摘要
长链非编码 RNA (LncRNA) 是一种具有很少或没有蛋白质编码能力的 RNA。它们的长度超过 200 个核苷酸。大量研究表明,lncRNA在各种生物学过程中发挥着重要作用,包括细胞水平的染色质组织、表观遗传编程、转录调控、转录后加工和昼夜节律机制。由于 lncRNA 通过与蛋白质的相互作用发挥着巨大的功能,识别 lncRNA-蛋白质相互作用对于理解 lncRNA 分子功能至关重要。然而,由于实验方法成本高、耗时长的缺点,各种计算方法应运而生。最近,已经开发了许多有效和新颖的机器学习方法。一般来说,这些方法分为两类:半监督学习方法和监督学习方法。后一类可以进一步分为基于深度学习的方法、基于集成学习的方法和混合方法。在本文中,我们专注于监督学习方法。我们总结了预测 lncRNA-蛋白质相互作用的最新方法。此外,本文还比较了不同方法的性能和特点。考虑到现有模型的局限性,我们分析了问题并讨论了未来的研究潜力。
关键词: lncRNA-蛋白质相互作用预测、计算模型、机器学习、深度学习、LncRNA、染色质组织
图形摘要
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[http://dx.doi.org/10.1038/nsmb0207-103] [PMID: 17277804]
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[http://dx.doi.org/10.1038/nsmb.3005] [PMID: 25849144]
[http://dx.doi.org/10.1016/j.bbrc.2019.06.107] [PMID: 31242972]
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.009] [PMID: 24342564]
[http://dx.doi.org/10.1007/978-1-60327-563-7_2]
[http://dx.doi.org/10.1016/j.ncrna.2016.09.002] [PMID: 30159409]
[http://dx.doi.org/10.1038/nature20149] [PMID: 27783602]
[http://dx.doi.org/10.1186/1480-9222-16-11] [PMID: 25276098]
[http://dx.doi.org/10.1007/s11427-013-4553-6] [PMID: 24091684]
[http://dx.doi.org/10.1007/s13277-014-1709-3] [PMID: 24523021]
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[http://dx.doi.org/10.1016/j.gpb.2015.09.006] [PMID: 26883671]
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[http://dx.doi.org/10.1002/path.2638] [PMID: 19882673]
[http://dx.doi.org/10.1016/j.semcdb.2011.02.016] [PMID: 21333748]
[http://dx.doi.org/10.1371/journal.pbio.0020171] [PMID: 15252442]
[http://dx.doi.org/10.1016/j.cell.2007.05.022] [PMID: 17604720]
[http://dx.doi.org/10.1016/j.molcel.2010.08.011] [PMID: 20797886]
[http://dx.doi.org/10.1016/j.tig.2005.10.003] [PMID: 16290135]
[http://dx.doi.org/10.1016/j.bbagen.2013.10.035] [PMID: 24184936]
[http://dx.doi.org/10.1038/nprot.2006.47] [PMID: 17406249]
[http://dx.doi.org/10.1038/nbt.1550] [PMID: 19561594]
[http://dx.doi.org/10.1002/wrna.31] [PMID: 21935890]
[http://dx.doi.org/10.1155/2015/671950] [PMID: 26839884]
[http://dx.doi.org/10.1016/j.neucom.2015.11.109]
[http://dx.doi.org/10.1016/j.gpb.2016.01.004] [PMID: 26917505]
[http://dx.doi.org/10.1186/s12859-017-1819-1] [PMID: 29072138]
[http://dx.doi.org/10.1016/j.neucom.2017.07.065]
[http://dx.doi.org/10.1016/j.ygeno.2019.09.018] [PMID: 31639442]
[http://dx.doi.org/10.1109/TCBB.2018.2861009] [PMID: 30059315]
[http://dx.doi.org/10.18632/oncotarget.21934] [PMID: 29262614]
[http://dx.doi.org/10.3389/fgene.2018.00239] [PMID: 30023002]
[http://dx.doi.org/10.3389/fgene.2019.01148] [PMID: 31824563]
[http://dx.doi.org/10.3389/fgene.2018.00716] [PMID: 30697228]
[http://dx.doi.org/10.1109/ACCESS.2019.2894225]
[http://dx.doi.org/10.1186/1471-2105-12-489] [PMID: 22192482]
[http://dx.doi.org/10.1039/C2MB25292A] [PMID: 23138266]
[http://dx.doi.org/10.1186/1471-2164-14-651] [PMID: 24063787]
[http://dx.doi.org/10.1093/nar/gkv020] [PMID: 25609700]
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[http://dx.doi.org/10.1038/nmeth.3547] [PMID: 26301843]
[http://dx.doi.org/10.1109/BIBM.2016.7822515]
[http://dx.doi.org/10.1093/nar/gky949]
[http://dx.doi.org/10.1093/nar/gkt980] [PMID: 24185695]
[http://dx.doi.org/10.1093/nar/gkt1057] [PMID: 24217916]
[http://dx.doi.org/10.1093/database/baw057] [PMID: 27087310]
[http://dx.doi.org/10.1093/nar/gkz969] [PMID: 31670377]
[http://dx.doi.org/10.1186/s12864-016-2931-8] [PMID: 27506469]
[http://dx.doi.org/10.1016/j.ab.2020.113767] [PMID: 32454029]
[http://dx.doi.org/10.1093/nar/gkr160] [PMID: 21459850]
[http://dx.doi.org/10.1371/journal.pbio.0060255] [PMID: 18959479]
[http://dx.doi.org/10.1016/j.neucom.2019.08.084]
[http://dx.doi.org/10.2174/1574893614666190131161002]
[http://dx.doi.org/10.1093/bioinformatics/btq003] [PMID: 20053844]
[http://dx.doi.org/10.1016/j.csbj.2019.11.004] [PMID: 31890140]
[http://dx.doi.org/10.1101/gr.135350.111] [PMID: 22955987]
[http://dx.doi.org/10.1186/s12918-017-0390-8] [PMID: 28361676]
[http://dx.doi.org/10.1016/0022-2836(81)90087-5] [PMID: 7265238]
[http://dx.doi.org/10.1093/bioinformatics/bty573] [PMID: 30423091]
[http://dx.doi.org/10.1080/15476286.2018.1457935] [PMID: 29583068]
[http://dx.doi.org/10.1093/database/bat034] [PMID: 23846593]
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[http://dx.doi.org/10.1093/nar/gkv1252] [PMID: 26586799]
[http://dx.doi.org/10.1093/bioinformatics/btu602] [PMID: 25231908]
[http://dx.doi.org/10.1109/TCBB.2013.146]
[http://dx.doi.org/10.1093/bioinformatics/btp500] [PMID: 19706744]
[http://dx.doi.org/10.1093/nar/gkn159] [PMID: 18390576]
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[http://dx.doi.org/10.1093/bioinformatics/btt072] [PMID: 23426256]
[http://dx.doi.org/10.5555/1756006.1953039]
[http://dx.doi.org/10.1109/ICASSP.2013.6639343]
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107088] [PMID: 31330489]
[http://dx.doi.org/10.3390/ijms20051070] [PMID: 30832218]
[http://dx.doi.org/10.1093/bioinformatics/11.6.681] [PMID: 8808585]
[http://dx.doi.org/10.1186/1748-7188-6-26] [PMID: 22115189]
[http://dx.doi.org/10.1016/j.ygeno.2020.05.005] [PMID: 32437848]
[http://dx.doi.org/10.1371/journal.pcbi.1003711] [PMID: 25033408]
[http://dx.doi.org/10.1186/s12859-018-2535-1] [PMID: 30577759]
[http://dx.doi.org/10.1093/bioinformatics/btu352] [PMID: 24860169]
[http://dx.doi.org/10.1093/bioinformatics/btaa456] [PMID: 32657407 ]
[PMID: 31691826]