Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Green Hydrotropes-Assisted Route: An Alternative Approach for Extracting Phytoconstituents and Associated Drug Delivery Systems

Author(s): Devika Tripathi*, Nandini Chaudhary, Pranay Wal, Awani K. Rai and Jagannath Sahoo

Volume 11, Issue 3, 2021

Published on: 12 July, 2021

Page: [220 - 232] Pages: 13

DOI: 10.2174/2210303111666210712100722

Price: $65

Abstract

Critically challenging tasks for the researchers are isolating and extracting chief active medicinal phytoconstituents from existing herbal plants. The intricate extraction process usually involves active plant and animal portions separated by selective solvents through various standard procedures. Therefore, most of the products contained the complex metabolites mixtures, making the extraction process involved in separating these products increasingly tricky, thus resulting in lesser yield. Therefore, an alternative strategy suitable for green extraction routes has recently succeeded as a sustainable resource with many advantages like high solvency, low toxicity, and low impact in the environment, biodegradable, and helps recycle consumed solvents without showing any detrimental effects on the environment.

The process of green hydrotrope-assisted extraction process persists a novel and promising methodology that maximizes the yield of phytoconstituents in comparison to the conventional extraction process by the commissioning of a variety of hydrotropes like sodium cumene sulfonate, sodium alkyl-benzene sulfonates, and sodium butyl mono-glycol sulfate, involved in selective extraction of water-insoluble phytoconstituents by the disorganization of the phospholipid bilayers by the hydrotrope, through cell permeabilization, disruption of the cellulosic cell wall and, then possibly the dissolution of the cellular contents.

The central point of this audit is the increase of the surrender of phytoconstituents from herbal plants accomplished by considering green hydrotropic-assisted extraction process, an assignment of carrying out the extraction of herbal plants sanctioning hydrotropes and its component. Using hydrotropes for extracting the phytoconstituents has imperatively highlighted the conveyance frameworks of separated extricated phytoconstituents from herbal plants and encourages the forwarding of their bioavailability at distinctive target destinations.

Keywords: Hydrotrope-assisted process, hydrotropes, green solvent, herbal plants, extraction phytoconstituents, mechanism, drug delivery system.

Graphical Abstract

[1]
Dongre, P.P.; Kannur, D.M.; Kosambiya, V.; Desai, B.D. Significant role of hydrotropes in extraction of phytoconstituents- a review. IJPSR, 2011, 2, 730-734.
[2]
Agrawal, S.S.; Paridhavi, M. Herbal Drug technology; Universities press Hyderabad, 2007.
[3]
Heldt, N.; Zhao, J.; Friberg, S.; Zhang, Z.; Slack, G.; Lia, Y. Controlling the size of vesicles prepared from egg lecithin using a hydrotrope. Tetrahedron, 2000, 56, 6985-6990.
[http://dx.doi.org/10.1016/S0040-4020(00)00520-2]
[4]
Charde, M.S.; Shukla, A.; Bukhariya, V.; Chakole, R.D. A review on: a significance of microwave assist technique in green chemistry. Int.J. Phytopharma, 2012, 2, 39-50.
[http://dx.doi.org/10.7439/ijpp.v2i2.441]
[5]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[6]
Rasheed, A.; Sravya, R.B.; Roja, C. A review on standardization of herbal formulation. Int. J. Phytothera, 2012, 2(2), 74-88.
[7]
Bajpai, R.; Jain, N.; Pathak, A.K. Standardization of ethanolic extract of cucurbita maxina seed. J. Appl. Pharm. Sci., 2012, 2(08), 92-95.
[8]
Senthil, N. Jayakumar, D.; Gandhi,N. Effect of hydrotropes on solubility and mass transfer coefficient of methyl benzoate. Mod. Appl. Sci., 2009, 3, 101-111.
[9]
Varade, D.; Bahadur, P. Effect of hydrotropes on the aqueous solution behavior of surfactants. J. Surface. Detergents., 2002, 7, 257-261.
[http://dx.doi.org/10.1007/s11743-004-0309-7]
[10]
Khanum, K.; Chandy, V. Effect of hydrotropy substance on solubility of poorly water soluble drug. Pharma Sci. Monitor, 2018, 9, 307-311.
[11]
Desai, M.; Parikh, J. Thermodynamic study for aggregation behavior of hydrotropic solution. World Acad. Sci. Eng. Technol., 2009, 57, 227-229.
[12]
Girija, R.; Vilas, G. Hydrotropic solubilization of boswellic acids from Boswellia serrata resin. Am. Chem. Society., 2003, 19, 8026-8032.
[13]
Hartati, I.; Anas, Y.; Kurniasari, L. Standardization of sambiloto (andrographispaniculata ness)extract obtained by hydrotropic microwave assistedextraction. Int. J. Pharm. Tech. Res., 2015, 8, 77-84.
[14]
Trease and Evanse: Pharmacognosy, 15th edition; Rajkamal Electric press Delhi, 2005.
[15]
Mangal, A.; Bhadoriya, S.S.; Joshi, S.; Agrawal, G.; Gupta, A.; Mandoria, N. Extraction of herbal drugs by using hydrotropy solubilization phenomenon.Int. Res J Pharm. App Sci., 2012, 2, 63-74.
[16]
Guo, G.; Zhang, Q.; Qian, J.; Zou, A. Hydrotrope and hydrotrope-solubilization action of penicillin-K in CTAB/n-C5H11OH/H2O system. Physicochem. Engineering Aspects, 2002, 196, 223-234.
[http://dx.doi.org/10.1016/S0927-7757(01)00900-1]
[17]
Garg, S.; Garg, A.; Singh, V.; Shukla, A. Application of hydrotropicagents in herbal extraction: a review. Asian J. Biomaterial Res., 2016, 2, 84-87.
[18]
Gour, V.; Garg, A.; Yadav, A.K. Development and evaluation of metronidazole injection by mixed solvency approach. Asian J. Biomaterial Res, 2016, 2, 38-45.
[19]
Das, K.; Tiwari, R.K.S.; Srivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res., 2010, 4, 104-111.
[20]
Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemicals screening and extraction: a review. Int. Pharma. Sci, 2011, 1, 96-106.
[21]
Sheldon, R.A. The greening of solvents: Towards sustainable organic synthesis. Current Op. Green. Sustainable Chem., 2019, 18, 13-19.
[http://dx.doi.org/10.1016/j.cogsc.2018.11.006]
[22]
de Souza, J.F.; Pontes, K.D.; Alves, T.F.; Amaral, V.A.; Rebelo, M.A.; Hausen, M.A.; Chaud, M.V. Spotlight on biomimetic systems based on lyotropic liquid crystal. Molecules, 2017, 22(3), 1-15.
[http://dx.doi.org/10.3390/molecules22030419] [PMID: 28272377]
[23]
Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
[24]
Singhvi, G.; Banerjee, S.; Khosa, A. Lyotropic liquid crystal nanoparticles: A novel improved lipidic drug delivery system. Organic Materials as SmartNano carriers for Drug Delivery, 2018, 4, 471-517.
[25]
Nathan, S.; Jayakumar, C.; Gandhi, N. Effect of hydrotropes on solubility and mass transfer coefficient of methyl benzoate. Mod. Appl. Sci., 2009, 3, 101-111.
[http://dx.doi.org/10.5539/mas.v3n3p101]
[26]
Deepak, V.; Dandekar, G.K.; Bhimanagouda, J.; Patil, S. Hydrotropic extraction of bioactive limonin from sour orange (Citrus aurantium L.) seeds. Food Chem., 2008, 109(3), 515-520.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.071]
[27]
Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol., 2008, 46(10), 3227-3239.
[http://dx.doi.org/10.1016/j.fct.2008.07.024] [PMID: 18725264]
[28]
Blanco, M.M.; Costa, C.A.R.A.; Freire, A.O.; Santos, J.G., Jr; Costa, M. Neurobehavioral effect of essential oil of Cymbopogon citratus in mice. Phytomedicine, 2009, 16(2-3), 265-270.
[http://dx.doi.org/10.1016/j.phymed.2007.04.007] [PMID: 17561386]
[29]
Pezzuoli, D.; Cozzolino, M.; Montali, C.; Brancaleon, L.; Bianchini, P.; Zantedeschi, M.; Bonardi, S.; Viappiani, C.; Abbruzzetti, S. Serum albumins are efficient delivery systems for the photosensitizer Hypericin in photosensitization-based treatments against Staphylococcus aureus. Food Control, 2018, 94, 254-262.
[http://dx.doi.org/10.1016/j.foodcont.2018.07.027]
[30]
Chen, L.G.; Yang, L.L.; Wang, C.C. Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem. Toxicol., 2008, 46(2), 688-693.
[http://dx.doi.org/10.1016/j.fct.2007.09.096] [PMID: 18029076]
[31]
Raman, G.; Gaikar, V.G. Microwave-assisted extraction of piperine from Piper nigrum. Ind. Eng. Chem. Res., 2002, 41, 2521-2528.
[http://dx.doi.org/10.1021/ie010359b]
[32]
Qin, W.; Tao, Z.; Younhui, Y.; Youyuan, D. Intensification of curcumin leaching with ultrasound. Value. Add. Solvent. Extr., 2000, 8, 1679-1684.
[33]
Latha, C. Selective extraction of embelin from Embelia ribes by Hydrotropes. Separation Sci. Tech., 2006, 41(16), 3721-3729.
[34]
Mishra, S.P.; Gaikar, V.G. Recovery of diosgenin from dioscorea rhizomes using aqueous hydrotropic solutions of sodium cumene sulfonate. Ind. Eng. Chem. Res., 2004, 43, 5339-5346.
[http://dx.doi.org/10.1021/ie034091v]
[35]
Dandekar, D.V.; Jayaprakasha, G.K.; Patil, B.S. Simultaneous extraction of bioactive limonoid aglycones and glucoside from Citrus aurantium L. using hydrotropy. Z. Natforsch. C J. Biosci., 2008, 63(3-4), 176-180.
[http://dx.doi.org/10.1515/znc-2008-3-403] [PMID: 18533458]
[36]
Mishra, S.P.; Gaikar, V.G. Hydrotropic extraction process for recovery of forskolin from Coleus Forskohlii Roots. Ind. Eng. Chem. Res., 2009, 48, 8083-8090.
[http://dx.doi.org/10.1021/ie801728d]
[37]
Chena, L.; Zhoua, X.; Shia, Y.; Gaoa, B.; Wud, J.; Kirkd, T.B.; Xue, J.; Xue, W. Green synthesis of lignin nanoparticle in aqueous hydrotropic solutiontoward broadening the window for its processing and application. Chem. Eng. J., 2018, 346, 217-225.
[http://dx.doi.org/10.1016/j.cej.2018.04.020]
[38]
Chi, Z.; Wang, Z.; Liu, Y.; Yang, G. Preparation of organosolv lignin-stabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater. Chem. Eng. J., 2018, 331, 317-325.
[http://dx.doi.org/10.1016/j.cej.2017.08.121]
[39]
Duval, A.; Lawoko, M. A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym., 2014, 85, 78-96.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.09.017]
[40]
Upton, B.M.; Kasko, A.M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev., 2016, 116(4), 2275-2306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00345] [PMID: 26654678]
[41]
Shuai, L.; Amiri, M.T.; Questell-Santiago, Y.M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J.S. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354(6310), 329-333.
[http://dx.doi.org/10.1126/science.aaf7810] [PMID: 27846566]
[42]
Beisl, S.; Miltner, A.; Friedl, A. Lignin from micro- to nanosize: production methods. Int. J. Mol. Sci., 2017, 18(6), 1-25.
[http://dx.doi.org/10.3390/ijms18061244] [PMID: 28604584]
[43]
Vinardell, M.P.; Mitjans, M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci., 2017, 18(6), 181-30.
[http://dx.doi.org/10.3390/ijms18061219] [PMID: 28590454]
[44]
Leskinen, T.; Witos, J.; Valle-Delgado, J.J.; Lintinen, K.; Kostiainen, M.; Wiedmer, S.K.; Österberg, M.; Mattinen, M.L. Adsorption of proteins on colloidal lignin particles for advanced biomaterials. Biomacromolecules, 2017, 18(9), 2767-2776.
[http://dx.doi.org/10.1021/acs.biomac.7b00676] [PMID: 28724292]
[45]
Ago, M.; Tardy, B.L.; Wang, L.; Guo, J. Supramolecular assemblies of lignin into nano- and micro particles. MRS Bull., 2017, 42, 371-378.
[http://dx.doi.org/10.1557/mrs.2017.88]
[46]
Gonnelli, C.; Cacioppo, F.; Giordano, C.; Capozzoli, L.; Salvatici, C.; Salvatici, M.C. Cucurbita pepo L. Extracts as a versatile hydrotropic source for the synthesis of gold nanoparticles with different shapes. Green Chem. Lett. Rev., 2015, 8, 39-47.
[http://dx.doi.org/10.1080/17518253.2015.1027288]
[47]
Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem., 2001, 8(3), 303-313.
[http://dx.doi.org/10.1016/S1350-4177(01)00071-2] [PMID: 11441615]
[48]
Vyas, J.; Itankar, P.; Tauqeer, M.; Kelkar, A.; Agrawal, M. Development of HPTLC method for estimation of piperine, Guggulsterone E and Z in Polyherbal formulation. Pharmacogn. J., 2013, 5, 259-264.
[http://dx.doi.org/10.1016/j.phcgj.2013.10.003]
[49]
Wang, L.; Weller, C.L. Recent advances in extraction of Nutraceuticals from plants. Trends Food Sci. Technol., 2006, 17, 12-300.
[http://dx.doi.org/10.1016/j.tifs.2005.12.004]
[50]
Xiao, W.; Han, L.; Shi, B. Microwave-assisted extraction of flavonoids from Radix astragali. Separ. Purif. Tech., 2008, 62, 614-618.
[http://dx.doi.org/10.1016/j.seppur.2008.03.025]
[51]
Vishvnath, G.; Jain, U. Estimation of Piperine by UV-spectrophotometric method in herbal formulation, Pippli churna. Int. J. Res. Pharm. Biomed. Sci., 2011, 2, 550-553.
[52]
Wu, H.; Chen, M.; Fan, Y.; Elsebaei, F.; Zhu, Y. Determination of rutin and quercetin in Chinese herbal medicine by ionic liquid-based pressurized liquid extraction-liquid chromatography-chemiluminescence detection. Talanta, 2012, 88, 222-229.
[http://dx.doi.org/10.1016/j.talanta.2011.10.036] [PMID: 22265491]
[53]
Xu, J.; Wang, W.; Liang, H.; Zhang, Q.; Li, Q. Optimization of ionic liquid-based ultrasonic-assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Ind. Crops Prod., 2015, 76, 487-493.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.025]
[54]
Yamaguchi, T.; Kamezawa, K.; Iwaya, K.; Sato, Y.; Miyaji, T. Analysis of piperine in peppers using on-line SFE-UHPLC with photodiode array detection. Am. Lab., 2011, 43, 29-31.
[55]
De Souza, J.F.; Pontes, K.M. RibeiroAlves, T.F.;De Barros, C.T. Structural comparison, physicochemical properties, and in vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers. J. Mol. Liq., 2020, 306, 11-28.
[http://dx.doi.org/10.1016/j.molliq.2020.112861]
[56]
Alves, V.M.; Nakamatsu, S.; Oliveira, E.A.; Zappone, B.; Richetti, P. Anisotropic reversible aggregation of latex nanoparticles suspended in a lyotropic nematic liquid crystal: effect of gradients of biaxial order. Langmuir, 2009, 25(19), 11849-11856.
[http://dx.doi.org/10.1021/la901520r] [PMID: 19702247]
[57]
Schauperl, M.; Podewitz, M.; Waldner, B.J.; Liedl, K.R. Enthalpy and entropic contributions to hydrophobicity. J. Chem. Theory Comput., 2016, 12(9), 4600-4610.
[http://dx.doi.org/10.1021/acs.jctc.6b00422] [PMID: 27442443]
[58]
Osipov, M.A.; Gorkunov, M.V. Molecular theory of liquid-crystal ordering in rod-coil diblock copolymers. Phys. Rev. E, 2019, 100(4-1), 042701.
[http://dx.doi.org/10.1103/PhysRevE.100.042701] [PMID: 31770983]
[59]
Chaud, M.V. Nano-biotechnological strategies for treatment of Tegumentary and visceral Leishmaniasis including resistance strains. Nanotechnology in Skin, Soft Tissue Bone Infections, 2020, 10, 183-204.
[60]
Madheswaran, T.; Kandasamy, M.; Bose, R.J.; Karuppagounder, V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov. Today, 2019, 24(7), 1405-1412.
[http://dx.doi.org/10.1016/j.drudis.2019.05.004] [PMID: 31102731]
[61]
Schuur, B.; Smink, D.; Sprakel, L.M.J.; Brouwer, T. Green solvents for sustainable separation processes. Current Op. Green. Sustainable Chem., 2019, 18, 57-65.
[http://dx.doi.org/10.1016/j.cogsc.2018.12.009]
[62]
Sleep, E.; Cosgrove, B.D.; McClendon, M.T.; Preslar, A.T.; Chen, C.H.; Sangji, M.H.; Pérez, C.M.R.; Haynes, R.D.; Meade, T.J.; Blau, H.M.; Stupp, S.I. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proc. Natl. Acad. Sci. USA, 2017, 114(38), E7919-E7928.
[http://dx.doi.org/10.1073/pnas.1708142114] [PMID: 28874575]
[63]
Fong, W.K.; Negrini, R.; Vallooran, J.J.; Mezzenga, R.; Boyd, B.J. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J. Colloid Interface Sci., 2016, 484, 320-339.
[http://dx.doi.org/10.1016/j.jcis.2016.08.077] [PMID: 27623190]
[64]
Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine-the bioactive compound of black pepper: from isolation to medicinal formulations. Compr. Rev. Food Sci. Food Saf., 2017, 16(1), 124-140.
[http://dx.doi.org/10.1111/1541-4337.12246] [PMID: 33371546]
[65]
Anderson, C.W.N.; Bhatti, S.M.; Gardea-Torresdey, J.; Parson, J. In vivo effect of copper and silver on synthesis of gold nanoparticles inside living plants. Sust. Chem. Eng., 2013, 1, 640-648.
[http://dx.doi.org/10.1021/sc400011s]
[66]
Del Bubba, M.; Ancillotti, C.; Checchini, L.; Ciofi, L.; Fibbi, D.; Gonnelli, C.; Mosti, S. Chromium accumulation and changes in plant growth, selected phenolics and sugars of wild type and genetically modified Nicotiana langsdorffii. J. Hazard. Mater., 2013, 262, 394-403.
[http://dx.doi.org/10.1016/j.jhazmat.2013.08.073] [PMID: 24061217]
[67]
Bali, R.; Harris, A.T. Biogenic synthesis of au nanoparticles using vascular plants. Ind. Eng. Chem. Res., 2010, 49, 12762-12772.
[http://dx.doi.org/10.1021/ie101600m]
[68]
Baruwati, B.; Varma, R.S. High value products from waste: Grape pomace extract-a three-in-one package for the synthesis of metal nanoparticles. ChemSusChem, 2009, 2(11), 1041-1044.
[http://dx.doi.org/10.1002/cssc.200900220] [PMID: 19842157]
[69]
Betts, K. A greener route to gold nanoparticles. Environ. Sci. Technol., 2005, 39(5), 104A-105A.
[http://dx.doi.org/10.1021/es053211i] [PMID: 15787355]
[70]
Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E. Toward greener nanosynthesis. Chem. Rev., 2007, 107(6), 2228-2269.
[http://dx.doi.org/10.1021/cr050943k] [PMID: 17564480]
[71]
Dong, S.; Zeng, M.; Wang, D.; Liu, Z.; Zhao, Y.; Yang, H. Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (Hypophthalmichthys molitrix). Food Chem., 2008, 107, 1485-1493.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.011]
[72]
Doumett, S.; Fibbi, D.; Cincinelli, A.; Giordani, E.; Nin, S.; Del Bubba, M. Comparison of nutritional and nutraceutical properties in cultivated fruits of Fragaria vesca L. produced in Italy. Food Res. Int., 2011, 44, 1209-1216.
[http://dx.doi.org/10.1016/j.foodres.2010.10.044]
[73]
Duressa, D.; Soliman, K.; Cebert, E. Protein and polyphenol profile changes in soybean roots under aluminum stress. Int. J. Plant Physiol. Biochem., 2010, 2, 38-45.
[74]
Gupta, K.G.; Pounikar, A.R.; Jaiswal, P.M.; Umekar, M.J. Formulation and evaluation of hydrotropic solid dispersions of curcumin. J. Current Chem. Pharma. Sci., 2019, 9, 1-10.
[75]
Nidhi, K.; Indrajeet, S.; Khushboo, M. Hydrotropy: A promising tool for solubility enhancement: A review. Int J Drug Dev Res., 2011, 3, 26-33.
[76]
Kadam, P.V.; Bhingare, C.L.; Nikam, R.Y. Development and validation of UV spectrophotometric method for the estimation of curcumin in cream formulation. Pharm. Methods, 2013, 4, 43-45.
[http://dx.doi.org/10.1016/j.phme.2013.08.002]
[77]
Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B.P.; Mukherjee, P.K. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm., 2007, 330(1-2), 155-163.
[http://dx.doi.org/10.1016/j.ijpharm.2006.09.025] [PMID: 17112692]
[78]
Thangapazham, R.L.; Puri, A.; Tele, S.; Blumenthal, R.; Maheshwari, R.K. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int. J. Oncol., 2008, 32(5), 1119-1123.
[http://dx.doi.org/10.3892/ijo.32.5.1119] [PMID: 18425340]
[79]
Mohanty, C.; Sahoo, S.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials, 2010, 31(25), 6597-6611.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.062] [PMID: 20553984]
[80]
Cui, J.; Yu, B.; Zhao, Y.; Zhu, W.; Li, H.; Lou, H.; Zhai, G. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int. J. Pharm., 2009, 371(1-2), 148-155.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.009] [PMID: 19124065]
[81]
Teixeira, C.C.; Mendonça, L.M.; Bergamaschi, M.M.; Queiroz, R.H.; Souza, G.E.; Antunes, L.M.; Freitas, L.A. Bergama chi, M.M.Microparticals containing curcumin solid dispersion: stability, bioavailability and anti-Inflammatory activity. AAPS PharmSciTech, 2016, 17(2), 252-261.
[http://dx.doi.org/10.1208/s12249-015-0337-6] [PMID: 26040724]
[82]
Nguyen, T.T.H.; Si, J.; Kang, C.; Chung, B.; Chung, D.; Kim, D. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food Chem., 2017, 214, 366-373.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.102] [PMID: 27507487]
[83]
Masthannamma, S.; Sridhar, T.; Naik, B. UV-spectrophotometric determination of ofloxacin in bulk and pharmaceutical dosage form using hydrotropic solubilization technique. Am J. Pharma Tech Research., 2015, 5, 269-278.
[84]
Jain, P.; Goel, A.; Sharma, S. Solubility enhancement techniques with special emphasis on Hydrotrophy. Int. J. Pharma Prof. Res., 2015, 1, 34-45.
[85]
Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci., 2009, 37(3-4), 223-230.
[http://dx.doi.org/10.1016/j.ejps.2009.02.019] [PMID: 19491009]
[86]
Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv. Drug Deliv. Rev., 2006, 58(15), 1688-1713.
[http://dx.doi.org/10.1016/j.addr.2006.09.017] [PMID: 17118485]
[87]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2008, 30, 1-30.
[PMID: 18662800]
[88]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[89]
Ankola, D.D.; Viswanad, B.; Bhardwaj, V.; Ramarao, P.; Kumar, M.N.V. Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: Can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? Eur. J. Pharm. Biopharm., 2007, 67(2), 361-369.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.010] [PMID: 17452099]
[90]
Desai, M.A.; Parikh, J. Hydrotropic extraction of citral from cymbopogon flexuosus (Steud.) wats. Ind. Eng. Chem. Res., 2012, 51, 3750-3757.
[http://dx.doi.org/10.1021/ie202025b]
[91]
Sharma, P.R.; Mondhe, D.M.; Muthiah, S.; Pal, H.C.; Shahi, A.K.; Saxena, A.K.; Qazi, G.N. Anticancer activity of an essential oil from Cymbopogon flexuosus. Chem. Biol. Interact., 2009, 179(2-3), 160-168.
[http://dx.doi.org/10.1016/j.cbi.2008.12.004] [PMID: 19121295]
[92]
Naik, M.I.; Fomda, B.A.; Jayakumar, E.; Bhat, J.A. Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacterias. Asian Pac. J. Trop. Med., 2010, 3, 535.
[http://dx.doi.org/10.1016/S1995-7645(10)60129-0]
[93]
Tzortzakis, N.G.; Economakis, C.D. Antifungal activity of lemongrass (Cymbopogon citratus L.) essential oil against key postharvest pathogens. Innov. Food Sci. Emerg. Technol., 2007, 8, 253.
[http://dx.doi.org/10.1016/j.ifset.2007.01.002]
[94]
Prajapati, D.P.; Desai, M.A.; Parikh, J.K. Fractional factorial design for optimization of extraction of essential oil from cymbopogon winterianus by hydrodistillation. Res. J. Chem. Environ., 2011, 15, 903.
[95]
Niedre, M.; Patterson, M.S.; Wilson, B.C. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem. Photobiol., 2002, 75(4), 382-391.
[http://dx.doi.org/10.1562/0031-8655(2002)0750382DNILDO2.0.CO2] [PMID: 12003128]
[96]
Jendželovská, Z.; Jendželovský, R.; Kuchárová, B.; Fedoročko, P. Hypericin in the light and in the dark: Two sides of the same coin. Front. Plant Sci., 2016, 7, 560.
[http://dx.doi.org/10.3389/fpls.2016.00560] [PMID: 27200034]
[97]
Galvao, J.; Davis, B.; Tilley, M.; Normando, E.; Duchen, M.R.; Cordeiro, M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J., 2014, 28(3), 1317-1330.
[http://dx.doi.org/10.1096/fj.13-235440] [PMID: 24327606]
[98]
Molinier, V.; Aubry, J.M. Sugar-based hydrotropes: preparation, properties and applications. Spr. Carb. Ch, 2014, 40, 51-72.
[99]
de Morais, F.A.P.; Gonçalves, R.S.; Vilsinski, B.H.; de Oliveira, É.L.; Rocha, N.L.; Hioka, N.; Caetano, W. Hypericin photodynamic activity in DPPC liposome. PART I: Biomimetism of loading, location, interactions and thermodynamic properties. J. Photochem. Photobiol. B, 2019, 190, 118-127.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.019] [PMID: 30513414]
[100]
Jeliński, T.; Przybyłek, M.; Cysewski, P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm. Res., 2019, 36(8), 116.
[http://dx.doi.org/10.1007/s11095-019-2643-2] [PMID: 31161340]
[101]
Zhang, F.; Shen, B.; Jiang, W.; Yuan, H.; Zhou, H. Hydrolysis extraction of Diosgenin from dioscoreanipponica Makino by sulfonated magnetic solid composites. J. Nanopart. Res., 2019, 21, 261-269.
[http://dx.doi.org/10.1007/s11051-019-4702-3]
[102]
Miyake, M.; Shimoda, Y.; Inaba, N.; Ayano, N.; Ozaki, Y.; Hasegaw, S. Extraction and recovery of limonoids with the supercritical carbon dioxidemicro-bubble method. Am. Chem. Society, 2013, 24, 96-106.
[103]
Hardea, S.M.; Lonkarb, S.L.; Deganib, M.S.; Singhal, K.S. Ionic liquid based ultrasonic-assisted extraction of ForskolinfromColeusforskohlii roots. Ind. Crops Prod., 2014, 61, 258-264.
[http://dx.doi.org/10.1016/j.indcrop.2014.07.016]
[104]
Alam, M.S.; Damanhouri, Z.A.; Ahmad, A.; Abidin, L.; Amir, M.; Aqil, M.; Khan, S.A.; Mujeeb, M. Development of response surface methodology for optimization of extraction parameters and quantitative estimation of embelin from Embelia ribes Burm by high performance liquid chromatography. Pharmacogn. Mag., 2015, 11(Suppl. 1), S166-S172.
[http://dx.doi.org/10.4103/0973-1296.157722] [PMID: 26109763]
[105]
Gorgani, L.; Mohammadi, M.; Najafpour, G.D. Nikzad. M. Sequential microwave-ultrasound-assisted extractionfor isolation of piperine from black pepper (Piper nigrum L.). Food Bioprocess Technol., 2017, 10, 1-30.
[http://dx.doi.org/10.1007/s11947-017-1994-0]
[106]
Mishima, K.; Kawakami, R.; Yokota, H.; Harada, T.; Kato, T. Extraction of Xanthones from the Pericarps of Garcinia mangostana Linn. With supercritical carbon dioxide and ethanol. Solvent Extraction Res. Deve., 2013, 20, 79-89.
[http://dx.doi.org/10.15261/serdj.20.79]
[107]
Prakash, G.D.; Panneerselvam, P.; Madhusudanan, S.; Aditya, V. Hydrotropic extraction of Xanthones from mangosteen pericarp. Adv. Mat. Res., 2014, 984, 372-376.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.984-985.372]
[108]
Zhanga, J.; Fenga, C.; Xua, H.; Tana, X.; Hagedoornb, P.L.; Dinga, S. Enhanced Hypericin extraction from Hypericum perforatum L. by couplingmicrowave with enzyme-assisted strategy. Ind. Crops Prod., 2019, 137, 231-238.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.036]
[109]
Suvakovaa, M.; Majernikb, M.; Jendželovskyb, R.; Hovanc, A.; Banoc, G. In vitro study of disodium Chromoglycate as a novel effective hydrotrope solvent for Hypericinutilization in photodynamic therapy. J. Photochem. Photobiol. , 2020, 206, 111855.
[110]
Alam, P.N.; Husin, H.; Asnawi, T.M. Adisalamun. Extraction of citral oil from lemongrass (CymbopogonCitratus) by steam-water distillation technique. Mater. Sci. Eng., 2018, 345, 12-22.
[111]
Cabezas, R.; Prieto, V.; Plaza, A.; Merlet, G.; Quijada-Maldonado, E. Extraction of vanillin from aqueous matrices by membrane-based supercriticalfluid extraction: Effect of operational conditions on its performance. Adv. Mat. Res., 2014, 984, 372-376.
[112]
Dhinakaran, M.; Morais, A.B.; Gandhi, N.N. Extraction of Vanillin through Hydrotropy. Asian J. Chem., 2013, 25, 231-236.
[http://dx.doi.org/10.14233/ajchem.2013.12915]
[113]
Padalkar, K.V.; Gaikar, V.G. Extraction of piperine from piper nigrum (Black Pepper) by aqueous solutions of surfactant and surfactant + hydrotrope mixtures. Separation. Sci. Tech. (Paris), 2008, 43, 3097-3118.
[114]
Attar, S.R.; Shinde, B.; Kamble, S.B. Enhanced catalytic activity of bio-fabricated ZnO NPs prepared by ultrasound assisted route for the synthesis of tetraketone and benzylidenemalo nitrile in hydrotropic aqueous medium. Res. Chem. Intermed., 2020, 14, 1-30.
[115]
Solanki, K.P.; Desai, M.A.; Parikh, J.K. Improved hydrodistillation process using amphiphilic compounds for extraction of essential oil from java citronella grass. Chem. Pap., 2019, 3, 1-25.
[116]
Thakker, M.R.; Parikh, J.K.; Desai, M.A. Ultrasound assisted hydrotropic extraction: A greener approach for the isolation of geraniol from the leaves of Cymbopogon martinii. Sustainable Chem. Eng, 2018, 10, 1-41.
[http://dx.doi.org/10.1021/acssuschemeng.7b03374]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy