Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

General Review Article

The Regulatory Role of Pivotal MicroRNAs in the AKT Signaling Pathway in Breast Cancer

Author(s): Sina Taefehshokr, Nima Taefehshokr, Afshin Derakhshani, Amir Baghbanzadeh , Reza Vaezi Astamal, Sahar Safaei, Samane Abbasi, Saba Hajazimian, Nazila Fathi Maroufi, Alireza Isazadeh, Khalil Hajiasgharzadeh and Behzad Baradaran*

Volume 22, Issue 3, 2022

Published on: 09 August, 2021

Page: [263 - 273] Pages: 11

DOI: 10.2174/1566524021666210708095051

Price: $65

Abstract

Breast cancer is the most prevalent type of cancer among women, and it remains the main challenge despite improved treatments. MicroRNAs (miRNAs) are a small non-coding family of RNAs that play an indispensable role in regulating major physiological processes, including differentiation, proliferation, invasion, migration, cell cycle regulation, stem cell maintenance apoptosis, and organ development. The dysregulation of these tiny molecules is associated with various human malignancies. More than 50% of these non-coding RNA sequences estimated have been placed on genomic regions or fragile sites linked to cancer. Following the discovery of the first signatures of specific miRNA in breast cancer, numerous researches focused on involving these tiny RNAs in breast cancer physiopathology as a new therapeutic approach or as reliable prognostic biomarkers. In the current review, we focus on recent findings related to the involvement of miRNAs in breast cancer via the AKT signaling pathway related to their clinical implications.

Keywords: Breast cancer, MicroRNA, AKT signaling pathway, PTEN, RNAs, dysregulation.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127(12): 2893-917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[3]
Soheilyfar S, Velashjerdi Z, Sayed Hajizadeh Y, et al. in vivo and in vitro impact of miR-31 and miR-143 on the suppression of metastasis and invasion in breast cancer. J BUON 2018; 23(5): 1290-6.
[PMID: 30570849]
[4]
Richie RC, Swanson JO. Breast cancer: A review of the literature. J Insur Med 2003; 35(2): 85-101.
[PMID: 14733031]
[5]
Razandi M, Pedram A, Rosen EM, Levin ER. BRCA1 inhibits membrane estrogen and growth factor receptor signaling to cell proliferation in breast cancer. Mol Cell Biol 2004; 24(13): 5900-13.
[http://dx.doi.org/10.1128/MCB.24.13.5900-5913.2004] [PMID: 15199145]
[6]
Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002; 108(2): 171-82.
[http://dx.doi.org/10.1016/S0092-8674(02)00615-3] [PMID: 11832208]
[7]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[8]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[9]
Shirmohamadi M, Eghbali E, Najjary S, et al. Regulatory mechanisms of microRNAs in colorectal cancer and colorectal cancer stem cells. J Cell Physiol 2020; 235(2): 776-89.
[http://dx.doi.org/10.1002/jcp.29042] [PMID: 31264216]
[10]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[11]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[12]
Shirafkan N, Mansoori B, Mohammadi A, Shomali N, Ghasbi M, Baradaran B. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother 2018; 97: 1319-30.
[http://dx.doi.org/10.1016/j.biopha.2017.11.046] [PMID: 29156521]
[13]
Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B. Treating cancer with microRNA replacement therapy: A literature review. J Cell Physiol 2018; 233(8): 5574-88.
[http://dx.doi.org/10.1002/jcp.26514] [PMID: 29521426]
[14]
Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene 2019; 698: 120-8.
[http://dx.doi.org/10.1016/j.gene.2019.02.076] [PMID: 30849534]
[15]
Noorolyai S, Mokhtarzadeh A, Baghbani E, et al. The role of microRNAs involved in PI3-kinase signaling pathway in colorectal cancer. J Cell Physiol 2019; 234(5): 5664-73.
[http://dx.doi.org/10.1002/jcp.27415] [PMID: 30488557]
[16]
Wong K-K, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 2010; 20(1): 87-90.
[http://dx.doi.org/10.1016/j.gde.2009.11.002] [PMID: 20006486]
[17]
Ge S, Wang D, Kong Q, Gao W, Sun J. Function of miR-152 as a Tumor Suppressor in Human Breast Cancer by Targeting PIK3CA. Oncol Res 2017; 25(8): 1363-71.
[http://dx.doi.org/10.3727/096504017X14878536973557] [PMID: 28247844]
[18]
Xu Q, Jiang Y, Yin Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 2013; 5(1): 3-13.
[http://dx.doi.org/10.1093/jmcb/mjs049] [PMID: 22935141]
[19]
Strotbek M, Schmid S, Sánchez-González I, Boerries M, Busch H, Olayioye MA. miR-181 elevates Akt signaling by co-targeting PHLPP2 and INPP4B phosphatases in luminal breast cancer. Int J Cancer 2017; 140(10): 2310-20.
[http://dx.doi.org/10.1002/ijc.30661] [PMID: 28224609]
[20]
Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010; 39(4): 493-506.
[http://dx.doi.org/10.1016/j.molcel.2010.07.023] [PMID: 20797623]
[21]
Yue D, Qin X. miR-182 regulates trastuzumab resistance by targeting MET in breast cancer cells. Cancer Gene Ther 2019; 26(1-2): 1-10.
[http://dx.doi.org/10.1038/s41417-018-0031-4] [PMID: 29925897]
[22]
Feng R, Dong L. Inhibitory effect of miR-184 on the potential of proliferation and invasion in human glioma and breast cancer cells in vitro. Int J Clin Exp Pathol 2015; 8(8): 9376-82.
[PMID: 26464691]
[23]
Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis 2018; 39(9): 1185-96.
[http://dx.doi.org/10.1093/carcin/bgy092] [PMID: 29985991]
[24]
Li X, Li Y, Lu H. [ARTICLE WITHDRAWN] miR-1193 suppresses proliferation and invasion of human breast cancer cells through directly targeting IGF2BP2. Oncol Res 2017; 25(4): 579-85.
[http://dx.doi.org/10.3727/97818823455816X14760504645779] [PMID: 27733218]
[25]
Liu C, Liu Z, Li X, Tang X, He J, Lu S. MicroRNA-1297 contributes to tumor growth of human breast cancer by targeting PTEN/PI3K/AKT signaling. Oncol Rep 2017; 38(4): 2435-43.
[http://dx.doi.org/10.3892/or.2017.5884] [PMID: 28791363]
[26]
Wang B, Wang H, Yang Z. MiR-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS One 2012; 7(10): e47053.
[http://dx.doi.org/10.1371/journal.pone.0047053] [PMID: 23056576]
[27]
Zhu N, Zhang D, Xie H, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 2011; 351(1-2): 157-64.
[http://dx.doi.org/10.1007/s11010-011-0723-7] [PMID: 21249429]
[28]
Qin A, Wen Z, Zhou Y, et al. MicroRNA-126 regulates the induction and function of CD4(+) Foxp3(+) regulatory T cells through PI3K/AKT pathway. J Cell Mol Med 2013; 17(2): 252-64.
[http://dx.doi.org/10.1111/jcmm.12003] [PMID: 23301798]
[29]
Turgut Cosan D, Oner C, Mutlu Sahin F. Micro RNA-126 coordinates cell behavior and signaling cascades according to characteristics of breast cancer cells. Bratisl Lek Listy 2016; 117(11): 639-47.
[http://dx.doi.org/10.4149/BLL_2016_124] [PMID: 28125889]
[30]
Miao Y, Zheng W, Li N, et al. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci Rep 2017; 7: 41942.
[http://dx.doi.org/10.1038/srep41942] [PMID: 28165066]
[31]
Wei H, Cui R, Bahr J, et al. miR-130a Deregulates PTEN and Stimulates Tumor Growth. Cancer Res 2017; 77(22): 6168-78.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0530] [PMID: 28935812]
[32]
Jain MV, Shareef A, Likus W, Cieślar-Pobuda A, Ghavami S, Łos MJ. Inhibition of miR301 enhances Akt-mediated cell proliferation by accumulation of PTEN in nucleus and its effects on cell-cycle regulatory proteins. Oncotarget 2016; 7(15): 20953-65.
[http://dx.doi.org/10.18632/oncotarget.7996] [PMID: 26967567]
[33]
Liang Z, Ahn J, Guo D, Votaw JR, Shim H. MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res 2013; 30(4): 1008-16.
[http://dx.doi.org/10.1007/s11095-012-0936-9] [PMID: 23184229]
[34]
Li Q, Liu J, Meng X, Pang R, Li J. MicroRNA-454 may function as an oncogene via targeting AKT in triple negative breast cancer. J Biol Res (Thessalon) 2017; 24: 10.
[http://dx.doi.org/10.1186/s40709-017-0067-x] [PMID: 28795052]
[35]
Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, Alahari SK. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-α in breast cancer. Cancer Res 2013; 73(9): 2884-96.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2162] [PMID: 23338610]
[36]
Chen D, Si W, Shen J, et al. miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis 2018; 9(2): 188.
[http://dx.doi.org/10.1038/s41419-017-0211-4] [PMID: 29416005]
[37]
Wang B, Yang Z, Wang H, et al. MicroRNA-320a inhibits proliferation and invasion of breast cancer cells by targeting RAB11A. Am J Cancer Res 2015; 5(9): 2719-29.
[PMID: 26609479]
[38]
Guan J, Zhou Y, Mao F, et al. MicroRNA 320a suppresses tumor cell growth and invasion of human breast cancer by targeting insulin like growth factor 1 receptor. Oncol Rep 2018; 40(2): 849-58.
[http://dx.doi.org/10.3892/or.2018.6517] [PMID: 29989645]
[39]
Guo QJ, Mills JN, Bandurraga SG, et al. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer. Breast Cancer Res 2013; 15(4): R70.
[http://dx.doi.org/10.1186/bcr3464] [PMID: 23971998]
[40]
Majumder M, Landman E, Liu L, Hess D, Lala PK. COX-2 Elevates Oncogenic miR-526b in Breast Cancer by EP4 Activation. Mol Cancer Res 2015; 13(6): 1022-33.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0543] [PMID: 25733698]
[41]
Ma T, Yang L, Zhang J. MiRNA 542 3p downregulation promotes trastuzumab resistance in breast cancer cells via AKT activation. Oncol Rep 2015; 33(3): 1215-20.
[http://dx.doi.org/10.3892/or.2015.3713] [PMID: 25586125]
[42]
Bayraktar R, Pichler M, Kanlikilicer P, et al. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget 2017; 8(7): 11641-58.
[http://dx.doi.org/10.18632/oncotarget.14264] [PMID: 28036267]
[43]
Becker LE, Takwi AAL, Lu Z, Li Y. The role of miR-200a in mammalian epithelial cell transformation. Carcinogenesis 2015; 36(1): 2-12.
[http://dx.doi.org/10.1093/carcin/bgu202] [PMID: 25239643]
[44]
Chen Y, Sun Y, Chen L, et al. miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep 2013; 7(5): 1579-84.
[http://dx.doi.org/10.3892/mmr.2013.1403] [PMID: 23546450]
[45]
Song C, Liu L-Z, Pei X-Q, et al. miR-200c inhibits breast cancer proliferation by targeting KRAS. Oncotarget 2015; 6(33): 34968-78.
[http://dx.doi.org/10.18632/oncotarget.5198] [PMID: 26392416]
[46]
Sánchez-Cid L, Pons M, Lozano JJ, et al. MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells. Oncotarget 2017; 8(48): 83384-406.
[http://dx.doi.org/10.18632/oncotarget.20698] [PMID: 29137351]
[47]
Bojmar L, Karlsson E, Ellegård S, et al. The role of microRNA-200 in progression of human colorectal and breast cancer. PLoS One 2013; 8(12): e84815.
[http://dx.doi.org/10.1371/journal.pone.0084815] [PMID: 24376848]
[48]
Ghasabi M, Majidi J, Mansoori B, et al. The effect of combined miR-200c replacement and cisplatin on apoptosis induction and inhibition of gastric cancer cell line migration. J Cell Physiol 2019; 234(12): 22581-92.
[http://dx.doi.org/10.1002/jcp.28823] [PMID: 31111481]
[49]
Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo Y-Y. MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 2011; 30(7): 822-31.
[http://dx.doi.org/10.1038/onc.2010.463] [PMID: 20956939]
[50]
Imam JS, Plyler JR, Bansal H, et al. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One 2012; 7(12): e52397.
[http://dx.doi.org/10.1371/journal.pone.0052397] [PMID: 23285024]
[51]
Zhang Y, Zhang HE, Liu Z. MicroRNA-147 suppresses proliferation, invasion and migration through the AKT/mTOR signaling pathway in breast cancer. Oncol Lett 2016; 11(1): 405-10.
[http://dx.doi.org/10.3892/ol.2015.3842] [PMID: 26870225]
[52]
Ji Y, Han Z, Shao L, Zhao Y. Evaluation of in vivo antitumor effects of low-frequency ultrasound-mediated miRNA-133a microbubble delivery in breast cancer. Cancer Med 2016; 5(9): 2534-43.
[http://dx.doi.org/10.1002/cam4.840] [PMID: 27465833]
[53]
Cui W, Zhang S, Shan C, Zhou L, Zhou Z. microRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway. FEBS J 2013; 280(16): 3962-74.
[http://dx.doi.org/10.1111/febs.12398] [PMID: 23786162]
[54]
Li W, Wang H, Zhang J, Zhai L, Chen W, Zhao C. miR-199a-5p regulates β1 integrin through Ets-1 to suppress invasion in breast cancer. Cancer Sci 2016; 107(7): 916-23.
[http://dx.doi.org/10.1111/cas.12952] [PMID: 27094578]
[55]
Fang C, Zhao Y, Guo B. MiR-199b-5p targets HER2 in breast cancer cells. J Cell Biochem 2013; 114(7): 1457-63.
[http://dx.doi.org/10.1002/jcb.24487] [PMID: 23296799]
[56]
Zhao Z, Li R, Sha S, Wang Q, Mao W, Liu T. Targeting HER3 with miR-450b-3p suppresses breast cancer cells proliferation. Cancer Biol Ther 2014; 15(10): 1404-12.
[http://dx.doi.org/10.4161/cbt.29923] [PMID: 25046105]
[57]
Liu J, Li Y. Trichostatin A and Tamoxifen inhibit breast cancer cell growth by miR-204 and ERα reducing AKT/mTOR pathway. Biochem Biophys Res Commun 2015; 467(2): 242-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.182] [PMID: 26436206]
[58]
Yao J, Zhang P, Li J, Xu W. MicroRNA-215 acts as a tumor suppressor in breast cancer by targeting AKT serine/threonine kinase 1. Oncol Lett 2017; 14(1): 1097-104.
[http://dx.doi.org/10.3892/ol.2017.6200] [PMID: 28693279]
[59]
Iorio MV, Casalini P, Piovan C, et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res 2009; 69(6): 2195-200.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2920] [PMID: 19276373]
[60]
Hu Y, Qiu Y, Yagüe E, Ji W, Liu J, Zhang J. miRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer. Cell Death Dis 2016; 7(6): e2291-1.
[http://dx.doi.org/10.1038/cddis.2016.194] [PMID: 27362808]
[61]
Su C-M, Lee W-H, Wu ATH, et al. Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition. J Nutr Biochem 2015; 26(6): 675-85.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.005] [PMID: 25792283]
[62]
Chen X, Wang Y-W, Xing A-Y, et al. Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer. J Pathol 2016; 239(4): 459-72.
[http://dx.doi.org/10.1002/path.4743] [PMID: 27171498]
[63]
Zhao G, Guo J, Li D, et al. MicroRNA-34a suppresses cell proliferation by targeting LMTK3 in human breast cancer mcf-7 cell line. DNA Cell Biol 2013; 32(12): 699-707.
[http://dx.doi.org/10.1089/dna.2013.2130] [PMID: 24050776]
[64]
Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: Phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 2014; 14(12): 769-85.
[http://dx.doi.org/10.1038/nrc3847] [PMID: 25568918]
[65]
Mackiewicz M, Huppi K, Pitt JJ, Dorsey TH, Ambs S, Caplen NJ. Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA. Breast Cancer Res Treat 2011; 130(2): 663-79.
[http://dx.doi.org/10.1007/s10549-011-1690-0] [PMID: 21814748]
[66]
Ke K, Lou T. MicroRNA-10a suppresses breast cancer progression via PI3K/Akt/mTOR pathway. Oncol Lett 2017; 14(5): 5994-6000.
[http://dx.doi.org/10.3892/ol.2017.6930] [PMID: 29113237]
[67]
Bahena-Ocampo I, Espinosa M, Ceballos-Cancino G, et al. miR-10b expression in breast cancer stem cells supports self-renewal through negative PTEN regulation and sustained AKT activation. EMBO Rep 2016; 17(5): 648-58.
[http://dx.doi.org/10.15252/embr.201540678] [PMID: 27113763]
[68]
Guo D, Guo J, Li X, Guan F. Enhanced motility and proliferation by miR-10b/FUT8/p-AKT axis in breast cancer cells. Oncol Lett 2018; 16(2): 2097-104.
[http://dx.doi.org/10.3892/ol.2018.8891] [PMID: 30008906]
[69]
Yu Z, Xu Z, Disante G, et al. miR-17/20 sensitization of breast cancer cells to chemotherapy-induced apoptosis requires Akt1. Oncotarget 2014; 5(4): 1083-90.
[http://dx.doi.org/10.18632/oncotarget.1804] [PMID: 24658544]
[70]
Alizadeh M, Safarzadeh A, Beyranvand F, et al. The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234(11): 19280-97.
[http://dx.doi.org/10.1002/jcp.28607] [PMID: 30950056]
[71]
Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013; 15(2): 201-13.
[http://dx.doi.org/10.1038/ncb2672] [PMID: 23354167]
[72]
Wang C, Bian Z, Wei D, Zhang JG. miR-29b regulates migration of human breast cancer cells. Mol Cell Biochem 2011; 352(1-2): 197-207.
[http://dx.doi.org/10.1007/s11010-011-0755-z] [PMID: 21359530]
[73]
Shen H, Li L, Yang S, et al. MicroRNA-29a contributes to drug-resistance of breast cancer cells to adriamycin through PTEN/AKT/GSK3β signaling pathway. Gene 2016; 593(1): 84-90.
[http://dx.doi.org/10.1016/j.gene.2016.08.016] [PMID: 27523474]
[74]
Drago-Ferrante R, Pentimalli F, Carlisi D, et al. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget 2017; 8(17): 28939-58.
[http://dx.doi.org/10.18632/oncotarget.15960] [PMID: 28423652]
[75]
Bhardwaj A, Singh H, Rajapakshe K, et al. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer. Oncotarget 2017; 8(12): 19645-60.
[http://dx.doi.org/10.18632/oncotarget.14902] [PMID: 28160548]
[76]
Li L-Q, Li X-L, Wang L, et al. Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cell Physiol Biochem 2012; 30(3): 631-41.
[http://dx.doi.org/10.1159/000341444] [PMID: 22832383]
[77]
Fragni M, Bonini SA, Bettinsoli P, et al. The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(5): 529-38.
[http://dx.doi.org/10.1007/s00210-016-1224-8] [PMID: 26905520]
[78]
Hu Y, Wang C, Li Y, et al. MiR-21 controls in situ expansion of CCR6+ regulatory T cells through PTEN/AKT pathway in breast cancer. Immunol Cell Biol 2015; 93(8): 753-64.
[http://dx.doi.org/10.1038/icb.2015.37] [PMID: 25735723]
[79]
Wu Z-H, Tao Z-H, Zhang J, et al. MiRNA-21 induces epithelial to mesenchymal transition and gemcitabine resistance via the PTEN/AKT pathway in breast cancer. Tumour Biol 2016; 37(6): 7245-54.
[http://dx.doi.org/10.1007/s13277-015-4604-7] [PMID: 26666820]
[80]
Gong C, Yao Y, Wang Y, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 2011; 286(21): 19127-37.
[http://dx.doi.org/10.1074/jbc.M110.216887] [PMID: 21471222]
[81]
Yan LX, Liu YH, Xiang JW, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol 2016; 48(2): 471-84.
[http://dx.doi.org/10.3892/ijo.2015.3287] [PMID: 26676464]
[82]
Liu X, Feng J, Tang L, Liao L, Xu Q, Zhu S. The regulation and function of miR-21-FOXO3a-miR-34b/c signaling in breast cancer. Int J Mol Sci 2015; 16(2): 3148-62.
[http://dx.doi.org/10.3390/ijms16023148] [PMID: 25647415]
[83]
Mei M, Ren Y, Zhou X, et al. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat 2010; 9(1): 77-86.
[http://dx.doi.org/10.1177/153303461000900109] [PMID: 20082533]
[84]
Han M, Liu M, Wang Y, et al. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One 2012; 7(6): e39520.
[http://dx.doi.org/10.1371/journal.pone.0039520] [PMID: 22761812]
[85]
Ma M, He M, Jiang Q, et al. MiR-487a promotes TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2. Int J Biol Sci 2016; 12(4): 397-408.
[http://dx.doi.org/10.7150/ijbs.13475] [PMID: 27019625]
[86]
Wu S-Y, Wu AT, Yuan KS, Liu SH, Liu SH. Brown seaweed fucoidan inhibits cancer progression by dual regulation of mir-29c/ADAM12 and miR-17-5p/PTEN axes in human breast cancer cells. J Cancer 2016; 7(15): 2408-19.
[http://dx.doi.org/10.7150/jca.15703] [PMID: 27994679]
[87]
Li X, Xie W, Xie C, et al. Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res 2014; 28(10): 1553-60.
[http://dx.doi.org/10.1002/ptr.5167] [PMID: 24831732]
[88]
Li C, Zhang J, Ma Z, Zhang F, Yu W. miR-19b serves as a prognostic biomarker of breast cancer and promotes tumor progression through PI3K/AKT signaling pathway. OncoTargets Ther 2018; 11: 4087-95.
[http://dx.doi.org/10.2147/OTT.S171043] [PMID: 30038508]
[89]
Li B, Lu Y, Wang H, et al. miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway. Biomed Pharmacother 2016; 79: 93-101.
[http://dx.doi.org/10.1016/j.biopha.2016.01.045] [PMID: 27044817]
[90]
Li B, Lu Y, Yu L, et al. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-κB/COX-2 activation. Chem Biol Interact 2017; 277: 33-42.
[http://dx.doi.org/10.1016/j.cbi.2017.08.014] [PMID: 28844858]
[91]
Lu Y, Roy S, Nuovo G, et al. Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem 2011; 286(49): 42292-302.
[http://dx.doi.org/10.1074/jbc.M111.270926] [PMID: 22009755]
[92]
Shen H, Wang D, Li L, et al. MiR-222 promotes drug-resistance of breast cancer cells to adriamycin via modulation of PTEN/Akt/FOXO1 pathway. Gene 2017; 596: 110-8.
[http://dx.doi.org/10.1016/j.gene.2016.10.016] [PMID: 27746366]
[93]
Wang DD, Yang SJ, Chen X, et al. miR-222 induces Adriamycin resistance in breast cancer through PTEN/Akt/p27kip1 pathway. Tumour Biol 2016; 37(11): 15315-24.
[http://dx.doi.org/10.1007/s13277-016-5341-2] [PMID: 27699665]
[94]
Karami H, Baradaran B, Esfahani A, et al. siRNA-mediated silencing of survivin inhibits proliferation and enhances etoposide chemosensitivity in acute myeloid leukemia cells. Asian Pac J Cancer Prev 2013; 14(12): 7719-24.
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7719] [PMID: 24460358]
[95]
Abraham AG, O’Neill E. PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans 2014; 42(4): 798-803.
[http://dx.doi.org/10.1042/BST20140070] [PMID: 25109960]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy