Review Article

针对 HIV-1 整合酶和逆转录酶相关核糖核酸酶 H 的计算机辅助抗病毒药物设计的最新进展

卷 29, 期 10, 2022

发表于: 08 July, 2021

页: [1664 - 1676] 页: 13

弟呕挨: 10.2174/0929867328666210708090123

价格: $65

摘要

获得性免疫缺陷综合征 (AIDS) 长期以来一直是一种威胁生命的慢性疾病。虽然,广泛的抗逆转录病毒药物方案适用于成功抑制人类免疫缺陷病毒 1 型 (HIV-1) 感染者的病毒复制。艾滋病治疗过程中突变引起的耐药问题迫使人们不断寻找新的抗病毒药物。 HIV-1 整合酶 (IN) 和逆转录酶相关核糖核酸酶 (RT-RNase H) 是 HIV-1 复制过程中的两种关键酶,已成为设计新型 HIV-1 抗病毒药物的可药化靶点。在 HIV-1 IN 和/或 RT-RNase H 抑制剂的开发过程中,计算机辅助药物设计 (CADD),包括同源性建模、药效团、对接、分子动力学 (MD) 模拟和结合自由能计算,是一个重要的工具加速新候选药物的发现并降低抗病毒药物开发的成本。在这篇综述中,我们总结了针对 HIV-1 IN 或/和 RT-RNase H 的单靶点和双靶点抑制剂设计的最新进展,以及基于计算方法预测突变诱导的耐药性。我们重点介绍了已报道文献的结果,并对未来设计新型和更有效的抗病毒药物提出了一些看法。

关键词: HIV-1整合酶、逆转录酶相关核糖核酸酶H、计算机辅助药物设计、耐药性预测、分子动力学、抗病毒药物。

[2]
Choi, E.; Mallareddy, J.R.; Lu, D.; Kolluru, S. Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase. Future Sci. OA, 2018, 4(9), FSO338.
[http://dx.doi.org/10.4155/fsoa-2018-0060] [PMID: 30416746]
[3]
Bushman, F.D.F.; Fujiwara, T.; Craigie, R. Retroviral DNA integration directed by HIV integration protein in vitro. Science, 1990, 249(4976), 1555-1558.
[http://dx.doi.org/10.1126/science.2171144] [PMID: 2171144]
[4]
Asante-Appiah, E.; Skalka, A.M. HIV-1 integrase: structural organization, conformational changes, and catalysis. Adv. Virus Res., 1999, 52, 351-369.
[http://dx.doi.org/10.1016/S0065-3527(08)60306-1] [PMID: 10384242]
[5]
Elliot, E.; Chirwa, M.; Boffito, M. How recent findings on the pharmacokinetics and pharmacodynamics of integrase inhibitors can inform clinical use. Curr. Opin. Infect. Dis., 2017, 30(1), 58-73.
[http://dx.doi.org/10.1097/QCO.0000000000000327] [PMID: 27798496]
[6]
Siwe-Noundou, X.; Musyoka, T.M.; Moses, V.; Ndinteh, D.T.; Mnkandhla, D.; Hoppe, H.; Tastan Bishop, Ö.; Krause, R.W.M. Anti-HIV-1 integrase potency of methylgallate from alchornea cordifolia using in vitro and in silico approaches. Sci. Rep., 2019, 9(1), 4718.
[http://dx.doi.org/10.1038/s41598-019-41403-x] [PMID: 30886338]
[7]
Anstett, K.; Brenner, B.; Mesplede, T.; Wainberg, M.A. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology, 2017, 14(1), 36.
[http://dx.doi.org/10.1186/s12977-017-0360-7] [PMID: 28583191]
[8]
Smith, S.J.Z.; Zhao, X.Z.; Burke, T.R., Jr; Hughes, S.H. Efficacies of cabotegravir and bictegravir against drug-resistant HIV-1 integrase mutants. Retrovirology, 2018, 15(1), 37.
[http://dx.doi.org/10.1186/s12977-018-0420-7] [PMID: 29769116]
[10]
Tsiang, M.; Jones, G.S.; Goldsmith, J.; Mulato, A.; Hansen, D.; Kan, E.; Tsai, L.; Bam, R.A.; Stepan, G.; Stray, K.M.; Niedziela-Majka, A.; Yant, S.R.; Yu, H.; Kukolj, G.; Cihlar, T.; Lazerwith, S.E.; White, K.L.; Jin, H. Antiviral activity of bictegravir (GS-9883), a novel potent HIV-1 Integrase Strand Transfer Inhibitor with an improved resistance profile. Antimicrob. Agents Chemother., 2016, 60(12), 7086-7097.
[http://dx.doi.org/10.1128/AAC.01474-16] [PMID: 27645238]
[11]
Mesplède, T.; Wainberg, M.A. Resistance against integrase strand transfer inhibitors and relevance to hiv persistence. Viruses, 2015, 7(7), 3703-3718.
[http://dx.doi.org/10.3390/v7072790] [PMID: 26198244]
[12]
Scarsi, K.K.H.; Havens, J.P.; Podany, A.T.; Avedissian, S.N.; Fletcher, C.V. HIV-1 integrase inhibitors: A comparative review of efficacy and safety. Drugs, 2020, 80(16), 1649-1676.
[http://dx.doi.org/10.1007/s40265-020-01379-9] [PMID: 32860583]
[13]
Brenner, B.G.T.; Thomas, R.; Blanco, J.L.; Ibanescu, R.I.; Oliveira, M.; Mesplède, T.; Golubkov, O.; Roger, M.; Garcia, F.; Martinez, E.; Wainberg, M.A. Development of a G118R mutation in HIV-1 integrase following a switch to dolutegravir monotherapy leading to cross-resistance to integrase inhibitors. J. Antimicrob. Chemother., 2016, 71(7), 1948-1953.
[http://dx.doi.org/10.1093/jac/dkw071] [PMID: 27029845]
[14]
Cahn, P.; Pozniak, A.L.; Mingrone, H.; Shuldyakov, A.; Brites, C.; Andrade-Villanueva, J.F.; Richmond, G.; Buendia, C.B.; Fourie, J.; Ramgopal, M.; Hagins, D.; Felizarta, F.; Madruga, J.; Reuter, T.; Newman, T.; Small, C.B.; Lombaard, J.; Grinsztejn, B.; Dorey, D.; Underwood, M.; Griffith, S.; Min, S. Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: Week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet, 2013, 382(9893), 700-708.
[http://dx.doi.org/10.1016/S0140-6736(13)61221-0] [PMID: 23830355]
[15]
Lepik, K.J.H.; Harrigan, P.R.; Yip, B.; Wang, L.; Robbins, M.A.; Zhang, W.W.; Toy, J.; Akagi, L.; Lima, V.D.; Guillemi, S.; Montaner, J.S.G.; Barrios, R. Emergent drug resistance with integrase strand transfer inhibitor-based regimens. AIDS, 2017, 31(10), 1425-1434.
[http://dx.doi.org/10.1097/QAD.0000000000001494] [PMID: 28375875]
[16]
Wijting, I.E.A.; Lungu, C.; Rijnders, B.J.A.; van der Ende, M.E.; Pham, H.T.; Mesplede, T.; Pas, S.D.; Voermans, J.J.C.; Schuurman, R.; van de Vijver, D.A.M.C.; Boers, P.H.M.; Gruters, R.A.; Boucher, C.A.B.; van Kampen, J.J.A. HIV-1 resistance dynamics in patients with virologic failure to dolutegravir maintenance monotherapy. J. Infect. Dis., 2018, 218(5), 688-697.
[http://dx.doi.org/10.1093/infdis/jiy176] [PMID: 29617822]
[17]
Wang, X.; Gao, P.; Menendez-Arias, L.; Liu, X.; Zhan, P. Update on recent developments in small molecular HIV-1 RNase H inhibitors (2013-2016): Opportunities and challenges. Curr. Med. Chem., 2018, 25(14), 1682-1702.
[http://dx.doi.org/10.2174/0929867324666170113110839] [PMID: 28088905]
[18]
Corona, A.; Masaoka, T.; Tocco, G.; Tramontano, E.; Le Grice, S.F. Active site and allosteric inhibitors of the ribonuclease H activity of HIV reverse transcriptase. Future Med. Chem., 2013, 5(18), 2127-2139.
[http://dx.doi.org/10.4155/fmc.13.178] [PMID: 24261890]
[19]
Tramontano, E.; Di Santo, R. HIV-1 RT-associated RNase H function inhibitors: Recent advances in drug development. Curr. Med. Chem., 2010, 17(26), 2837-2853.
[http://dx.doi.org/10.2174/092986710792065045] [PMID: 20858167]
[20]
Ilina, T.; Labarge, K.; Sarafianos, S.G.; Ishima, R.; Parniak, M.A. Inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H activity. Biology (Basel), 2012, 1(3), 521-541.
[http://dx.doi.org/10.3390/biology1030521] [PMID: 23599900]
[21]
Andréola, M.L.D.S.; De Soultrait, V.R.; Fournier, M.; Parissi, V.; Desjobert, C.; Litvak, S. HIV-1 integrase and RNase H activities as therapeutic targets. Expert Opin. Ther. Targets, 2002, 6(4), 433-446.
[http://dx.doi.org/10.1517/14728222.6.4.433] [PMID: 12223059]
[22]
Yang, F.; Zheng, G.; Fu, T.; Li, X.; Tu, G.; Li, Y.H.; Yao, X.; Xue, W.; Zhu, F. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H. Phys. Chem. Chem. Phys., 2018, 20(37), 23873-23884.
[http://dx.doi.org/10.1039/C8CP01843J] [PMID: 29947629]
[23]
Gill, M.S.A.; Hassan, S.S.; Ahemad, N. Evolution of HIV-1 reverse transcriptase and integrase dual inhibitors: Recent advances and developments. Eur. J. Med. Chem., 2019, 179, 423-448.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.058] [PMID: 31265935]
[24]
Su, M.; Tan, J.; Lin, C.Y. Development of HIV-1 integrase inhibitors: Recent molecular modeling perspectives. Drug Discov. Today, 2015, 20(11), 1337-1348.
[http://dx.doi.org/10.1016/j.drudis.2015.07.012] [PMID: 26220090]
[25]
Liao, C.; Nicklaus, M.C. Computer tools in the discovery of HIV-1 integrase inhibitors. Future Med. Chem., 2010, 2(7), 1123-1140.
[http://dx.doi.org/10.4155/fmc.10.193] [PMID: 21426160]
[26]
Samorlu, A.S.Y.; Yelekçi, K.; Ibrahim Uba, A. The design of potent HIV-1 integrase inhibitors by a combined approach of structure-based virtual screening and molecular dynamics simulation. J. Biomol. Struct. Dyn., 2019, 37(17), 4644-4650.
[http://dx.doi.org/10.1080/07391102.2018.1557559] [PMID: 30526403]
[27]
Vora, J.; Patel, S.; Sinha, S.; Sharma, S.; Srivastava, A.; Chhabria, M.; Shrivastava, N. Molecular docking, qsar and admet based mining of natural compounds against prime targets of HIV. J. Biomol. Struct. Dyn., 2019, 37(1), 131-146.
[http://dx.doi.org/10.1080/07391102.2017.1420489] [PMID: 29268664]
[28]
Sirous, H.; Chemi, G.; Gemma, S.; Butini, S.; Debyser, Z.; Christ, F.; Saghaie, L.; Brogi, S.; Fassihi, A.; Campiani, G.; Brindisi, M. Identification of novel 3-Hydroxy-pyran-4-one derivatives as potent HIV-1 integrase inhibitors using in silico structure-based combinatorial library design approach. Front Chem., 2019, 7, 574.
[http://dx.doi.org/10.3389/fchem.2019.00574] [PMID: 31457006]
[29]
Eurtivong, C.; Choowongkomon, K.; Ploypradith, P.; Ruchirawat, S. Molecular docking study of lamellarin analogues and identification of potential inhibitors of HIV-1 integrase strand transfer complex by virtual screening. Heliyon, 2019, 5(11), e02811.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02811] [PMID: 31763475]
[30]
Patel, S.B.P.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117, 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[31]
Guasch, L.; Zakharov, A.V.; Tarasova, O.A.; Poroikov, V.V.; Liao, C.; Nicklaus, M.C. Novel HIV-1 integrase inhibitor development by virtual screening based on qsar models. Curr. Top. Med. Chem., 2016, 16(4), 441-448.
[http://dx.doi.org/10.2174/1568026615666150813150433] [PMID: 26268340]
[32]
Islam, M.A.P.; Pillay, T.S. Structural requirements for potential HIV-integrase inhibitors identified using pharmacophore-based virtual screening and molecular dynamics studies. Mol. Biosyst., 2016, 12(3), 982-993.
[http://dx.doi.org/10.1039/C5MB00767D] [PMID: 26809073]
[33]
Poongavanam, V.; Corona, A.; Steinmann, C.; Scipione, L.; Grandi, N.; Pandolfi, F.; Di Santo, R.; Costi, R.; Esposito, F.; Tramontano, E.; Kongsted, J. Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: Binding mode insights through magnesium complexation and site-directed mutagenesis studies. MedChemComm, 2018, 9(3), 562-575.
[http://dx.doi.org/10.1039/C7MD00600D] [PMID: 30108947]
[34]
Xue, W.; Liu, H.; Yao, X. Molecular mechanism of HIV-1 integrase-vDNA interactions and strand transfer inhibitor action: A molecular modeling perspective. J. Comput. Chem., 2012, 33(5), 527-536.
[http://dx.doi.org/10.1002/jcc.22887] [PMID: 22144113]
[35]
Xue, W.; Jin, X.; Ning, L.; Wang, M.; Liu, H.; Yao, X. Exploring the molecular mechanism of cross-resistance to HIV-1 integrase strand transfer inhibitors by molecular dynamics simulation and residue interaction network analysis. J. Chem. Inf. Model., 2013, 53(1), 210-222.
[http://dx.doi.org/10.1021/ci300541c] [PMID: 23231029]
[36]
Chander, S.; Pandey, R.K.; Penta, A.; Choudhary, B.S.; Sharma, M.; Malik, R.; Prajapati, V.K.; Murugesan, S. Molecular docking and molecular dynamics simulation based approach to explore the dual inhibitor against HIV-1 reverse transcriptase and integrase. Comb. Chem. High Throughput Screen., 2017, 20(8), 734-746.
[http://dx.doi.org/10.2174/1386207320666170615104703] [PMID: 28641512]
[37]
Chen, Q.; Cheng, X.; Wei, D.; Xu, Q. Molecular dynamics simulation studies of the wild type and E92Q/N155H mutant of Elvitegravir-resistance HIV-1 integrase. Interdiscip. Sci., 2015, 7(1), 36-42.
[PMID: 25519157]
[38]
Hare, S.; Gupta, S.S.; Valkov, E.; Engelman, A.; Cherepanov, P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature, 2010, 464(7286), 232-236.
[http://dx.doi.org/10.1038/nature08784] [PMID: 20118915]
[39]
Chitongo, R.; Obasa, A.E.; Mikasi, S.G.; Jacobs, G.B.; Cloete, R. Molecular dynamic simulations to investigate the structural impact of known drug resistance mutations on HIV-1C Integrase-dolutegravir binding. PLoS One, 2020, 15(5), e0223464.
[http://dx.doi.org/10.1371/journal.pone.0223464] [PMID: 32379830]
[40]
Malet, I.; Ambrosio, F.A.; Subra, F.; Herrmann, B.; Leh, H.; Bouger, M.C.; Artese, A.; Katlama, C.; Talarico, C.; Romeo, I.; Alcaro, S.; Costa, G.; Deprez, E.; Calvez, V.; Marcelin, A.G.; Delelis, O. Pathway involving the N155H mutation in HIV-1 integrase leads to dolutegravir resistance. J. Antimicrob. Chemother., 2018, 73(5), 1158-1166.
[http://dx.doi.org/10.1093/jac/dkx529] [PMID: 29373677]
[41]
Riemenschneider, M.; Heider, D. Current approaches in computational drug resistance prediction in HIV. Curr. HIV Res., 2016, 14(4), 307-315.
[http://dx.doi.org/10.2174/1570162X14666160321120232] [PMID: 26996942 ]
[42]
Schmidt, B.; Walter, H.; Moschik, B.; Paatz, C.; van Vaerenbergh, K.; Vandamme, A.M.; Schmitt, M.; Harrer, T.; Uberla, K.; Korn, K. Simple algorithm derived from a geno-/phenotypic database to predict HIV-1 protease inhibitor resistance. AIDS, 2000, 14(12), 1731-1738.
[http://dx.doi.org/10.1097/00002030-200008180-00007] [PMID: 10985309]
[43]
Bonet, I. Machine Learning for Prediction of HIV Drug Resistance: A Review. Curr. Bioinform., 2015, (10), 579-585.
[http://dx.doi.org/10.2174/1574893610666151008011731]
[44]
Masso, M. Sequence-based predictive models of resistance to HIV-1 integrase inhibitors: An n-grams approach to phenotype assessment. Curr. HIV Res., 2015, 13(6), 497-502.
[http://dx.doi.org/10.2174/1570162X13666150624100535] [PMID: 26105155 ]
[45]
Ramon, E.; Belanche-Muñoz, L.; Pérez-Enciso, M. HIV drug resistance prediction with weighted categorical kernel functions. BMC Bioinformatics, 2019, 20(1), 410.
[http://dx.doi.org/10.1186/s12859-019-2991-2] [PMID: 31362714]
[46]
Sachithanandham, J.; Konda Reddy, K.; Solomon, K.; David, S.; Kumar Singh, S.; Vadhini Ramalingam, V.; Alexander Pulimood, S.; Cherian Abraham, O.; Rupali, P.; Sridharan, G.; Kannangai, R. Effect of HIV-1 Subtype C integrase mutations implied using molecular modeling and docking data. Bioinformation, 2016, 12(3), 221-230.
[http://dx.doi.org/10.6026/97320630012221] [PMID: 28149058]
[47]
da Silva, H.H.S.A.; Pereira, N.; Brandão, L.; Crovella, S.; Moura, R. Prediction of HIV integrase resistance mutation using in silico approaches. Infect. Genet. Evol., 2019, 68, 10-15.
[http://dx.doi.org/10.1016/j.meegid.2018.11.014] [PMID: 30453083]
[48]
Passos, D.O.L.; Li, M.; Jóźwik, I.K.; Zhao, X.Z.; Santos-Martins, D.; Yang, R.; Smith, S.J.; Jeon, Y.; Forli, S.; Hughes, S.H.; Burke, T.R., Jr; Craigie, R.; Lyumkis, D. Structural basis for strand-transfer inhibitor binding to HIV intasomes. Science, 2020, 367(6479), 810-814.
[http://dx.doi.org/10.1126/science.aay8015] [PMID: 32001521]
[49]
Sohn, Y.S.P.; Park, C.; Lee, Y.; Kim, S.; Thangapandian, S.; Kim, Y.; Kim, H.H.; Suh, J.K.; Lee, K.W. Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J. Mol. Graph. Model., 2013, 46, 1-9.
[http://dx.doi.org/10.1016/j.jmgm.2013.08.012] [PMID: 24104184]
[50]
Copeland, R.A.P.; Pompliano, D.L.; Meek, T.D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov., 2006, 5(9), 730-739.
[http://dx.doi.org/10.1038/nrd2082] [PMID: 16888652 ]
[51]
Hightower, K.E.W.; Wang, R.; Deanda, F.; Johns, B.A.; Weaver, K.; Shen, Y.; Tomberlin, G.H.; Carter, H.L., III; Broderick, T.; Sigethy, S.; Seki, T.; Kobayashi, M.; Underwood, M.R. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob. Agents Chemother., 2011, 55(10), 4552-4559.
[http://dx.doi.org/10.1128/AAC.00157-11] [PMID: 21807982 ]
[52]
Garvey, E.P.S.; Schwartz, B.; Gartland, M.J.; Lang, S.; Halsey, W.; Sathe, G.; Carter, H.L., III; Weaver, K.L. Potent inhibitors of HIV-1 integrase display a two-step, slow-binding inhibition mechanism which is absent in a drug-resistant T66I/M154I mutant. Biochemistry, 2009, 48(7), 1644-1653.
[http://dx.doi.org/10.1021/bi802141y] [PMID: 19178153]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy