., 1972, 17, 535-545.
[http://dx.doi.org/10.1016/0009-2614(72)85099-1]
[25]
Vukičević, D.; Graovac, A. Note on the comparison of the first and second normalized zagreb eccentricity indices. Acta Chim. Slov., 2010, 57(3), 524-528.
[PMID: 24061796]
[26]
Du, Z.; Zhou, B.; Trinajstić, N. Extremal properties of the Zagreb eccentricity indices. Croat. Chem. Acta, 2012, 85, 359-362.
[http://dx.doi.org/10.5562/cca2020]
[27]
Ghorbani, M.; Hosseinzadeh, M.A. A New version of zagreb indices. Filomat, 2012, 26(1), 93-103.
[http://dx.doi.org/10.2298/FIL1201093G]
[28]
Xing, R.; Zhou, B.; Trinajstić, N. On zagreb eccentricity indices. Croat. Chem. Acta, 2011, 84, 493-497.
[http://dx.doi.org/10.5562/cca1801]
[29]
Hinz, A.M.; Klavžar, S.; Zemljić, S.S. A survey and classification of Sierpinski-type graphs. Discrete Appl. Math., 2017, 217, 565-600.
[http://dx.doi.org/10.1016/j.dam.2016.09.024]
[30]
Imran, M.; Gao, W.; Farahani, M.R. On topological properties of Sierpinski networks. Chaos Solitons Fractals, 2017, 98, 199-204.
[http://dx.doi.org/10.1016/j.chaos.2017.03.036]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy