Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

C-methylation of Organic Substrates: A Comprehensive Overview; Methanol as a Methylating Agent: A Case of Catalysis Versatility (Part III)#

Author(s): Saad Moulay*

Volume 19, Issue 3, 2022

Published on: 13 July, 2021

Page: [352 - 407] Pages: 56

DOI: 10.2174/1570193X18666210713111447

Price: $65

Abstract

Abstract: The present account surveys the results of a myriad of works on the C-methylation of organic substrates with methanol as an eco-friendly methylating agent. The innumerable reports on this issue reveal the widespread use of a set of solid catalysts such as molecular sieves, zeolites, metal phosphates, metal oxides and transition metal complexes to accomplish such methylation. One related facet was the impact of the numbers of Brønstëd acid sites, Lewis acid sites, and Lewis base sites present in solid catalysts, such as zeolites, their ratios, and strengths that affect the distribution of the methylation products and their selectivities. Moreover, specific surface area and porosity of some solid catalysts, such as zeolites, play additional roles in the overall reaction. Not only do these catalyst properties influence the methylation outcome, the temperature, space velocity (WHSV, LHSV, GSHV), weight of catalyst per reactant flow rate (W/F), time of stream (TOS), and methanol/ substrate molar ratio also do. The treated substrates herein discussed were aromatic hydrocarbons (benzene, biphenyls, naphthalenes, toluene, xylenes), alkenes, phenolics (phenol, cresols, anisole), Nheteroarenes, carbonyls, alcohols, and nitriles. Methylation of benzene affords not only toluene as the main product but also polymethylated benzenes (xylenes, pseudocumene, hexamethylenebenzene, and also ethylbenzene as a side-chain product). Furthermore, toluene is sensitive to the reaction conditions, giving rise to ring methylation and to side-chain one (ethylbenzene and styrene), besides the formation of benzene as a disproportionation product. A number of results from the methylation of phenolic compounds bear witness to the interest of different investigators in this special research. With respect to these phenolics, concurrent O-methylation inevitably parallels the C-methylation, and the selectivity of the latter one remains dependent on the above-cited factors; ortho-cresol and 2,6-xylenol have been the main C-ring methylated phenols. Methylation of olefins with methanol over solid catalysts, leading to higher olefins, is of great interest. The chemistry involved in the methylation of N-heteroarenes, such as pyridines, indoles, and pyrroles, is significant. Application of the methylation protocols, using methanol as a reagent and transition of metal complexes as catalysts to ketones, esters, aldehydes, nitriles, and alcohols, ends up with some important molecules, such as acrylonitrile (a monomer) and isobutanol (a biofuel).

Keywords: Alkenes, benzene, catalysts, N-heteroarenes, naphthalenes, phenolics, methylation, methanol, toluene.

« Previous
Graphical Abstract

[1]
Moulay, S. Methyl, the smallest alkyl groups with stunning effects. Chemistry, 2018, 27(5), 759-770.
[2]
Guerrero Peña, G.D.J.; Alrefaai, M.M.; Yeon, S.Y.; Raj, A.; Brito, J.L.; Stephen, S.; Anjana, T.; Pillai, V.; Al Shoaibi, A.; Ho, C.S. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot. Combust. Flame, 2016, 172, 1-12.
[http://dx.doi.org/10.1016/j.combustflame.2016.06.026]
[3]
Barreiro, E.J.; Kümmerle, A.E.; Fraga, C.A.M. The methylation effect in medicinal chemistry. Chem. Rev., 2011, 111(9), 5215-5246.
[http://dx.doi.org/10.1021/cr200060g] [PMID: 21631125]
[4]
Schönherr, H.; Cernak, T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(47), 12256-12267.
[http://dx.doi.org/10.1002/anie.201303207] [PMID: 24151256]
[5]
Chen, Y. Recent advances in methylation: A guide for selecting methylation reagents. Chemistry, 2019, 25(14), 3405-3439.
[http://dx.doi.org/10.1002/chem.201803642] [PMID: 30328642]
[6]
Yan, G.; Borah, A.J.; Wang, L.; Yang, M. Recent advances in transition metal‐catalyzed methylation reactions. Adv. Synth. Catal., 2015, 357(7), 1333-1350.
[http://dx.doi.org/10.1002/adsc.201400984]
[7]
Natte, K.; Neumann, H.; Beller, M.; Jagadeesh, R.V. Transition metal-catalyzed utilization of methanol as C1 source in organic synthesis. Angew. Chem. Int. Ed. Engl., 2017, 56(23), 6384-6394.
[http://dx.doi.org/10.1002/anie.201612520] [PMID: 28276611]
[8]
Tanabe, K.; Hölderich, W.F. Industrial application of solid acid-base catalysts. Appl. Catal. A Gen., 1999, 181(2), 399-434.
[http://dx.doi.org/10.1016/S0926-860X(98)00397-4]
[9]
Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H-J., Eds.; Methanol: The Basic Chemical and Energy Feedstock of the Future; Springer: Berlin, 2014.
[http://dx.doi.org/10.1007/978-3-642-39709-7]
[10]
Moulay, S. O-Methylation of hydroxyl-containing organic substrates: A comprehensive overview. Curr. Org. Chem., 2018, 22(20), 1986-2016.
[http://dx.doi.org/10.2174/1385272822666180910140543]
[11]
Moulay, S. N-methylation of nitrogen-containing organic substrates: A comprehensive overview. Curr. Org. Chem., 2019, 23(16), 1695-1737.
[http://dx.doi.org/10.2174/1385272823666190823114547]
[12]
aMoulay, S. C-Methylation of organic substrates: A comprehensive overview. Part I. Methane as methylating agent. Mini Rev. Org. Chem., 2020, 17(7), 805-813.
bMoulay, S. C-methylation of organic substrates: A comprehen-sive overview. Part II. Methyl metals as methylating agents. Chem. Africa, 2020, 3, 845-880.
[http://dx.doi.org/10.1007/s42250-020-00172-1]
[13]
Kaeding, W.W. Conversion of methanol to hydrocarbons III. Methylation, ethylation, and propylation of benzene with methanol. J. Catal., 1988, 114(2), 271-276.
[http://dx.doi.org/10.1016/0021-9517(88)90030-9]
[14]
Hu, H.; Zhang, Q.; Cen, J.; Li, X. Highly suppression of the formation of ethylbenzene in benzene alkylation with methanol over ZSM-5 catalyst modified by platinum. Catal. Commun., 2014, 57, 129-133.
[http://dx.doi.org/10.1016/j.catcom.2014.08.017]
[15]
Adebajo, M.O.; Howe, R.F.; Long, M.A. Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor. Catal. Today, 2000, 63(2-4), 471-478.
[http://dx.doi.org/10.1016/S0920-5861(00)00493-4]
[16]
Adebajo, M.O.; Long, M.A. The contribution of the methanol-to-aromatics reaction to benzene methylation over ZSM-5 catalysts. Catal. Commun., 2003, 4(2), 71-76.
[http://dx.doi.org/10.1016/S1566-7367(02)00259-5]
[17]
Barthos, R.; Bánsági, T.; Zakar, T.S.; Solymosi, F. Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts. J. Catal., 2007, 247(2), 368-378.
[http://dx.doi.org/10.1016/j.jcat.2007.02.017]
[18]
Bjørgen, M.; Olsbye, U.; Petersen, D.; Kolboe, S. The methanol-to-hydrocarbons reaction: Insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. J. Catal., 2004, 221(1), 1-10.
[http://dx.doi.org/10.1016/S0021-9517(03)00284-7]
[19]
Saepurahman; Visur, S.M.; Olsbye, U.; Bjørgen, M.; Svelle, S. In situ FT-IR mechanistic investigations of the zeolite catalyzed methylation of benzene with methanol: H-ZSM-5 versus H-beta. Top. Catal., 2011, 54, 1293.
[http://dx.doi.org/10.1007/s11244-011-9751-5]
[20]
Van der Mynsbrugge, J.; Visur, M.; Olsbye, U.; Beato, P.; Bjørgen, M.; Van Speybroeck, V.; Svelle, S. Methylation of benzene by methanol: Single-site kinetics over H-ZSM-5 and H-Beta zeolite catalysts. J. Catal., 2012, 292, 201-212.
[http://dx.doi.org/10.1016/j.jcat.2012.05.015]
[21]
Mikkelsen, Ø.; Rønning, P.O.; Kolboe, S. Use of isotopic labeling for mechanistic studies of the methanol-to-hydrocarbons reaction. Methylation of toluene with methanol over H-ZSM-5, H-mordenite and H-beta. Microporous Mesoporous Mater., 2000, 40(1-3), 95-113.
[http://dx.doi.org/10.1016/S1387-1811(00)00245-6]
[22]
Svelle, S.; Bjørgen, M. Mechanistic proposal for the zeolite catalyzed methylation of aromatic compounds. J. Phys. Chem. A, 2010, 114(47), 12548-12554.
[http://dx.doi.org/10.1021/jp108892e] [PMID: 21049891]
[23]
Svelle, S.; Visur, M.; Olsbye, U. Saepurahman; Bjørgen, M. Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: A review. Top. Catal., 2011, 54, 897-906.
[http://dx.doi.org/10.1007/s11244-011-9697-7]
[24]
Arstad, B.; Kolboe, S.; Ole Swang, O. A theoretical investigation on the methylation of methylbenzenes on zeolites. J. Phys. Chem. B, 2002, 106(49), 12722-12726.
[http://dx.doi.org/10.1021/jp020851o]
[25]
Dessau, R.; La Pierre, B. On the mechanism of methanol conversion to hydrocarbons over HZSM-5. J. Catal., 1982, 78(1), 136-141.
[http://dx.doi.org/10.1016/0021-9517(82)90292-5]
[26]
Bauer, F.; Dermietzel, J.; Jockisch, U. Diffusion Effects on the Kinetics of Toluene Methylation and Xylene Isomerization on HZSM-5 Zeolites.Catalysis and Adsorption by Zeolites; Öhlmann, G., Ed.; Elsevier Science Pulblishers B.V.: Amsterdam, 1991, pp. 305-313.
[http://dx.doi.org/10.1016/S0167-2991(08)62915-8]
[27]
Li, M.; Qiu, Z.; Tan, L.; Rashid, R.T.; Chu, S.; Cen, Y.; Luo, Z.; Khaliullin, R.Z.; Mi, Z.; Li, C-J. Photocatalytic methylation of nonactivated sp3 and sp2 C–H bonds using methanol on GaN. ACS Catal., 2020, 10(11), 6248-6253.
[http://dx.doi.org/10.1021/acscatal.0c00881]
[28]
Brechtelsbauer, C.; Emig, G. Shape selective methylation of biphenyl within zeolites: An example of transition state selectivity. Appl. Catal. A Gen., 1997, 161(1-2), 79-92.
[http://dx.doi.org/10.1016/S0926-860X(96)00382-1]
[29]
Aguilar, J.; Meloa, F.V.; Sastre, E. Alkylation of biphenyl with methanol over Y zeolites. Appl. Catal. A Gen., 1998, 175(1-2), 181-189.
[http://dx.doi.org/10.1016/S0926-860X(98)00215-4]
[30]
Dubuis, S.; Doepper, R.; Renken, A. Methylation of biphenyl over zeolite H-ZSM-5 in gas phase with methanol in presence of water: Effect of the catalyst impregnation by tetraethyl orthosilicate. Stud. Surf. Sci. Catal., 1999, 122, 359-366.
[http://dx.doi.org/10.1016/S0167-2991(99)80167-0]
[31]
Wang, Y.; Guo, X.X.; Zhang, C.; Song, F.; Wang, X.; Liu, H. H.; Xu, X.; Song, C.; Zhang, W.; Liu, X.; Han, H.; Bao, X. Influence of calcination temperature on the stability of fluorinated nanosized HZSM-5 in the methylation of biphenyl. Catal. Lett., 2006, 107(3-4), 209-214.
[http://dx.doi.org/10.1007/s10562-006-0004-3]
[32]
Shen, J-P.; Sun, L.; Song, C. Shape-selective synthesis of 4,4′-dimethylbiphenyl. 1. Methylation of 4-methylbiphenyl over modified zeolite catalysts. Catal. Lett., 2000, 65(1-3), 147-151.
[http://dx.doi.org/10.1023/A:1019052802061]
[33]
Shen, J-P.; Sun, L.; Song, C. Shape-selective synthesis of 4,4′-dimethylbiphenyl. Stud. Surf. Sci. Catal., 2000, 130, 3023-3028.
[http://dx.doi.org/10.1016/S0167-2991(00)80932-5]
[34]
Guo, X.; Shen, J-P.; Sun, L.; Song, C.; Wang, X. Effects of hydrothermal treatment conditions on the catalytic activity of HZSM-5 zeolites in the methylation of 4-methylbiphenyl with methanol. Catal. Lett., 2003, 87(3-4), 159-166.
[http://dx.doi.org/10.1023/A:1023443222830]
[35]
Guo, X.; Shen, J-P.; Sun, L.; Song, C.; Wang, X. Effects of SiO2/Al2O3, MgO modification and hydrothermal treatment on the catalytic activity of HZSM-5 zeolites in the methylation of 4-methylbiphenyl with methanol. Appl. Catal. A Gen., 2004, 261(1), 183-189.
[http://dx.doi.org/10.1016/j.apcata.2003.11.001]
[36]
Guo, X.; Wang, X.; Shen, J.; Song, C. Shape-selective synthesis of 4,4′-dimethyl-biphenyl over modified ZSM-5 catalysts. Catal. Today, 2004, 93-95, 411-416.
[http://dx.doi.org/10.1016/j.cattod.2004.06.050]
[37]
Horikawa, Y.; Uchino, Y.; Shichijo, Y.; Sako, T. Shape-selective methylation of 4-methylbiphenyl to 4,4′-dimethylbiphenyl with supercritical methanol over zeolite catalysts. J. Jpn. Petrol. Inst., 2004, 47(2), 136-142.
[http://dx.doi.org/10.1627/jpi.47.136]
[38]
Dodd, J.R. 1980.
[39]
Fraenkel, D.; Cherniavsky, M.; Ittah, B.; Levy, M. Shape-selective alkylation of naphthalene and methylnaphthalene with methanol over H-ZSM-5 zeolite catalysts. J. Catal., 1986, 101(2), 273-283.
[http://dx.doi.org/10.1016/0021-9517(86)90254-X]
[40]
Fraenkel, D.; Levy, M.; Ittah, B.; Margaret Cherniavsky, M. 1990.
[41]
Anunziata, O.A.; Liliana, B.; Pierella, L.B. Studies on selective synthesis of 2-methyl naphthalene over shape selective zeolites. Stud. Surf. Sci. Catal., 1995, 94, 574-581.
[http://dx.doi.org/10.1016/S0167-2991(06)81270-X]
[42]
Park, J-N.; Wang, J.; Lee, C.W.; Park, S-E. Methylation of naphthalene with methanol over Beta, Mordernite, ZSM-12 and MCM-22 zeolite catalysts. Bull. Korean Chem. Soc., 2002, 23(7), 1011-1013.
[http://dx.doi.org/10.5012/bkcs.2002.23.7.1011]
[43]
Wu, W.; Wu, W.; Kikhtyanin, O.V.; Li, L.; Toktarev, A.V.; Ayupov, A.B.; Khabibulin, J.F.; Echevsky, G.V.; Huang, J. Methylation of naphthalene on MTW-type zeolites. Influence of template origin and substitution of Al by Ga. Appl. Catal. A Gen., 2010, 375(2), 279-288.
[http://dx.doi.org/10.1016/j.apcata.2010.01.003]
[44]
Wu, W.; Wu, W-g.; Li, L-f.; Yang, W.; Wu, G. Shape-selective synthesis of 2, 6-dimethylnaphthalene over (NH4)2SiF6-modified HZSM-12 zeolite. Acta Petrol. Sin., 2010, 26(2), 189-194.
[45]
Li, C.; Li, L.; Wu, W.; Wang, D.; Toktarev, A.V.; Kikhtyanin, O.V.; Echevskii, G.V. Highly selective synthesis of 2,6-dimethyl-naphthalene over alkaline treated ZSM-12 zeolite. Procedia Eng., 2011, 18, 200-205.
[http://dx.doi.org/10.1016/j.proeng.2011.11.032]
[46]
Wu, G.; Wu, W.; Wang, X.; Zan, W.; Wang, W.; Li, C.; Nanosized, C. ZSM-5 zeolites: Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene. Microporous Mesoporous Mater., 2013, 180, 187-195.
[http://dx.doi.org/10.1016/j.micromeso.2012.11.011]
[47]
Güleç, F.; Özen, A.; Niftaliyeva, A.; Aydın, A.; Şimşek, E.H.; Karaduman, A. A kinetic study on methylation of naphthalene over Fe/ZSM-5 zeolite catalysts. Res. Chem. Intermed., 2018, 44(1), 55-67.
[http://dx.doi.org/10.1007/s11164-017-3090-5]
[48]
Bai, X.; Sun, K.; Wu, W.; Yan, P.; Yang, J. Methylation of naphthalene to prepare 2,6-dimethylnaphthalene over acid-dealuminated HZSM-12 zeolites. J. Mol. Catal. Chem., 2009, 314(1-2), 81-87.
[http://dx.doi.org/10.1016/j.molcata.2009.08.020]
[49]
Wang, X.; Zhang, W.; Guo, S.; Zhao, L.; Xiang, H. Optimization of the synthesis of SAPO-11 for the methylation of naphthalene with methanol by varying templates and template content. J. Braz. Chem. Soc., 2013, 24(7), 1180-1187.
[http://dx.doi.org/10.5935/0103-5053.20130152]
[50]
Wang, X.; Guo, S.; Zhao, L. Synthesis of Hβ (core)/SAPO-11 (shell) composite molecular sieve and its catalytic performances in the methylation of naphthalene with methanol. Bull. Korean Chem. Soc., 2013, 34(12), 3829-3834.
[http://dx.doi.org/10.5012/bkcs.2013.34.12.3829]
[51]
Wang, X.; Guo, F.; Wei, X.; Liu, Z.; Zhang, W.; Guo, S.; Zhao, L. The catalytic performance of methylation of naphthalene with methanol over SAPO-11 zeolites synthesized with different Si content. Korean J. Chem. Eng., 2016, 33(7), 2034-2041.
[http://dx.doi.org/10.1007/s11814-016-0065-y]
[52]
Wang, X.; Liu, Z.; Wei, X.; Guo, F.; Li, P.; Guo, S. Synthesis of 2,6-dimethylnaphthalene over SAPO-11, SAPO-5 and mordenite molecular sieves. Braz. J. Chem. Eng., 2017, 34(01), 295-306.
[http://dx.doi.org/10.1590/0104-6632.20170341s20160120]
[53]
Wang, X.; Liu, Z.; Wei, X.; Guo, F.; Wang, Y.; Wei, X.; Li, P.; Xue, Y.; Wang, Y.; Guo, S.; Yu, Y. Shape-selective methylation of naphthalene with methanol over SAPO-11 molecular sieve modified with hydrochloric acid and citric acid. RSC Advances, 2018, 8(1), 243-250.
[http://dx.doi.org/10.1039/C7RA12009E]
[54]
Zhang, Y.; Feng, J.; Lyu, Z.; Li, X. Improved stability and shape selectivity of 2,6-dimethylnaphthalene by methylation of naphthalene with methanol on modified zeolites. Modern Res. Catal., 2014, 3(2), 19-25.
[http://dx.doi.org/10.4236/mrc.2014.32004]
[55]
Nie, X.; Janik, M.J.; Guo, X.; Song, C. Shape-selective methylation of 2-methylnaphthalene with methanol over H-ZSM-5 zeolite: A computational study. J. Phys. Chem. C, 2012, 116(6), 4071-4082.
[http://dx.doi.org/10.1021/jp209337m]
[56]
Bobuatong, K.; Probst, M.; Limtrakul, J. Structures and energetics of the methylation of 2-methylnaphthalene with methanol over H-BEA zeolite. J. Phys. Chem. C, 2010, 114(49), 21611-21617.
[http://dx.doi.org/10.1021/jp108566c]
[57]
Komatsu, T.; Araki, Y.; Namba, S.; Yashima, T. Selective formation of 2,6-dimethylnaphthalene from 2-methylnaphthalene on ZSM-5 and metallosilicates with MFI structure. Stud. Surf. Sci. Catal., 1994, 84, 1821-1828.
[http://dx.doi.org/10.1016/S0167-2991(08)63737-4]
[58]
Song, C.; Shen, J-P.; Reddy, K.M.; Sun, L.; Lillwitz, L.D. Shape-selective Fe-MFI catalyst for synthesis of 2,6-dimethylnaphthalene by methylation with methanol. Stud. Surf. Sci. Catal., 2007, 170, 1275-1282.
[http://dx.doi.org/10.1016/S0167-2991(07)80988-8]
[59]
Niwa, M.; Endo, M.; Murakami, Y. Enhancement of the shape-selectivity in alkylation of methylnaphthalene over the ZSM-5 modified by chemical vapor deposition of Si(OCH3)4. Res. Chem. Intermed., 1995, 21(2), 127-135.
[http://dx.doi.org/10.1163/156856795X00125]
[60]
Zhang, C.; Guo, X.; Song, C.; Zhao, S.; Wang, X. Effects of steam and TEOS modification on HZSM-5 zeolite for 2,6-dimethyl-naphthalene synthesis by methylation of 2-methylnaphthalene with methanol. Catal. Today, 2010, 149(1-2), 196-201.
[http://dx.doi.org/10.1016/j.cattod.2009.04.015]
[61]
Inui, T.; Pu, S-B. Jun-ichiro Kugai, J.-I. Selective neutralization of acid sites on the external surface of H-ZSM-5 crystallites by a mechanochemical method for methylation of methylnaphthalene. Appl. Catal. A Gen., 1996, 146(2), 285-296.
[http://dx.doi.org/10.1016/S0926-860X(96)00185-8]
[62]
Pu, S-B.; Inui, T. Synthesis of 2,6-dimethylnaphthalene by methylation of methylnaphthalene on various medium and large-pore zeolite catalysts. Appl. Catal. A Gen., 1996, 146(2), 305-316.
[http://dx.doi.org/10.1016/S0926-860X(96)00182-2]
[63]
Pazzuconi, G.; Terzoni, G.; Perego, C.; Bellussi, G. Selective alkylation of naphthalene to 2,6-dimethylnaphthalene catalyzed by MTW zeolite. Stud. Surf. Sci. Catal., 2001, 135, 152-152.
[http://dx.doi.org/10.1016/S0167-2991(01)81251-9]
[64]
Zhang, C.; Guo, X.W.; Wang, Y.N.; Wang, X.S.; Song, C.S. Methylation of 2-methylnaphthalene with methanol to 2,6-dimethylnaphthalene over HZSM-5 modified by NH4F and SrO. Chin. Chem. Lett., 2007, 18(10), 1281-1284.
[http://dx.doi.org/10.1016/j.cclet.2007.07.025]
[65]
Zhao, L.; Guo, X.; Liu, M.; Wang, X.; Song, C. Methylation of 2-methylnaphthalene with methanol over NH4F and Pt modified HZSM-5 catalysts. Chin. J. Chem. Eng., 2010, 18(5), 742-749.
[http://dx.doi.org/10.1016/S1004-9541(09)60123-3]
[66]
Tsutsui, T.; Ijichi, K.; Inomata, T.; Kojima, T.; Sato, K. Enhancement of conversion and selectivity by temperature-swing unsteady-state reaction method in shape-selective methylation of methylnaphthalene with ZSM-5. Chem. Eng. Sci., 2004, 59(19), 3993-3999.
[http://dx.doi.org/10.1016/j.ces.2004.05.030]
[67]
Park, J-N.; Wang, J.; Hong, S-I.; Lee, C.L. Effect of dealumination of zeolite catalysts on methylation of 2-methylnaphthalene in a high-pressure fixed-bed flow reactor. Appl. Catal. A Gen., 2005, 292, 68-75.
[http://dx.doi.org/10.1016/j.apcata.2005.05.039]
[68]
Jin, L.; Fang, Y.; Hu, H. Selective synthesis of 2,6-dimethylnaphthalene by methylation of 2-methylnaphthalene with methanol on Zr/(Al)ZSM-5. Catal. Commun., 2006, 7(5), 255-259.
[http://dx.doi.org/10.1016/j.catcom.2005.11.012]
[69]
Jin, L.; Hu, H.; Wang, X.; Liu, C. Methylation of 2-methylnaphthalene with methanol to 2,6-dimethylnaphthalene over ZSM-5 modified by Zr and Si. Ind. Eng. Chem. Res., 2006, 45(10), 3531-3536.
[http://dx.doi.org/10.1021/ie060075x]
[70]
Li, J.; Gong, Q.; Lian, H.; Hu, Z.; Zhu, Z. New process for 2,6-dimethylnaphthalene synthesis by using C10 aromatics as solvent and transmethylation-agentia: High-efficiency and peculiar subarea-catalysis over shape-selective ZSM-5/Beta catalyst. Ind. Eng. Chem. Res., 2019, 58(28), 12593-12601.
[http://dx.doi.org/10.1021/acs.iecr.9b01596]
[71]
Zhou, J.; Liu, Z.; Wang, Y.; Kong, D.; Xie, Z. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives. Front. Chem. Sci. Eng., 2018, 12(1), 103-112.
[http://dx.doi.org/10.1007/s11705-017-1671-x]
[72]
King, S.T.; Garces, J.M. In situ infrared study of alkylation of toluene with methanol on alkali cation-exchanged zeolites. J. Catal., 1987, 104(1), 59-70.
[http://dx.doi.org/10.1016/0021-9517(87)90336-8]
[73]
Palomares, A.E.; Eder-Mirth, G.; Lercher, J.A. Selective alkylation of toluene over basic zeolites: An in situ infrared spectroscopic investigation. J. Catal., 1997, 168, 442-449.
[http://dx.doi.org/10.1006/jcat.1997.1685]
[74]
Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; van Santen, R.A.; Hutschka, F.; Hafner, J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite. J. Am. Chem. Soc., 2001, 123(12), 2799-2809.
[http://dx.doi.org/10.1021/ja001981i] [PMID: 11456966]
[75]
Inoue, M.; Enomoto, S. Alkylation of xylenes with methanol on alumina activated with hydrofluoric acid. Chem. Pharm. Bull. (Tokyo), 1975, 23(8), 1793-1797.
[http://dx.doi.org/10.1248/cpb.23.1793]
[76]
Rakoczy, J.; Sulikowski, B. Alkylation of toluene with methanol on zeolites: Evidence for Rideal type mechanism. React. Kinet. Catal. Lett., 1988, 36(1), 241-246.
[http://dx.doi.org/10.1007/BF02071171]
[77]
Yashima, T.; Ahmad, H.; Yamazaki, K.; Katsuta, M.; Hara, N. Alkylation on synthetic zeolites: I. Alkylation of toluene with methanol. J. Catal., 1970, 16(3), 273-280.
[http://dx.doi.org/10.1016/0021-9517(70)90223-X]
[78]
Yashima, T.; Yamazaki, K.; Ahmad, H.; Katsuta, M.; Hara, N. Alkylation on synthetic zeolites: II. Selectivity of p-xylene formation. J. Catal., 1970, 17(2), 151-156.
[http://dx.doi.org/10.1016/0021-9517(70)90088-6]
[79]
Yashima, T.; Sato, K.; Hayasaka, T.; Hara, N. Alkylation on synthetic zeolites III. Alkylation of toluene with methanol and formaldehyde on alkali cation exchanged zeolites. J. Catal., 1972, 26(3), 303-312.
[http://dx.doi.org/10.1016/0021-9517(72)90088-7]
[80]
Rakoczy, J. Effect of methanol concentration on substrate conversion in alkylation of toluene on zeolite catalysts. React. Kinet. Catal. Lett., 1992, 48(2), 401-409.
[http://dx.doi.org/10.1007/BF02162688]
[81]
Kaeding, W.W.; Chu, C.; Young, L.B.; Weinstein, B.; Butter, S.A. Selective alkylation of toluene with methanol to produce para-xylene. J. Catal., 1981, 67(1), 159-174.
[http://dx.doi.org/10.1016/0021-9517(81)90269-4]
[82]
Tan, W.; Liu, M.; Zhao, Y.; Hou, K.; Wu, H.; Zhang, A.; Liu, H.; Wang, Y.; Song, C.; Guo, X. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO. Microporous Mesoporous Mater., 2014, 196, 18-30.
[http://dx.doi.org/10.1016/j.micromeso.2014.04.050]
[83]
Liu, H.Y.; Zhu, J.; Wang, Y.D.; Yu, O.B.; Xu, T.J. Effect of operating conditions on alkylation of toluene with methanol. Petrol. Sci. Technol., 2017, 35(2), 148-154.
[http://dx.doi.org/10.1080/10916466.2016.1251456]
[84]
Bhat, S.G.T. Selectivity for xylene isomers in the reaction of alkylation of toluene with methanol on zeolite catalysts. J. Catal., 1982, 75(1), I96-I199.
[http://dx.doi.org/10.1016/0021-9517(82)90136-1]
[85]
Vayssilov, G.; Yankov, M.; Hamid, A. Para-selective alkylation of toluene with methanol over ZSM-5 zeolites. A kinetic model. Appl. Catal. A Gen., 1993, 94(2), 117-130.
[http://dx.doi.org/10.1016/0926-860X(93)85002-7]
[86]
Tuyen, M. Dimitrov, Chr. Alkylation of toluene with methanol on Mg-containing Y zeolites. React. Kinet. Catal. Lett., 1983, 22(1-2), 215-219.
[http://dx.doi.org/10.1007/BF02064835]
[87]
Coughlan, B.; Carroll, W.M.; Nunan, J. Alkylation reactions over ion-exchanged molecular sieve zeolite catalysts. Part 1.-Alkylation of toluene with methanol: Consideration of the effects of reaction parameters on catalyst deactivation and the extent of polysubstitution. J. Chem. Soc., Faraday Trans. I, 1983, 79(2), 282-296.
[http://dx.doi.org/10.1039/f19837900297]
[88]
Coughlan, B.; Carroll, W.M.; Nunan, J. Alkylation reactions over ion-exchanged molecular sieve zeolite catalysts. Part 2.-Alkylation of toluene with methanol: Consideration of the effects of catalyst deactivation on the primary product distribution. J. Chem. Soc., Faraday Trans. I, 1983, 79(2), 297-309.
[http://dx.doi.org/10.1039/f19837900297]
[89]
Parker, D.G. Toluene methylation over ICI zeolite Fu-1. Appl. Catal., 1984, 9(1), 53-61.
[http://dx.doi.org/10.1016/0166-9834(84)80037-8]
[90]
Ishihara, T.; Arai, H.; Seiyama, T. Alkylation of toluene over zeolite catalysts. J. Jpn. Petrol. Inst., 1985, 28(6), 463-469.
[http://dx.doi.org/10.1627/jpi1958.28.463]
[91]
Giordano, N.; Pino, L.; Cavallaro, S.; Vitarelli, P.; Rao, B.S. Alkylation of toluene with methanol on zeolites. The role of electronegativity on the chain or ring alkylation. Zeolites, 1987, 7(2), 131-134.
[http://dx.doi.org/10.1016/0144-2449(87)90074-1]
[92]
Cavallaro, S.; Pino, L.; Tsiakaras, P.; Giordano, N.; Rao, B.S. Alkylation of toluene with methanol IIl: Para-selectivity on modified ZSM-5 zeolites. Zeolites, 1987, 7(2), 408-411.
[http://dx.doi.org/10.1016/0144-2449(87)90005-4]
[93]
Zhao, Y-L.; Wang, D-Z. A new process for selective synthesis of para-xylene via methylation of toluene with methanol. Appl. Catal., 1991, 75(2), N21.
[http://dx.doi.org/10.1016/S0166-9834(00)82742-6]
[94]
Sotelo, J.L.; Ugina, M.A.; Valverde, J.L.; Serrano, D.P. Kinetics of toluene alkylation with methanol over Mg-modified ZSM-5. Ind. Eng. Chem. Res., 1993, 32(11), 2548-2554.
[http://dx.doi.org/10.1021/ie00023a018]
[95]
Mirth, G.; Lercher, J.A. On the role of product isomerization for shape selective toluene methylation over HZSM5. J. Catal., 1994, 147(1), 199-206.
[http://dx.doi.org/10.1006/jcat.1994.1130]
[96]
Ahn, J.H.; Kolvenbach, R.; Neudeck, C.; Al-Khattaf, S.S.; Jentys, A.; Lercher, J.A. Tailoring mesoscopically structured H-ZSM5 zeolites for toluene methylation. J. Catal., 2014, 311, 271-280.
[http://dx.doi.org/10.1016/j.jcat.2013.12.003]
[97]
Faramawy, S. Selective toluene-methanol alkylation over modified ZSM-5 zeolite catalysts. Petrol. Sci. Technol., 1999, 17(3-4), 249-271.
[http://dx.doi.org/10.1080/10916469908949717]
[98]
Brown, S.H.; Mathias, M.F.; Ware, R.A.; Olson, D.H. 2002.
[99]
Brown, S.H.; Mathias, M.F. 2000.
[100]
Olsbye, U.; Bjørgen, M.; Svelle, S.; Lillerud, K-P.; Kolboe, S. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catal. Today, 2005, 106(1-4), 108-111.
[http://dx.doi.org/10.1016/j.cattod.2005.07.135]
[101]
Arstad, B.; Kolboe, S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J. Am. Chem. Soc., 2001, 123(33), 8137-8138.
[http://dx.doi.org/10.1021/ja010668t] [PMID: 11506579]
[102]
Arstad, B.; Kolboe, S. Methanol-to-hydrocarbons reaction over SAPO-34. Molecules confined in the catalyst cavities at short time on stream. Catal. Lett., 2001, 71(3-4), 209-212.
[http://dx.doi.org/10.1023/A:1009034600533]
[103]
Blanco, A.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M.; Romero, A.A. Alkylation of toluene with methanol over AIPO4, AIPO4-AI2O3, AIPO4-TiO2, and AIPO4-ZrO2 catalysts. J. Catal., 1992, 137(1), 51-68.
[http://dx.doi.org/10.1016/0021-9517(92)90138-8]
[104]
Bautista, F.M.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M.; Romero, A.A. Toluene methylation on AIPO4-AI2O3 catalysts (5-15 wt.% Al2O3). React. Kinet. Catal. Lett., 1996, 57(1), 61-70.
[http://dx.doi.org/10.1007/BF02076121]
[105]
Xu, H-S.; Pu, S-B.; Inui, T. Improvement of para-selectivity in methylation of toluene on various MFI-type metallosilicate catalysts. Catal. Lett., 1996, 41(1-2), 83-87.
[http://dx.doi.org/10.1007/BF00811717]
[106]
Phatanasri, S.; Praserthdam, P.; Punsupsawat, T. Influence of Fe or Zn loading method on toluene methylation over MFI-type zeolite catalysts. Korean J. Chem. Eng., 2000, 17(4), 414-419.
[http://dx.doi.org/10.1007/BF02706852]
[107]
Takata, Y.; Tsuru, T.; Yoshioka, T.; Asaeda, M. Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicalite and application to the methylation of toluene. Microporous Mesoporous Mater., 2002, 54(3), 257-268.
[http://dx.doi.org/10.1016/S1387-1811(02)00386-4]
[108]
Aboul-Gheit, A.K.; Aboul-Fotouh, S.M.; Emam, E.A.; Ahmed, S.M. Catalytic Para-xylene maximization. V. Toluene methylation with methanol and disproportionation of toluene using Pt/ZSM-5 and Pt/mordenite catalysts. J. Chin. Chem. Soc. (Taipei), 2004, 51(4), 817-826.
[http://dx.doi.org/10.1002/jccs.200400123]
[109]
Bhat, Y.S.; Halgeri, A.B. Rao. T.S.R.P. Kinetics of toluene alkylation with methanol on HZSM-8 zeolite catalyst. Ind. Eng. Chem. Res., 1989, 28(7), 894-899.
[http://dx.doi.org/10.1021/ie00091a002]
[110]
Wu, H.; Liu, M.; Tan, W.; Hou, K.; Zhang, A.; Wang, Y.; Guo, X. Effect of ZSM-5 zeolite morphology on the catalytic performance of the alkylation of toluene with methanol. J. Energy Chem., 2014, 23(4), 491-497.
[http://dx.doi.org/10.1016/S2095-4956(14)60176-5]
[111]
Benito, I.; del Riego, A.; Martínez, M.; Blanco, C.; Pesquera, C.; González, F. Toluene methylation on Al13- and GaAl12-pillared clay catalysts. Appl. Catal. A Gen., 1999, 180(1-2), 175-182.
[http://dx.doi.org/10.1016/S0926-860X(98)00328-7]
[112]
Vasques, H.; Miranda, A.; Martins, A.; Silva, J.M.; Lobato, A.; Pires, J.; Carvalho, A. P. 2005.
[113]
Martindale, D.C.; Kuchar, P.J. 1991.
[114]
Herkes, F.E. 1984.
[115]
Zhu, Z.; Chen, Q.; Zhu, W.; Kong, D.; Li, C. Catalytic performance of MCM-22 zeolite for alkylation of toluene with methanol. Catal. Today, 2004, 93-95, 321-325.
[http://dx.doi.org/10.1016/j.cattod.2004.06.008]
[116]
Zhu, Z.; Chen, Q.; Xie, Z.; Yang, W.; Li, C. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Microporous Mesoporous Mater., 2006, 88(1-3), 16-21.
[http://dx.doi.org/10.1016/j.micromeso.2005.08.021]
[117]
Tangestanifard, M.; Ghaziaskar, H.S. Methylation of toluene with methanol in sub/supercritical toluene using H-beta zeolite as catalyst. J. Supercrit. Fluids, 2016, 113, 80-88.
[http://dx.doi.org/10.1016/j.supflu.2016.03.013]
[118]
Bokade, V.V.; Deshpande, S.S.; Patil, R.; Jain, S.; Yadav, G.D. Toluene alkylation with methanol to p-xylene over heteropoly acids supported by clay. J. Nat. Gas Chem., 2007, 16(1), 42-45.
[http://dx.doi.org/10.1016/S1003-9953(07)60024-3]
[119]
Nishi, H.; Nowinska, K.; Moffat, J.B. The alkylation of toluene with methanol on microporous heteropoly oxometalates. J. Catal., 1989, 116(2), 480-487.
[http://dx.doi.org/10.1016/0021-9517(89)90114-0]
[120]
Kamiguchi, S.; Nishida, S.; Kurokawa, H.; Miura, H.; Chihara, T. Formation of Brønstëd acid site on halide clusters of group 5 and 6 transition metals. Catalytic methylation and demethylation of methylbenzenes with methanol. J. Mol. Catal. Chem., 2005, 226(1), 1-9.
[http://dx.doi.org/10.1016/j.molcata.2004.09.014]
[121]
Itoh, H.; Miyamoto, A.; Murakami, Y. Mechanism of the side-chain alkylation of toluene with methanol. J. Catal., 1980, 64(2), 284-294.
[http://dx.doi.org/10.1016/0021-9517(80)90503-5]
[122]
Hunger, M.; Schenk, U.; Weitkamp, J. Mechanistic studies of the side-chain alkylation of toluene with methanol on basic zeolites Y by multi-nuclear NMR spectroscopy. J. Mol. Catal. Chem., 1998, 134(1-3), 97-109.
[http://dx.doi.org/10.1016/S1381-1169(98)00026-0]
[123]
Itoh, H.; Hattori, T.; Suzuki, K.; Miyamoto, A.; Murakami, Y. Experimental evidence for the role of acidic sites in the side-chain alkylation of alkylbenzenes with methanol. J. Catal., 1981, 72(1), 170-171.
[http://dx.doi.org/10.1016/0021-9517(81)90089-0]
[124]
Tanabe, K.; Takahashi, O.; Hattorin, H. Anomalous effect of nitrogen on side-chain alkylation of toluene with methanol over solid bases. React. Kinet. Catal. Lett., 1977, 7(3), 347-352.
[http://dx.doi.org/10.1007/BF02062467]
[125]
Toshiaki, S.; Isao, K.; Fumio, N. A study of catalysis by metal phosphates. V. The alkylation of toluene with methanol over metal phosphate catalysts. Bull. Chem. Soc. Jpn., 1979, 52(8), 2431-2432.
[http://dx.doi.org/10.1246/bcsj.52.2431]
[126]
Yamaguchi, N.; Kobayashi, A.; Sodesawa, T.; Nozaki, F. Side-chain alkylation of toluene with methanol over Cs2O-activated carbon catalyst. React. Kinet. Catal. Lett., 1984, 25(1-2), 11-15.
[http://dx.doi.org/10.1007/BF02076531]
[127]
Engelhardt, J.; Szanyi, J.; Valyon, J. Alkylation of toluene with methanol on commercial X zeolite in different alkali cation forms. J. Catal., 1987, 107(2), 296-306.
[http://dx.doi.org/10.1016/0021-9517(87)90296-X]
[128]
Hathaway, P.E.; Davis, M.E. Base catalysis by alkali modified zeolites III. Alkylation with methanol. J. Catal., 1989, 119(2), 497-507.
[http://dx.doi.org/10.1016/0021-9517(89)90177-2]
[129]
Mielczarski, E.; Davis, M.E. Infrared Investigations of the alkylation of toluene with methanol by alkali-modified zeolites. Ind. Eng. Chem. Res., 1990, 29(8), 1579-1582.
[http://dx.doi.org/10.1021/ie00104a001]
[130]
Wieland, W.S.; Davis, R.J.; Garces, J.M. Solid base catalysts for side-chain alkylation of toluene with methanol. Catal. Today, 1996, 28(4), 443-450.
[http://dx.doi.org/10.1016/S0920-5861(96)00247-7]
[131]
Wang, X.; Wang, G.; Shen, D.; Fu, C.; Wei, M. Side-chain alkylation of toluene with methanol on KX/KZSM-5 binary zeolite catalysts. Zeolites, 1991, 11(3), 254-257.
[http://dx.doi.org/10.1016/S0144-2449(05)80228-3]
[132]
Song, L.; Li, Z.; Zhang, R.; Zhao, L.; Li, W. Alkylation of toluene with methanol: The effect of K exchange degree on the direction to ring or side-chain alkylation. Catal. Commun., 2012, 19, 90-95.
[http://dx.doi.org/10.1016/j.catcom.2011.12.033]
[133]
Hattori, H.; Alabi, W.O.; Jermy, B.R.; Aitani, A.M.; Al-Khattaf, S.S. Pathway to ethylbenzene formation in side-chain alkylation of toluene with methanol over cesium ion-exchanged zeolite X. Catal. Lett., 2013, 143(10), 1025-1029.
[http://dx.doi.org/10.1007/s10562-013-1049-8]
[134]
Han, H.; Liu, M.; Ding, F.; Wang, Y.; Guo, X.; Song, C. Effects of cesium ions and cesium oxide in side-chain alkylation of toluene with methanol over cesium-modified zeolite X. Ind. Eng. Chem. Res., 2016, 55(7), 1849-1858.
[http://dx.doi.org/10.1021/acs.iecr.5b04174]
[135]
Han, H.; Liu, M.; Nie, X.; Ding, F.; Wang, Y.; Li, J.; Guo, X.; Song, C. The promoting effects of alkali metal oxide in side-chain alkylation of toluene with methanol over basic zeolite X. Microporous Mesoporous Mater., 2016, 234, 61-72.
[http://dx.doi.org/10.1016/j.micromeso.2016.06.045]
[136]
Biron, M. Thermoplastics and Thermoplastic Composites, 3rd ed; Elsevier: Amsterdam, 2018.
[137]
Gubin, S.P.; Men’shov, V.I.; Ivanov, A.N.; Tegai, F.; Plopskil, E.Ya.; Kirilets, V.M. Alkylation of phenols by methanol without catalyst. Izvestiya Akademii Nauk SSSR. Seriya Khimicheskaya, 1985, 9, 2159-2160.
[138]
Takebayashi, Y.; Hotta, H.; Shono, A.; Yoda, S.; Furuya, T.; Otake, K. Noncatalytic ortho-selective methylation of phenol in supercritical methanol: The mechanism and acid/base effect. Ind. Eng. Chem. Res., 2008, 47(3), 704-709.
[http://dx.doi.org/10.1021/ie0707321]
[139]
Horikawa, Y.; Uchino, Y.; Sako, T. Alkylation and acetal formation using supercritical alcohol without catalyst. Chem. Lett., 2003, 32(3), 232-233.
[http://dx.doi.org/10.1246/cl.2003.232]
[140]
Namba, S.; Yashima, T.; Itaba, Y.; Hara, N. Selective formation of p-cresol by alkylation of phenol with methanol over y type zeolite.Catalysis by Zeolites; Imelik, B., Ed.; Elsevier Scientific Publishing Company: Amsterdam, 1980, pp. 105-111.
[http://dx.doi.org/10.1016/S0167-2991(08)64870-3]
[141]
Garcia, L.; Giannetto, G.; Goldwasser, M.R.; Guisnet, M.; Magnoux, P. Phenol alkylation with methanol: Effect of sodium content and ammonia selective poisoning of an HY zeolite. Catal. Lett., 1996, 37(1-2), 121-123.
[http://dx.doi.org/10.1007/BF00813529]
[142]
Balasubramanian, V.V.; Umamaheshwari, V.; Kumar, I.S.; Palanichamy, M.; Murugesan, V. Alkylation of phenol with methanol over ion-exchanged Y-zeolites. Proc. Indian Acad. Sci. Chem. Sci., 1998, 110(5), 453-460.
[143]
Reddy, K.R.; Kothapalli, K.R.; Vattikonda, K.S.; Rao, V.; Chary, K.V.R. Alkylation of phenol with methanol over Molybdenum oxide supported on NaY zeolite. Catal. Commun., 2003, 4(3), 112-117.
[http://dx.doi.org/10.1016/S1566-7367(03)00006-2]
[144]
Wang, W.; De Cola, P.L.; Glaeser, R.; Ivanova, I.I.; Jens Weitkamp, J.; Hunger, M. Methylation of phenol by methanol on acidic zeolite H–Y investigated by in situ CF MAS NMR spectroscopy. Catal. Lett., 2004, 94(1-2), 119-123.
[http://dx.doi.org/10.1023/B:CATL.0000019341.67169.ac]
[145]
Sad, M.E.; Padró, C.L.; Apesteguía, C.R. Synthesis of cresols by alkylation of phenol with methanol on solid acids. Catal. Today, 2008, 133-135, 720-728.
[http://dx.doi.org/10.1016/j.cattod.2007.12.074]
[146]
González Peña, L.; Sad, M.; Padró, C.; Apesteguía, C. Study of the alkylation of phenol with methanol on Zn(H)-exchanged NaY zeolites. Catal. Lett., 2011, 141(7), 939-947.
[http://dx.doi.org/10.1007/s10562-011-0640-0]
[147]
Kirichenko, G.N.; Glazunova, V.I.; Balaev, A.V.; Dzhemilev, U.M. Catalytic vapor-phase alkylation of phenol with methanol. Petrol. Chem., 2008, 48(5), 389-392. Neftekhimiya, 2008, 48(5), 386-389.
[148]
Jansang, B.; Nanok, T.; Limtrakul, J. Structure and reaction mechanism of alkylation of phenol with methanol over H-FAU zeolite: An ONIOM study. J. Phys. Chem. C, 2008, 112(2), 540-547.
[http://dx.doi.org/10.1021/jp077246b]
[149]
Barman, S.; Pradhan, N.C.; Basu, J.K. Kinetics of alkylation of phenol with methanol over Ce-exchanged NaX zeolite. Catal. Lett., 2006, 111(1-2), 67-73.
[http://dx.doi.org/10.1007/s10562-006-0135-6]
[150]
Balasubramanian, V.V.; Pandurangan, A.; Palanichamy, M.; Murugesan, V. Methylation of phenol over ion-exchanged β-zeolites. Indian J. Chem. Technol., 2000, 7(4), 149-154.
[151]
Bregolato, M.; Bolis, V.; Busco, C.; Ugliengo, P.; Bordiga, S.; Cavani, F.; Ballarini, N.; Maselli, L.; Passeri, S.; Rossetti, I.; Forni, L. Methylation of phenol over high-silica beta zeolite: Effect of zeolite acidity and crystal size on catalyst behavior. J. Catal., 2007, 245(2), 285-300.
[http://dx.doi.org/10.1016/j.jcat.2006.10.024]
[152]
Sad, M.E.; Padró, C.L.; Apesteguía, C.R. Selective synthesis of p-cresol by methylation of phenol. Appl. Catal. A Gen., 2008, 342(1-2), 40-48.
[http://dx.doi.org/10.1016/j.apcata.2007.12.038]
[153]
Sad, M.E.; Padró, C.L.; Apesteguía, C.R. Study of the phenol methylation mechanism on zeolites HBEA, HZSM5 and HMCM22. J. Mol. Catal. Chem., 2010, 327(1-2), 63-72.
[http://dx.doi.org/10.1016/j.molcata.2010.05.014]
[154]
Chang, N.S.; Chen, C.C.; Chu, S.J.; Chen, P.Y.; Chuang, T.K. Acidity effect of ZSM-5 zeolites on phenol methylation reaction. Stud. Surf. Sci. Catal., 1989, 46, 223-230.
[http://dx.doi.org/10.1016/S0167-2991(08)60979-9]
[155]
Vasiliev, A.N.; Galich, P.N. Methylation of phenol over modified pentasils. React. Kinet. Catal. Lett., 1993, 49(1), 61-66.
[http://dx.doi.org/10.1007/BF02084029]
[156]
Moon, G.; Möller, K.P.; Böhringer, W.; O’Connor, C.T. Alkylation of phenol with methanol over zeolite H-MCM-22 for the formation of p-cresol. Stud. Surf. Sci. Catal., 2002, 142, 635-642.
[http://dx.doi.org/10.1016/S0167-2991(02)80083-0]
[157]
O’Connor, C.T.; Moon, G.; Böhringer, W.; Fletcher, J.C.Q. Alkylation of phenol and m-cresol over zeolites. Collect. Czech. Chem. Commun., 2003, 68(10), 1949-1968.
[http://dx.doi.org/10.1135/cccc20031949]
[158]
Bhattacharyya, K.G.; Talukdar, A.K.; Das, P.; Sivasanker, S. Al-MCM-41 catalysed alkylation of phenol with methanol. J. Mol. Catal. Chem., 2003, 197(1-2), 255-262.
[http://dx.doi.org/10.1016/S1381-1169(02)00624-6]
[159]
Ballarini, N.; Cavani, F.; Maselli, L.; Montaletti, A.; Passeri, S.; Scagliarini, D.; Flego, C.; Perego, C. The transformations involving methanol in the acid- and base-catalyzed gas-phase methylation of phenol. J. Catal., 2007, 251(2), 423-436.
[http://dx.doi.org/10.1016/j.jcat.2007.07.033]
[160]
Briner, E.; Plüss, W.; Paillard, H. Recherches sur la déshydration catalytique des systèmes phénols-alcools. Helv. Chim. Acta, 1924, 7(1), 1046-1056.
[http://dx.doi.org/10.1002/hlca.192400701132]
[161]
Backer, H.J. L’hexa-bromométhyl-benzène et l’acide hexaméthyl-benzènehexasulfonique. Rec. Trav. Chim., 1935, 54(9), 745-749.
[http://dx.doi.org/10.1002/recl.19350540910]
[162]
Cullinane, N.M.; Chard, S.J. The action of methanol on phenol in the presence of alumina; formation of anisole, methylated phenols, and hexamethylbenzene. J. Chem. Soc., 1945, 821-823.
[http://dx.doi.org/10.1039/jr9450000821] [PMID: 21008356]
[163]
Cullinane, N.M.; Chard, S.J.; Dawkins, C.W.C. Hexamethyl-benzene. Org. Synth., 1955, 35, 73-73.
[http://dx.doi.org/10.15227/orgsyn.035.0073]
[164]
Landis, P.S.; Haag, W.O. Formation of hexamethylbenzene from phenol and methanol. J. Org. Chem., 1963, 28(2), 585-585.
[http://dx.doi.org/10.1021/jo01037a517]
[165]
Krysin, A.P.; Koptyug, V.A. Reaction of phenols with alcohols on aluminum oxide. II. The mechanism of hexamethylbenzene formation from phenol and methyl alcohol. Russ. Chem. Bull., 1969, 18(7), 1479-1482.
[http://dx.doi.org/10.1007/BF00908756]
[166]
Shubin, V.G. Chzhu, V.P.; Korobeinicheva, I.K.; Rezvukhin, A.I.; Koptyug, V.A.U.V. IR, and PMR spectra of hydroxyhexamethyl-benzenonium ions. Russ. Chem. Bull., 1970, 19(8), 1643-1648.
[http://dx.doi.org/10.1007/BF00996497]
[167]
Koptyug, V.A.; Krysin, A.P.; Gorfinkel, M.I. The reaction of phenols with alcohols on alumina. I. Reaction of 4-hydroxy- and 4, 4′-dihydroxybiphenyl with methanol. Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Khim., 1967, 12, 61-66.
[168]
Inoue, M.; Enomoto, S. Meta alkylation of phenol on alumina catalysts. Chem. Pharm. Bull. (Tokyo), 1972, 20(2), 232-237.
[http://dx.doi.org/10.1248/cpb.20.232]
[169]
Tleimat-Manzalji, R.; Bianchi, D.; Pajonk, G.M. Catalytic alkylation of phenol with methanol on a microporous xerogel and a macroporous aerogel of high surface area aluminas. Appl. Catal. A Gen., 1993, 101(2), 339-350.
[http://dx.doi.org/10.1016/0926-860X(93)80278-X]
[170]
Samolada, M.C.; Grigoriadou, E.; Kiparissides, Z.; Vasalos, I.A. Selective o-alkylation of phenol with methanol over sulphates supported as γ-alumina. J. Catal., 1995, 152(1), 52-62.
[http://dx.doi.org/10.1006/jcat.1995.1059]
[171]
Marczewski, M.; Perot, G.; Guisnet, M. Alkylation of aromatics. Kinetics of phenol alkylation with methanol. React. Kinet. Catal. Lett., 1996, 57(1), 21-27.
[http://dx.doi.org/10.1007/BF02076115]
[172]
Grabowska, H.; Miśta, W.; Trawczyński, J.; Wrzyszcz, J.; Zawadzki, M. Catalytic alkylation of phenol with methanol over zinc aluminate. Res. Chem. Intermed., 2001, 27(3), 305-313.
[http://dx.doi.org/10.1163/156856701300356527]
[173]
Van Sorge, B.J. 1975.
[174]
Choi, W.C.; Kim, J.S.; Lee, T.H.; Woo, S.I. Balancing acidity and basicity for highly selective and stable modified MgO catalysts in the alkylation of phenol with methanol. Catal. Today, 2000, 63(2-4), 229-236.
[http://dx.doi.org/10.1016/S0920-5861(00)00464-8]
[175]
Tsai, T-f.; Wang, F-l. Ortho-alkylation of phenol derivatives with methanol over magnesium oxide catalysts. 1. Characterization of promoted magnesium oxide catalysts. Catal. Lett., 2001, 73(2-4), 167-173.
[http://dx.doi.org/10.1023/A:1016637304150]
[176]
Ke, J-H.; Zen, J.M.; Wang, F-L. Ortho-Alkylation of phenol with methanol using Pb-Cr promoted magnesium oxide catalysts. J. Chin. Chem. Soc. (Taipei), 2004, 51(6), 1407-1410.
[http://dx.doi.org/10.1002/jccs.200400206]
[177]
Sato, S.; Koizumi, K.; Nozaki, F. Ortho-selective methylation of phenol over CeO2 catalyst. Appl. Catal. A Gen., 1995, 133(1), L7-L10.
[http://dx.doi.org/10.1016/0926-860X(95)00225-1]
[178]
Sato, S.; Koizumi, K.; Nozaki, F. Ortho-selective methylation of phenol catalyzed by CeO2-MgO prepared by citrate process. J. Catal., 1998, 178(1), 264-274.
[http://dx.doi.org/10.1006/jcat.1998.2159]
[179]
Grabowska, H.; Jabłoński, J.; Miśta, W.; Wrzyszcz, J. Ortho-selective phenol methylation over iron-magnesium oxide catalysts. Res. Chem. Intermed., 1996, 22(1), 53-60.
[http://dx.doi.org/10.1163/156856796X00377]
[180]
Malshe, K.M.; Patil, P.T.; Umbarkar, S.B. Dongare. M.K. Selective C-methylation of phenol with methanol over borate zirconia solid catalyst. J. Mol. Catal. Chem., 2004, 212(1-2), 337-344.
[http://dx.doi.org/10.1016/j.molcata.2003.11.016]
[181]
Takeshi, K.; Mitsuyoshi, Y.; Katsuyoshi, S.; Yuji, Y. Methylation of phenol over metallic oxides. Bull. Chem. Soc. Jpn., 1971, 44(7), 1961-1964.
[http://dx.doi.org/10.1246/bcsj.44.1961]
[182]
Sreekumar, K.; Sugunan, S. Ferrospinels based on Co and Ni prepared via a low temperature as efficient catalysts for the selective synthesis of o-cresol and 2,6-xylenol from phenol and methanol. J. Mol. Catal. A., 2002, 185(1-2), 259-268.
[http://dx.doi.org/10.1016/S1381-1169(02)00074-2]
[183]
Sreekumar, K.; Sugunan, S. A comparison on the catalytic activity of Zn(1−x)CoxFe2O4 (x = 0, 0.2, 0.5 0.8 and 1.0)-type ferrospinels prepared via a low temperature route for the alkylation of aniline and phenol using methanol as the alkylating agent. Appl. Catal. A Gen., 2002, 230, 245-251.
[http://dx.doi.org/10.1016/S0926-860X(02)00006-6]
[184]
Wolska, J.; Przepiera, K.; Grabowska, H.; Przepiera, A.; Jabłoński, M.; Klimkiewicz, R. ZnFe2O4 as a new catalyst in the C-methyla-tion of phenol. Res. Chem. Intermed., 2008, 34(1), 43-51.
[http://dx.doi.org/10.1007/BF03039134]
[185]
Reddy, V.S.; Shyam, A.R.; Dwivedi, R.; Gupta, R.K.; Chumbale, V.R.; Prasad, R. Ortho-selective vapour phase methylation of phenol over nanocrystalline ferrospinels of varying Zn2+/Mn2+ ionic composition. J. Chem. Technol. Biotechnol., 2004, 79(10), 1057-1064.
[http://dx.doi.org/10.1002/jctb.1060]
[186]
Reddy, A.S.; Gopinath, C.S.; Chilukuri, S. Selective ortho-methylation of phenol with methanol over copper manganese mixed-oxide spinel catalysts. J. Catal., 2006, 243(2), 278-291.
[http://dx.doi.org/10.1016/j.jcat.2006.07.014]
[187]
Kanat, N.; Basu, C. Phenol alkylation over lanthana modified zinc manganese ferrospinels. React. Kinet. Mech. Catal., 2013, 109(2), 489-496.
[http://dx.doi.org/10.1007/s11144-013-0564-3]
[188]
Xu, L.; Wu, S-J.; Zhang, W-X.; Jia, M-J.; Liu, G. Vapour phase ortho-selective alkylation of phenol with methanol over Fe-Zr oxide catalysts. Wuli Huaxue Xuebao, 2009, 25(02), 242-246.
[http://dx.doi.org/10.3866/PKU.WHXB20090208]
[189]
Oku, T.; Arita, Y.; Ikariya, T. Continuous chemoselective methyla-tion of m-cresol and phenol with supercritical methanol over solid acid and base metal oxide catalysts. Adv. Synth. Catal., 2005, 347(11-13), 1553-1557.
[http://dx.doi.org/10.1002/adsc.200505191]
[190]
Żukowski, W.; Berkowicz, G.; Baron, J.; Kandefer, S.; Jamanek, D.; Szarlik, S.; Wielgosz, Z.; Zielecka, M. Selective phenol methylation to 2,6-dimethylphenol in a fluidized bed of iron-chromium mixed oxide catalyst with o-cresol circulation. Chem. Cent. J., 2014, 8(1), 51.
[http://dx.doi.org/10.1186/s13065-014-0051-6] [PMID: 25342964]
[191]
Łysik, P.; Górska, A.; Szarlik, S. Gas-phase methylation of phenol over iron-chromium catalyst. Ind. Eng. Chem. Res., 2014, 53(45), 17558-17562.
[http://dx.doi.org/10.1021/ie5028952]
[192]
Gandhe, A.R.; Fernandes, J.B. A highly ortho-selective TiO2 catalyst for the methylation of phenol. Catal. Commun., 2004, 5(2), 89-94.
[http://dx.doi.org/10.1016/j.catcom.2003.11.017]
[193]
Gandhe, A.R.; Fernandes, J.B.; Varma, S.; Gupta, N.M. TiO2: As a versatile catalyst for the ortho-selective methylation of phenol. J. Mol. Catal. Chem., 2005, 238(1-2), 63-71.
[http://dx.doi.org/10.1016/j.molcata.2005.05.011]
[194]
Rao, V.V.; Durgakumari, V.; Narayanan, S. Selective alkylation of phenol to 2,6-xylenol over vanadia-chromia mixed oxide catalysts. Appl. Catal., 1989, 49(1), 165-174.
[http://dx.doi.org/10.1016/S0166-9834(00)81430-X]
[195]
Narayanan, S.; Rao, V.V.; Durgakumari, V. A correlation of vanadia-chromia catalyst composition with acidity and selectivity C-alkylation activity of phenol. J. Mol. Catal. Chem., 1989, 52, L29-L32.
[http://dx.doi.org/10.1016/0304-5102(89)80024-0]
[196]
Rao, V.V.; Chary, K.V.R.; Durgakumari, V.; Narayanan, S. Alkylation of phenol over simple oxides and supported vanadium oxides. Appl. Catal., 1990, 61(1), 89-97.
[http://dx.doi.org/10.1016/S0166-9834(00)82137-5]
[197]
Chary, K.V.R.; Ramesh, K.; Vidyasagar, G.; Rao, V.V. Vapour phase alkylation of phenol with methanol over vanadium oxide supported on zirconia. J. Mol. Catal. Chem., 2003, 198(1-2), 195-204.
[http://dx.doi.org/10.1016/S1381-1169(02)00691-X]
[198]
Bezouhanova, C.; Al-Zihari, M.A. Alkylation of phenol with methanol over Mn3O4. Appl. Catal. A Gen., 1992, 83(1), 45-49.
[http://dx.doi.org/10.1016/0926-860X(92)80024-7]
[199]
Wang, Y.; Song, Y.; Huo, W.; Jia, M.; Jing, X.; Yang, P.; Yang, Z.; Liu, G.; Zhang, W. Vapor phase ortho-selective alkylation of phenol with methanol over silica-manganese mixed oxide catalysts. Chem. Eng. J., 2012, 181-182, 630-635.
[http://dx.doi.org/10.1016/j.cej.2011.12.029]
[200]
Klimkiewicz, R.; Grabowska, H.; Teterycz, H. Sn-Ce-Rh-O monophase system as a new type of ortho-selective catalyst for phenol alkylation. Appl. Catal. A Gen., 2003, 246(1), 125-136.
[http://dx.doi.org/10.1016/S0926-860X(02)00670-1]
[201]
Jyothi, T.M.; Rao, B.S.; Sugunan, S.; Sreekumar, K. Alkylation of phenol with methanol over mixed oxides of tin with some rare earth elements. Indian J. Chem., 1999, 38A(12), 1253-1255.
[202]
Inoue, M.; Enomoto, S. Alkylation of phenols on Fe2O3 and Cr2O3. Chem. Pharm. Bull. (Tokyo), 1976, 24(9), 2199-2203.
[http://dx.doi.org/10.1248/cpb.24.2199]
[203]
Bezouhanova, C.; Al-Zihari, M. Phenol alkylation with methanol on oxide and zeolite catalysts. J. Prakt. Chem., 1993, 335(8), 708-710.
[http://dx.doi.org/10.1002/prac.19933350811]
[204]
Velu, S.; Swamy, C.S. Alkylation of phenol with methanol over magnesium-aluminium calcined hydrotalcites. Appl. Catal. A Gen., 1994, 119(2), 241-252.
[http://dx.doi.org/10.1016/0926-860X(94)85194-8]
[205]
Velu, S.; Swamy, C.S. Kinetics of the alkylation of phenol with methanol over magnesium-aluminium calcined hydrotalcites. Appl. Catal. A Gen., 1996, 145(1-2), 225-230.
[http://dx.doi.org/10.1016/0926-860X(96)00148-2]
[206]
Velu, S.; Swamy, C.S. Selective C-alkylation of phenol with methanol over catalysts derived from copper-aluminium hydrotalcite-like compounds. Appl. Catal. A Gen., 1996, 145(1-2), 141-153.
[http://dx.doi.org/10.1016/0926-860X(96)00133-0]
[207]
Velu, S.; Swamy, C.S. Effect of substitution of Fe3+/Cr3+ on the alkylation of phenol with methanol over magnesium-aluminium calcined hydrotalcite. Appl. Catal. A Gen., 1997, 162(1-2), 81-91.
[http://dx.doi.org/10.1016/S0926-860X(97)00086-0]
[208]
Velu, S.; Swamy, C.S. Kinetics of the alkylation of phenol with methanol over catalysts derived from hydrotalcite-like anionic clays. React. Kinet. Catal. Lett., 1997, 62(2), 339-346.
[http://dx.doi.org/10.1007/BF02475473]
[209]
Nozaki, F. Kimura. I. A study of catalysis by metal phosphates. IV. The alkylation of phenol with methanol over metal phosphate catalysts. Bull. Chem. Soc. Jpn., 1977, 50(3), 614-619.
[http://dx.doi.org/10.1246/bcsj.50.614]
[210]
Durgakumari, V.; Narayanan, S.; Guczi, L. Alkylation of phenol with methanol over AIPO and SAPO molecular sieves. Catal. Lett., 1990, 5(4-6), 377-384.
[http://dx.doi.org/10.1007/BF00765180]
[211]
Bautista, F.M.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M.; Romero, A. Anion treatment (F- or SO42-) of AlPO4-Al2O3, (25 wt.-% Al2O3) catalysts. IV. Catalytic performance in the alkylation of phenol with methanol. Appl. Catal. A Gen., 1993, 99(2), 161-173.
[http://dx.doi.org/10.1016/0926-860X(93)80097-A]
[212]
Korenskii, V.I.; Skobeleva, V.D.; Kolenko, I.P.; Vinogradova, V.N.; Kharlampovich, G.D. Reactivity of 3- and 4-methylphenols in alkylation by methanol on a vanadium catalyst. Izv. Akad. Nauk SSSR: Seriya Khimicheskaya, 1985, 4, 762-765.
[213]
Acevedo, M.D.; Bedogni, G.A.; Okulik, N.B.; Padró, C.L. Study of gas phase m-cresol alkylation with methanol on solid acid catalysts. Catal. Lett., 2014, 144(11), 1946-1954.
[http://dx.doi.org/10.1007/s10562-014-1358-6]
[214]
Shabtai, J.; Klemm, L.H.; Taylor, D.R. Alumina-catalyzed reactions of hydroxyarenes and hydroaromatic ketones. II. Reactions of 1-oxo-2,2-dimethyl-1,2-dihydronaphthalene, 1-oxo-4,4-dimethyl-1,4-dihydronaphthalene, and 1-methoxynaphthalene with methanol. J. Org. Chem., 1968, 33(4), 1489-1493.
[http://dx.doi.org/10.1021/jo01268a037]
[215]
Shabtai, J.; Klemm, L.H.; Taylor, D.R. Alumina-catalyzed reactions of hydroxyarenes and hydroaromatic ketones. III. Reactions of 2-methyl-, 4-methyl-, and 2,4-dimethyl-1-naphthols with methanol. Sequential pathways to polyrnethylnaphthalenes. J. Org. Chem., 1968, 33(4), 1494-1497.
[http://dx.doi.org/10.1021/jo01268a038]
[216]
Klemm, L.H.; Shabtai, J.; Taylor, D.R. Alumina-catalyzed reactions of hydroxyarenes and hydroaromatic ketones. I. Reactions of 1-naphthol with methanol. J. Org. Chem., 1970, 33(4), 1480-1488.
[http://dx.doi.org/10.1021/jo01268a036]
[217]
Klemm, L.H.; Klopfenstein, C.E. Joseph. Shabtai, J. Alumina-catalyzed reactions of hydroxyarenes and hydroaromatic ketones. IV. Products and mechanism of reaction of 2-naphthol with methanol. J. Org. Chem., 1970, 35(4), 1069-1075.
[http://dx.doi.org/10.1021/jo00829a046]
[218]
Kulkarni, S.J.; Murthy, K.V.V.S.B.S.R.; Nagaiah, K.; Subrahmanyam, M.; Raghavan, K.V. Alkylation of 1-naphthol with methanol over modified zeolites. Microporous Mesoporous Mater., 1998, 21(1-3), 53-57.
[http://dx.doi.org/10.1016/S1387-1811(97)00044-9]
[219]
Stoylkova, T.Y.; Chanev, C.D.; Lechert, H.T.; Bezouhanova, C.P. Methylation of 2-naphthol over molecular sieves. Catal. Lett., 2000, 69(1-2), 109-112.
[http://dx.doi.org/10.1023/A:1019061604671]
[220]
Kim, S.; Hong, S.H. Ruthenium-catalyzed aminomethylation and methylation of phenol derivatives utilizing methanol as the C1 source. Adv. Synth. Catal., 2017, 359(5), 798-810.
[http://dx.doi.org/10.1002/adsc.201601117]
[221]
Mastalir, M.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Manganese-catalyzed aminomethylation of aromatic compounds with methanol as a sustainable C1 building block. J. Am. Chem. Soc., 2017, 139(26), 8812-8815.
[http://dx.doi.org/10.1021/jacs.7b05253] [PMID: 28628321]
[222]
Shabtai, J.; Klemm, L.H.; Taylor, D.R. Alumina-catalyzed reactions of hydroxyarenes and hydroaromatic ketones. V. Mechanism of reduction of 1-tetralones to 1, 2-dihydronaphthal-enes by means of methanol. J. Org. Chem., 1970, 35(4), 1075-1079.
[http://dx.doi.org/10.1021/jo00829a047]
[223]
Klemm, L.H.; Zell, R.; Joseph, S.; Shabtai, J.S. Alumina-catalyzed reaction of hydroxyarenes and hydroaromatic ketones. VII. Reaction of 5-indanol with methanol. J. Org. Chem., 1974, 39(5), 698-701.
[http://dx.doi.org/10.1021/jo00919a025]
[224]
Klemm, L.H.; Taylor, D.R. Reductive methylation of hydroxybiphenyl with alumina and methanol. Org. Prep. Proced. Int., 1976, 8(4), 163-168.
[http://dx.doi.org/10.1080/00304947609355616]
[225]
Takebayashi, Y.; Yoda, S.; Sugeta, T.; Otake, K.; Morita, Y.; Sakai, H.; Abe, M. Tetramethyl orthosilicate as a sharp-selective catalyst of C3-methylation of indole by supercritical methanol. J. Supercrit. Fluids, 2012, 69, 82-90.
[226]
Brogaard, R.Y.; Henry, R.; Schuurman, Y.; Medford, A.J.; Moses, P.G.; Beato, P.; Svelle, S.; Nørskov, J.K.; Olsbye, U. Methanol-to-hydrocarbons conversion: The alkene methylation pathway. J. Catal., 2014, 314, 159-169.
[http://dx.doi.org/10.1016/j.jcat.2014.04.006]
[227]
Gomes, J.; Head-Gordon, M.; Bell, A.T. Reaction dynamics of zeolite-catalyzed alkene methylation by methanol. J. Phys. Chem. C, 2014, 118(37), 21409-21419.
[http://dx.doi.org/10.1021/jp502804q]
[228]
Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.; Limtrakul, J. Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: An ONIOM study. J. Phys. Chem. C, 2009, 113(16), 6654-6662.
[http://dx.doi.org/10.1021/jp809746a]
[229]
Svelle, S.; Arstad, B.; Kolboe, S.; Swang, O. A Theoretical investigation of the methylation of alkenes with methanol over acidic zeolites. J. Phys. Chem. B, 2003, 107(35), 9281-9289.
[http://dx.doi.org/10.1021/jp022201q]
[230]
Zhu, Q.; Kondo, J.N.; Setoyama, T.; Yamaguchi, M.; Domen, K.; Tatsumi, T. Activation of hydrocarbons on acidic zeolites: superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts. Chem. Commun. (Camb.), 2008, 41(41), 5164-5166.
[http://dx.doi.org/10.1039/b809718f] [PMID: 18956056]
[231]
Li, J.; Qi, Y.; Liu, Z.; Liu, G.; Zhang, D. Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22. Catal. Lett., 2008, 121(3-4), 303-310.
[http://dx.doi.org/10.1007/s10562-007-9338-8]
[232]
Svelle, S.; Rønning, P.O.; Kolboe, S. Kinetic studies of zeolite-catalyzed methylation reactions. Part 1. Co-reaction of [12C]ethene and [13C]methanol. J. Catal., 2004, 224(1), 115-123.
[http://dx.doi.org/10.1016/j.jcat.2004.02.022]
[233]
Svelle, S.; Rønning, P.O.; Olsbye, U.; Kolboe, S. Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of [12C]propene or [12C]n-butene and [13C]methanol. J. Catal., 2005, 234(2), 385-400.
[http://dx.doi.org/10.1016/j.jcat.2005.06.028]
[234]
Svelle, S.; Kolboe, S.; Swang, O.; Olsbye, U. Methylation of alkenes and methylbenzenes by dimethyl ether or methanol on acidic zeolites. J. Phys. Chem. B, 2005, 109(26), 12874-12878.
[http://dx.doi.org/10.1021/jp051125z] [PMID: 16852598]
[235]
Van Speybroeck, V.; Van der Mynsbrugge, J.; Vandichel, M.; Hemelsoet, K.; Lesthaeghe, D.; Ghysels, A.; Marin, G.B.; Waroquier, M. First principle kinetic studies of zeolite-catalyzed methylation reactions. J. Am. Chem. Soc., 2011, 133(4), 888-899.
[http://dx.doi.org/10.1021/ja1073992] [PMID: 21182253]
[236]
Bercaw, J.E.; Hazari, N.; Labinger, J.A.; Scott, V.J.; Sunley, G.J. Selective methylative homologation: an alternate route to alkane upgrading. J. Am. Chem. Soc., 2008, 130(36), 11988-11995.
[http://dx.doi.org/10.1021/ja803029s] [PMID: 18698767]
[237]
Kim, J.; Cho, S.H. Recent developments in the direct methylation of electron-deficient N-heteroarenes. Synlett, 2016, 27(18), 2525-2529.
[http://dx.doi.org/10.1055/s-0036-1588073]
[238]
Myerly, R.C.; Weinber, K.G. The catalytic methylation of pyridine and its derivatives in the vapor phase. J. Org. Chem., 1966, 31(6), 2008-2009.
[http://dx.doi.org/10.1021/jo01344a529]
[239]
Myerly, R.C.; Berg, K.W. 1969.
[240]
Kashiwagi, H.; Enomoto, S. Catalytic reactions of pyridines. III. γ-Ray-induced α-methylation of pyridine and γ-picoline with methanol catalyzed by nickel nitrate. Chem. Pharm. Bull. (Tokyo), 1982, 30(1), 1-6.
[http://dx.doi.org/10.1248/cpb.30.1]
[241]
Kashiwagi, H.; Enomoto, S. Catalytic reactions of pyridines. IV. Heterogeneous vapor-phase side-chain alkylation of pyridines with alcohols over Na+, K+, Rb+, and Cs+ exchanged zeolites. Chem. Pharm. Bull. (Tokyo), 1982, 30(2), 404-411.
[http://dx.doi.org/10.1248/cpb.30.404]
[242]
Kashiwagi, H.; Enomoto, S. Catalytic reactions of pyridines. V. Alkylation of α-, β-, and γ-picolines with alcohols catalyzed by ammonium halides. Chem. Pharm. Bull. (Tokyo), 1982, 30(6), 2213-2218.
[http://dx.doi.org/10.1248/cpb.30.2213]
[243]
Kashiwagi, H.; Fujiki, Y.; Enomoto, S. Catalytic reactions of pyridines. VI. Heterogeneous vapor-phase ring alkylation of pyridines with alcohols over H+-, Li+-, and alkaline earth cation-exchanged zeolites. Chem. Pharm. Bull. (Tokyo), 1982, 30(7), 2575-2578.
[http://dx.doi.org/10.1248/cpb.30.2575]
[244]
Kameswari, U. Methylation of pyridine over zeolites. FT-IR studies for selectivity and acidity correlations. React. Kinet. Catal. Lett., 1995, 55(2), 291-304.
[http://dx.doi.org/10.1007/BF02073063]
[245]
Sreekumar, K.; Mathew, T.; Rajgopal, R.; Vetrivel, R.; Rao, B.S. Selective synthesis of 3-picoline via the vapour phase methylation of pyridine with methanol over Ni(1−x)CoxFe2O4 (x = 0, 0.2, 0.5 0.8 and 1.0) type ferrites. Catal. Lett., 2000, 65(1), 99-105.
[http://dx.doi.org/10.1023/A:1019081608421]
[246]
Sreekumar, K.; Mathew, T.; Devassy, B.M.; Rajgopal, R.; Vetrivel, R.; Rao, B.S. Vapor-phase methylation of pyridine with methanol to 3-picoline over Zn1−xCoxFe2O4 (x=0, 0.2, 0.5, 0.8 and 1.0)-type ternary spinels prepared via a low temperature method. Appl. Catal. A Gen., 2001, 205(1-2), 11-18.
[http://dx.doi.org/10.1016/S0926-860X(00)00542-1]
[247]
Shyam, A.R.; Reena, D.; Reddy, V.S.; Chary, K.V.R.; Prasad, R. Vapour phase methylation of pyridine with methanol over Zn(1−x)MnxFe2O4(x = 0, 0.25, 0.50, 0.75 and 1) ferrite system. Green Chem., 2002, 4(6), 558-561.
[http://dx.doi.org/10.1039/B207410A]
[248]
Jin, J.; MacMillan, D.W.C. Alcohols as alkylating agents in heteroarene C-H functionalization. Nature, 2015, 525(7567), 87-90.
[http://dx.doi.org/10.1038/nature14885] [PMID: 26308895]
[249]
Liu, W.; Yang, X.; Zhou, Z-Z.; Li, C-J. Simple and clean photo-induced methylation of heteroarenes with MeOH. Chem, 2017, 2(5), 688-702.
[http://dx.doi.org/10.1016/j.chempr.2017.03.009]
[250]
Ochiai, M.; Morita, K. A novel photo-induced methylation of pyrimidines and condensed pyrimidine compounds. Tetrahedron Lett., 1967, 8(25), 2349-2351.
[http://dx.doi.org/10.1016/S0040-4039(00)71604-2]
[251]
Ochiai, M.; Mizuta, E.; Asahi, Y.; Morita, K. A novel photo-induced methylation of pyrimidines and condensed pyrimidines. Tetrahedron, 1968, 24(17), 5861-5870.
[http://dx.doi.org/10.1016/S0040-4020(01)96316-1]
[252]
Gopal, D.V.; Srinivas, B.; Durgakumari, V.; Subrahmanyam, M. Vapor-phase alkylation of indole with methanol over zeolites. Appl. Catal. A Gen., 2002, 224(1-2), 121-128.
[http://dx.doi.org/10.1016/S0926-860X(01)00787-6]
[253]
Deslandes, B.; Gariépy, C.; Houde, A. Review of microbiological and biochemical effects of skatole on animal production. Livest. Prod. Sci., 2001, 71(2-3), 193-200.
[http://dx.doi.org/10.1016/S0301-6226(01)00189-0]
[254]
Kishida, N.; Kamitanaka, T.; Fusayasu, M.; Sunamura, T.; Matsuda, T.; Osawa, T.; Harada, T. Ring-methylation of pyrrole and indole using supercritical methanol. Tetrahedron, 2010, 66(27-28), 5059-5064.
[http://dx.doi.org/10.1016/j.tet.2010.04.122]
[255]
Kozhevnikov, I.V.; Nuzhdin, A.L.; Bukhtiyarova, G.A.; Martyanov, O.N.; Chibiryaev, A.M. Tetramethyl orthosilicate as a sharp-selective catalyst of C3-methylation of indole by supercritical methanol. J. Supercrit. Fluids, 2012, 69, 82-90.
[http://dx.doi.org/10.1016/j.supflu.2012.05.013]
[256]
Chen, S-J.; Lu, G-P.; Cai, C. Iridium-catalyzed methylation of indoles and pyrroles using methanol as feedstock. RSC Advances, 2015, 5(86), 70329-70332.
[http://dx.doi.org/10.1039/C5RA15822B]
[257]
Siddiki, S.M.A.H.; Touchy, A.S.; Jamil, M.A.R.; Toyao, T.; Shimizu, K. C-Methylation of alcohols, ketones, and indoles with methanol using heterogeneous platinum catalysts. ACS Catal., 2018, 8(4), 3091-3103.
[http://dx.doi.org/10.1021/acscatal.7b04442]
[258]
Liu, Z.; Yang, Z.; Yu, X.; Zhang, H.; Yu, B.; Zhao, Y.; Liu, Z.Yu. X.;Zhang, H.;Yu, B.; Zhao, Y.; Liu, Z. Methylation of C(sp3)-H/C(sp2)-H bonds with methanol catalyzed by cobalt system. Org. Lett., 2017, 19(19), 5228-5231.
[http://dx.doi.org/10.1021/acs.orglett.7b02462] [PMID: 28926264]
[259]
Polidano, K.; Allen, B.D.W.; Williams, J.M.J.; Morrill, L.C. Iron-catalyzed methylation using the borrowing hydrogen approach. ACS Catal., 2018, 8(7), 6440-6445.
[http://dx.doi.org/10.1021/acscatal.8b02158]
[260]
Siwach, P.; Singh, S.; Gupta, R.K. Vapor phase alkylation of pyrrole with methanol and dimethylcarbonate over ferrospinels. Appl. Catal. A Gen., 2009, 366(1), 65-70.
[http://dx.doi.org/10.1016/j.apcata.2009.06.029]
[261]
Chan, L.K.M.; Poole, D.L.; Shen, D.; Healy, M.P.; Donohoe, T.J. Rhodium-catalyzed ketone methylation using methanol under mild conditions: formation of α-branched products. Angew. Chem. Int. Ed. Engl., 2014, 53(3), 761-765.
[http://dx.doi.org/10.1002/anie.201307950] [PMID: 24288297]
[262]
Shen, D.; Poole, D.L.; Shotton, C.C.; Kornahrens, A.F.; Healy, M.P.; Donohoe, T.J. Hydrogen-borrowing and interrupted-hydrogen-borrowing reactions of ketones and methanol catalyzed by iridium. Angew. Chem. Int. Ed. Engl., 2015, 54(5), 1642-1645.
[http://dx.doi.org/10.1002/anie.201410391] [PMID: 25491653]
[263]
Ogawa, S.; Obora, Y. Iridium-catalyzed selective α-methylation of ketones with methanol. Chem. Commun. (Camb.), 2014, 50(19), 2491-2493.
[http://dx.doi.org/10.1039/C3CC49626K] [PMID: 24458143]
[264]
Quan, X.; Kerdphon, S.; Andersson, P.G. C-C coupling of ketones with methanol catalyzed by a N-heterocyclic carbene-phosphine iridium complex. Chemistry, 2015, 21(9), 3576-3579.
[http://dx.doi.org/10.1002/chem.201405990] [PMID: 25589169]
[265]
Li, F.; Ma, J.; Wang, N. α-Alkylation of ketones with primary alcohols catalyzed by a Cp*Ir complex bearing a functional bipyridonate ligand. J. Org. Chem., 2014, 79(21), 10447-10455.
[http://dx.doi.org/10.1021/jo502051d] [PMID: 25313673]
[266]
Dang, T.T.; Seayad, A.M. A convenient ruthenium‐catalysed α‐methylation of carbonyl compounds using methanol. Adv. Synth. Catal., 2016, 358(21), 3373-3380.
[http://dx.doi.org/10.1002/adsc.201600562]
[267]
Bruneau-Voisine, A.; Pallova, L.; Bastin, S.; César, V.; Sortais, J-B. Manganese catalyzed α-methylation of ketones with methanol as a C1 source. Chem. Commun. (Camb.), 2019, 55(3), 314-317.
[http://dx.doi.org/10.1039/C8CC08064J] [PMID: 30534718]
[268]
Reddy, C.B.; Bharti, R.; Kumar, S.; Das, P. Supported palladium nanoparticle catalyzed α-alkylation of ketones using alcohols as alkylating agents. ACS Sustain. Chem.& Eng., 2017, 5(11), 9683-9691.
[http://dx.doi.org/10.1021/acssuschemeng.7b00789]
[269]
Jiang, L.; Guo, F.; Shi, Z.; Li, Y.; Hou, Z. Syndiotactic poly(aminostyrene)‐supported palladium catalyst for ketone methylation with methanol. ChemCatChem, 2017, 9(20), 3827-3832.
[http://dx.doi.org/10.1002/cctc.201700907]
[270]
Das, J.; Singh, K.; Vellakkaran, M.; Banerjee, D. Nickel-catalyzed hydrogen-borrowing strategy for α-alkylation of ketones with alcohols: A new route to branched gem-bis(alkyl) ketones. Org. Lett., 2018, 20(18), 5587-5591.
[http://dx.doi.org/10.1021/acs.orglett.8b02256] [PMID: 30203978]
[271]
Charvieux, A.; Duguet, N.; Métay, E. α-Methylation of ketones with methanol catalyzed by Ni/SiO2-Al2O3. Eur. J. Org. Chem., 2019, 2019(22), 3694-3698.
[http://dx.doi.org/10.1002/ejoc.201900602]
[272]
Wang, F-L.; Lin, Y-H. Alkylation of acetaldehyde with methanol over titanium oxide-supported vanadium oxide. Chem. Lett., 1992, 21(9), 1867-1868.
[http://dx.doi.org/10.1246/cl.1992.1867]
[273]
Wang, F-l.; Tsai, T-f.; Yu, L-C.; Hu, I-Z. Yen. Y.-P. Alkylation of aldehydes with methanol over titanium oxide catalysts. Catal. Lett., 1996, 42(3-4), 155-160.
[http://dx.doi.org/10.1007/BF00810681]
[274]
Tsukamoto, Y.; Itoh, S.; Kobayashi, M.; Obora, Y.; Obora, Y. Iridium-catalyzed α-methylation of α-aryl esters using methanol as the C1 source. Org. Lett., 2019, 21(9), 3299-3303.
[http://dx.doi.org/10.1021/acs.orglett.9b01025] [PMID: 30993989]
[275]
Ueda, W.; Yokoyama, T.; Moro-Oka, Y.; Ikawa, T. Selective synthesis of acrylonitrile from acetonitrile and methanol over basic metal oxide catalysts. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24(2), 340-342.
[http://dx.doi.org/10.1021/i300018a032]
[276]
Kurokawa, H.; Kato, T.; Ueda, W.; Morikawa, Y.; Moro-Oka, Y.; Ikawa, T. Solid base-catalyzed reaction of nitriles with methanol to form α,β-unsaturated nitriles I. Conversion and selectivity. J. Catal., 1990, 126(1), 199-207.
[http://dx.doi.org/10.1016/0021-9517(90)90058-R]
[277]
Kurokawa, H.; Kato, T.; Kuwabara, T.; Ueda, W.; Morikawa, Y.; Moro-Oka, Y.; Ikawa, T. Solid base-catalyzed reaction of nitriles with methanol to form α,β-unsaturated nitriles II. Surface base property and reaction mechanism. J. Catal., 1990, 126(1), 208-218.
[http://dx.doi.org/10.1016/0021-9517(90)90059-S]
[278]
Lin, Y.W.; Ishii, M.; Ueda, W.; Morikawa, Y. Rate enhancing effect of carbon dioxide in the reaction of acetonitrile with methanol to acrylonitrile over magnesium oxide catalyst. Chem. Lett., 1995, 24(9), 793-794.
[http://dx.doi.org/10.1246/cl.1995.793]
[279]
Hur, J.M.; Coh, B-Y.; Lu, L.; Kwon, H-H.; Lee, H-I. Effect of CO2 addition as an oxidant on the catalytic activity of K/MgO for acrylonitrile synthesis. Catal. Lett., 2000, 69(3-4), 237-240.
[http://dx.doi.org/10.1023/A:1019002913757]
[280]
Hur, J.M.; Coh, B-Y.; Lee, H-I. A study on the alkali metal-promoted magnesium oxide system used as a catalyst for acrylonitrile synthesis from methanol and acetonitrile. Catal. Today, 2000, 63(2-4), 189-195.
[http://dx.doi.org/10.1016/S0920-5861(00)00459-4]
[281]
Hur, J.M.; Kwon, H-H.; Lee, H-I. Single step synthesis of propionitrile over K/MgO from acetonitrile methylation with methanol. React. Kinet. Catal. Lett., 2002, 77(1), 133-138.
[http://dx.doi.org/10.1023/A:1020356222859]
[282]
Lapidus, A.L.; Tsapkina, M.V.; Kravtsova, E.A.; Gorlov, E.G. Synthesis of nitriles from acetonitrile and methanol in the presence of oxide catalysts. Russ. Chem. Bull., 1997, 46(8), 1476-1478.
[http://dx.doi.org/10.1007/BF02505691]
[283]
Zhao, L-H.; Liu, G-Y.; Xie, Y-L.; Zhou, H-S.; Li, L-M.; Luo, M-F. Study on Fe/MgO catalysts for acrylonitrile synthesis from acetonitrile and methanol. React. Kinet. Catal. Lett., 2004, 82(2), 219-225.
[http://dx.doi.org/10.1023/B:REAC.0000034830.08132.55]
[284]
Xie, Y-L.; Luo, M-F.; Zhao, J-J. TPD study on Cr/MgO catalysts for acrylonitrile synthesis from acetonitrile and methanol. React. Kinet. Catal. Lett., 2006, 89(1), 29-36.
[http://dx.doi.org/10.1007/s11144-006-0083-6]
[285]
Savel’ev, M.M.; Lapidus, A.L.; Kolesnikova, I.B.; Usachev, N.Ya.; Minachev, Kh.M.; Usacheva, O.N. Formation of propionitrile and acrylonitrile from acetonitrile and methanol. Izvestiya Akademii Nauk. Seriya Khimicheskaya, 1992, 9, 2195-2196.
[286]
Zhao, L.; Zhao, J.; Luo, M.; Liu, G.; Song, J.; Zhang, Y. Acrylonitrile synthesis from acetonitrile and methanol over MgMn/ZrO2 catalysts. Catal. Commun., 2005, 6(9), 617-623.
[http://dx.doi.org/10.1016/j.catcom.2005.05.002]
[287]
Borghs, J.C.; Tran, M.A.; Sklyaruk, J.; Rueping, M.; El-Sepelgy, O. Sustainable alkylation of nitriles with alcohols by manganese catalysis. J. Org. Chem., 2019, 84(12), 7927-7935.
[http://dx.doi.org/10.1021/acs.joc.9b00792] [PMID: 31116947]
[288]
Gabriëls, D.; Hernández, W.Y.; Sels, B.; Van Der Voort, P.; Verberckmoes, A. Review of catalytic systems and thermo-dynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catal. Sci. Technol., 2015, 5(8), 3876-3902.
[http://dx.doi.org/10.1039/C5CY00359H]
[289]
Li, Y.; Li, H.; Junge, H.; Beller, M. Selective ruthenium-catalyzed methylation of 2-arylethanols using methanol as C1 feedstock. Chem. Commun. (Camb.), 2014, 50(95), 14991-14994.
[http://dx.doi.org/10.1039/C4CC06933A] [PMID: 25327955]
[290]
Wingad, R.L.; Bergström, E.J.E.; Everett, M.; Pellow, K.J.; Wass, D.F. Catalytic conversion of methanol/ethanol to isobutanol--a highly selective route to an advanced biofuel. Chem. Commun. (Camb.), 2016, 52(29), 5202-5204.
[http://dx.doi.org/10.1039/C6CC01599A] [PMID: 26998669]
[291]
Pellow, K.J.; Wingad, R.L.; Wass, D.F. Towards the upgrading of fermentation broths to advanced biofuels: A water tolerant catalyst for the conversion of ethanol to isobutanol. Catal. Sci. Technol., 2017, 7(21), 5128-5134.
[http://dx.doi.org/10.1039/C7CY01553D]
[292]
Newland, R.J.; Wyatt, M.F.; Wingad, R.L.; Mansell, S.M. A ruthenium(ii) bis(phosphinophosphinine) complex as a precatalyst for transfer-hydrogenation and hydrogen-borrowing reactions. Dalton Trans., 2017, 46(19), 6172-6176.
[http://dx.doi.org/10.1039/C7DT01022B] [PMID: 28436519]
[293]
Liu, Y.; Shao, Z.; Wang, Y.; Xu, L.; Yu, Z.; Liu, Q. Manganese-catalyzed selective upgrading of ethanol with methanol into isobutanol. ChemSusChem, 2019, 12(13), 3069-3072.
[http://dx.doi.org/10.1002/cssc.201802689] [PMID: 30724026]
[294]
Kaithal, A.; van Bonn, P.; Hölscher, M.; Leitner, W. Manganese(I)-catalyzed β-methylation of alcohols using methanol as C1 source. Angew. Chem. Int. Ed. Engl., 2020, 59(1), 215-220.
[http://dx.doi.org/10.1002/anie.201909035] [PMID: 31651071]
[295]
Schlagbauer, M.; Kallmeier, F.; Irrgang, T.; Kempe, R. Manganese-catalyzed β-methylation of alcohols by methanol. Angew. Chem. Int. Ed. Engl., 2020, 59(4), 1485-1490.
[http://dx.doi.org/10.1002/anie.201912055] [PMID: 31743576]
[296]
Oikawa, K.; Itoh, S.; Yano, H.; Kawasaki, H.; Obora, Y. Preparation and use of DMF-stabilized iridium nanoclusters as methylation catalysts using methanol as the C1 source. Chem. Commun. (Camb.), 2017, 53(6), 1080-1083.
[http://dx.doi.org/10.1039/C6CC09279A] [PMID: 28044173]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy