Review Article

癌症中的一氧化氮和免疫反应:寻找新的治疗策略

卷 29, 期 9, 2022

发表于: 07 July, 2021

页: [1561 - 1595] 页: 35

弟呕挨: 10.2174/0929867328666210707194543

价格: $65

摘要

近年来,人们越来越有兴趣了解一氧化氮 (NO) 的神秘功能以及这种多效性信号分子如何促进肿瘤发生。本综述试图揭示和讨论关于 NO 在癌症中的免疫调节作用的可用信息,以及 NO 供体在免疫治疗领域中作用的最新方法。为了实现这一目标,我们搜索了以下数据库,以确定有关经验证据的相关文献:Cochrane 图书馆、Pubmed、Medline 和 EMBASE 从 1980 年到 2020 年 3 月。已经做出了有价值的尝试来开发独特的基于 NO 的癌症疗法。尽管数据不允许一概而论,但证据似乎表明低/中等水平可能有利于肿瘤发生,而较高水平会发挥抗肿瘤作用。从这个意义上说,NO 供体的使用可能在免疫疗法中具有重要的治疗潜力,尽管目前还没有临床试验。对癌症中 NO 调节的免疫反应的新认识可能有助于揭示这把“双刃剑”在癌症生理和病理过程中的最新特征及其作为癌症治疗剂的潜在用途。简而言之,在这篇综述中,我们讨论了 NO 作为一种多效性信号分子参与癌症病理生理学的复杂细胞机制。我们还讨论了 NO 在癌症和肿瘤进展中的双重作用以及基于诱导型一氧化氮合酶 (iNOS) 治疗癌症的临床方法。

关键词: 一氧化氮、癌症、nNOS、iNOS、eNOS、免疫、多效性信号传导。

[1]
Huerta, S.; Chilka, S.; Bonavida, B. Nitric oxide donors: Novel cancer therapeutics. (review) Int. J. Oncol., 2008, 33(5), 909-927.
[PMID: 18949354]
[2]
Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA, 1987, 84(24), 9265-9269.
[http://dx.doi.org/10.1073/pnas.84.24.9265] [PMID: 2827174]
[3]
Friebe, A.; Koesling, D. Regulation of nitric oxide-sensitive guanylyl cyclase. Circ. Res., 2003, 93(2), 96-105.
[http://dx.doi.org/10.1161/01.RES.0000082524.34487.31] [PMID: 12881475]
[4]
Jaffrey, S.R.; Erdjument-Bromage, H.; Ferris, C.D.; Tempst, P.; Snyder, S.H. Protein S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat. Cell Biol., 2001, 3(2), 193-197.
[http://dx.doi.org/10.1038/35055104] [PMID: 11175752]
[5]
Brüne, B.; Mohr, S.; Messmer, U. Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways. Rev. Physiol. Biochem. Pharmacol; Springer, 1995, Vol. 127, pp. 1-30.
[6]
Holotiuk, V.V.; Kryzhanivska, A.Y.; Churpiy, I.K.; Tataryn, B.B.; Ivasiutyn, D.Y. Role of nitric oxide in pathogenesis of tumor growth and its possible application in cancer treatment. Exp. Oncol., 2019, 41(3), 210-215.
[http://dx.doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-3.13515] [PMID: 31569933]
[7]
Choudhari, S.K.; Chaudhary, M.; Bagde, S.; Gadbail, A.R.; Joshi, V. Nitric oxide and cancer: A review. World J. Surg. Oncol., 2013, 11(1), 118.
[http://dx.doi.org/10.1186/1477-7819-11-118] [PMID: 23718886]
[8]
Lechner, M.; Lirk, P.; Rieder, J., Eds.; Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. SEMIN CANCER BIOL; Elsevier, 2005.
[9]
Shang, Z-J.; Li, J-R.; Li, Z-B. Effects of exogenous nitric oxide on oral squamous cell carcinoma: An in vitro study. J. Oral Maxillofac. Surg., 2002, 60(8), 905-910.
[http://dx.doi.org/10.1053/joms.2002.33860] [PMID: 12149736]
[10]
Harada, K.; Kawaguchi, S-I.; Tomitaro, O. Overexpression of iNOS gene suppresses the tumorigenicity and metastasis of oral cancer cells. In Vivo, 2004, 18(4), 449-455.
[11]
Li, J.; Billiar, T.R.; Talanian, R.V.; Kim, Y.M. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun., 1997, 240(2), 419-424.
[http://dx.doi.org/10.1006/bbrc.1997.7672] [PMID: 9388494]
[12]
Kawasaki, K.; Smith, R.S., Jr; Hsieh, C-M.; Sun, J.; Chao, J.; Liao, J.K. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol. Cell. Biol., 2003, 23(16), 5726-5737.
[http://dx.doi.org/10.1128/MCB.23.16.5726-5737.2003] [PMID: 12897144]
[13]
Laval, F.; Wink, D.; Laval, J. A discussion of mechanisms of NO genotoxicty: Implication of inhibition of DNA repair proteins. Rev. Physiol. Biochem. Pharmacol; Springer, 1997, Vol. 131, pp. 175-191.
[14]
Lambden, S. Bench to bedside review: Therapeutic modulation of nitric oxide in sepsis - an update. Eur. Heart J., 2019, 7(1), 1-14.
[PMID: 30602013]
[15]
Solomonson, L.P.; Flam, B.R.; Pendleton, L.C.; Goodwin, B.L.; Eichler, D.C. The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells. J. Exp. Biol., 2003, 206(Pt 12), 2083-2087.
[http://dx.doi.org/10.1242/jeb.00361] [PMID: 12756290]
[16]
Bescós, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med., 2012, 42(2), 99-117.
[http://dx.doi.org/10.2165/11596860-000000000-00000] [PMID: 22260513]
[17]
Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33(7), 829-837. 837a-837d
[http://dx.doi.org/10.1093/eurheartj/ehr304] [PMID: 21890489]
[18]
Förstermann, U.; Münzel, T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation, 2006, 113(13), 1708-1714.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.602532] [PMID: 16585403]
[19]
Ginnan, R.; Guikema, B.J.; Halligan, K.E.; Singer, H.A.; Jourd’heuil, D. Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases. Free Radic. Biol. Med., 2008, 44(7), 1232-1245.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.12.025] [PMID: 18211830]
[20]
LaPointe, M.C.; Isenović, E. Interleukin-1β regulation of inducible nitric oxide synthase and cyclooxygenase-2 involves the p42/44 and p38 MAPK signaling pathways in cardiac myocytes. Hypertension, 1999, 33(1 Pt 2), 276-282.
[http://dx.doi.org/10.1161/01.HYP.33.1.276] [PMID: 9931117]
[21]
Hua, L.L.; Zhao, M-L.; Cosenza, M.; Kim, M.O.; Huang, H.; Tanowitz, H.B.; Brosnan, C.F.; Lee, S.C. Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNFalpha expression in human fetal astrocytes. J. Neuroimmunol., 2002, 126(1-2), 180-189.
[http://dx.doi.org/10.1016/S0165-5728(02)00055-3] [PMID: 12020969]
[22]
Weinberg, J.B.; Fermor, B.; Guilak, F. Nitric oxide synthase and cyclooxygenase interactions in cartilage and meniscus: Relationships to joint physiology, arthritis, and tissue repair. Subcell. Biochem., 2007, 42, 31-62.
[http://dx.doi.org/10.1007/1-4020-5688-5_2] [PMID: 17612045]
[23]
Xue, Q.; Yan, Y.; Zhang, R.; Xiong, H. Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci., 2018, 19(12), 3805.
[http://dx.doi.org/10.3390/ijms19123805] [PMID: 30501075]
[24]
Gebhart, V.; Reiß, K.; Kollau, A.; Mayer, B.; Gorren, A.C.F. Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions. Nitric Oxide, 2019, 89, 14-21.
[http://dx.doi.org/10.1016/j.niox.2019.04.007] [PMID: 31022534]
[25]
Rabender, C.S.; Alam, A.; Sundaresan, G.; Cardnell, R.J.; Yakovlev, V.A.; Mukhopadhyay, N.D.; Graves, P.; Zweit, J.; Mikkelsen, R.B. The role of nitric oxide synthase uncoupling in tumor progression. Mol. Cancer Res., 2015, 13(6), 1034-1043.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0057-T] [PMID: 25724429]
[26]
Gonçalves, D.A.; Xisto, R.; Gonçalves, J.D.; da Silva, D.B.; Moura Soares, J.P.; Icimoto, M.Y.; Sant’Anna, C.; Gimenez, M.; de Angelis, K.; Llesuy, S.; Fernandes, D.C.; Laurindo, F.; Jasiulionis, M.G.; Melo, F.H.M. Imbalance between nitric oxide and superoxide anion induced by uncoupled nitric oxide synthase contributes to human melanoma development. Int. J. Biochem. Cell Biol., 2019, 115105592
[http://dx.doi.org/10.1016/j.biocel.2019.105592] [PMID: 31454684]
[27]
Bogdan, C. The function of nitric oxide in the immune system. Nitric Oxide; Springer, 2000, pp. 443-492.
[28]
Nathan, C.; Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 8841-8848.
[http://dx.doi.org/10.1073/pnas.97.16.8841] [PMID: 10922044]
[29]
Bogdan, C. Nitric oxide and the immune response. Nat. Immunol., 2001, 2(10), 907-916.
[http://dx.doi.org/10.1038/ni1001-907] [PMID: 11577346]
[30]
Kröncke, K-D.; Fehsel, K.; Suschek, C.; Kolb-Bachofen, V. Inducible nitric oxide synthase-derived nitric oxide in gene regulation, cell death and cell survival. Int. Immunopharmacol., 2001, 1(8), 1407-1420.
[http://dx.doi.org/10.1016/S1567-5769(01)00087-X] [PMID: 11515808]
[31]
Bogdan, C.; Röllinghoff, M.; Diefenbach, A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol., 2000, 12(1), 64-76.
[http://dx.doi.org/10.1016/S0952-7915(99)00052-7] [PMID: 10679404]
[32]
Cifone, M.G.; Ulisse, S.; Santoni, A. Natural killer cells and nitric oxide. Int. Immunopharmacol., 2001, 1(8), 1513-1524.
[http://dx.doi.org/10.1016/S1567-5769(01)00095-9] [PMID: 11515816]
[33]
Forsythe, P.; Gilchrist, M.; Kulka, M.; Befus, A.D. Mast cells and nitric oxide: Control of production, mechanisms of response. Int. Immunopharmacol., 2001, 1(8), 1525-1541.
[http://dx.doi.org/10.1016/S1567-5769(01)00096-0] [PMID: 11515817]
[34]
Armstrong, R. The physiological role and pharmacological potential of nitric oxide in neutrophil activation. Int. Immunopharmacol., 2001, 1(8), 1501-1512.
[http://dx.doi.org/10.1016/S1567-5769(01)00094-7] [PMID: 11515815]
[35]
Janeway, C.A., Jr; Travers, P.; Walport, M. Principles of innate and adaptive immunity. Immunobiology: The Immune System in Health and Disease, 5th ed; Garland Science, 2001.
[36]
Quintin, J.; Cheng, S-C.; van der Meer, J.W.; Netea, M.G. Innate immune memory: Towards a better understanding of host defense mechanisms. Curr. Opin. Immunol., 2014, 29, 1-7.
[http://dx.doi.org/10.1016/j.coi.2014.02.006] [PMID: 24637148]
[37]
Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S3-S23.
[http://dx.doi.org/10.1016/j.jaci.2009.12.980] [PMID: 20176265]
[38]
Azuma, M. Fundamental mechanisms of host immune responses to infection. J. Periodontal Res., 2006, 41(5), 361-373.
[http://dx.doi.org/10.1111/j.1600-0765.2006.00896.x] [PMID: 16953812]
[39]
Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol., 2012, 4(3)a006049
[http://dx.doi.org/10.1101/cshperspect.a006049] [PMID: 22296764]
[40]
Fang, F.C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Microbiol., 2004, 2(10), 820-832.
[http://dx.doi.org/10.1038/nrmicro1004] [PMID: 15378046]
[41]
Rodríguez, D.; Keller, A.C.; Faquim-Mauro, E.L.; de Macedo, M.S.; Cunha, F.Q.; Lefort, J.; Vargaftig, B.B.; Russo, M. Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J. Immunol., 2003, 171(2), 1001-1008.
[http://dx.doi.org/10.4049/jimmunol.171.2.1001] [PMID: 12847273]
[42]
Bogdan, C.; Röllinghoff, M.; Diefenbach, A. The role of nitric oxide in innate immunity. Immunol. Rev., 2000, 173, 17-26.
[http://dx.doi.org/10.1034/j.1600-065X.2000.917307.x] [PMID: 10719664]
[43]
He, H.; Genovese, K.J.; Nisbet, D.J.; Kogut, M.H. Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Mol. Immunol., 2006, 43(7), 783-789.
[http://dx.doi.org/10.1016/j.molimm.2005.07.002] [PMID: 16098593]
[44]
Kleinert, H.; Art, J.; Pautz, A. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide; Elsevier, 2010, pp. 211-267.
[45]
Ibiza, S.; Serrador, J. The role of nitric oxide in the regulation of adaptive immune responses. Inmunologia, 2008, 27(3), 103-117.
[http://dx.doi.org/10.1016/S0213-9626(08)70058-1]
[46]
Niedbala, W.; Wei, X.Q.; Piedrafita, D.; Xu, D.; Liew, F.Y. Effects of nitric oxide on the induction and differentiation of Th1 cells. Eur. J. Immunol., 1999, 29(8), 2498-2505.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199908)29:08<2498:AID-IMMU2498>3.0.CO;2-M] [PMID: 10458764]
[47]
Diefenbach, A.; Schindler, H.; Donhauser, N.; Lorenz, E.; Laskay, T.; MacMicking, J.; Röllinghoff, M.; Gresser, I.; Bogdan, C. Type 1 interferon (IFNalpha/β) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity, 1998, 8(1), 77-87.
[http://dx.doi.org/10.1016/S1074-7613(00)80460-4] [PMID: 9462513]
[48]
Cooper, M.D.; Alder, M.N. The evolution of adaptive immune systems. Cell, 2006, 124(4), 815-822.
[http://dx.doi.org/10.1016/j.cell.2006.02.001] [PMID: 16497590]
[49]
Iwasaki, A.; Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science, 2010, 327(5963), 291-295.
[http://dx.doi.org/10.1126/science.1183021] [PMID: 20075244]
[50]
Cano, R.L.E.; Lopera, H.D.E. Introduction to T and B lymphocytes. Autoimmunity: From Bench to Bedside; El Rosario University Press; , 2013. Internet
[51]
Adema, G.J. Dendritic cells from bench to bedside and back. Immunol. Lett., 2009, 122(2), 128-130.
[http://dx.doi.org/10.1016/j.imlet.2008.11.017] [PMID: 19121337]
[52]
Cruvinel, Wde. M.; Mesquita, D., Jr; Araújo, J.A.; Catelan, T.T.; de Souza, A.W.; da Silva, N.P.; Andrade, L.E. Immune system - part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev. Bras. Reumatol., 2010, 50(4), 434-461.
[http://dx.doi.org/10.1590/S0482-50042010000400008] [PMID: 21125178]
[53]
Kolb, H.; Kolb-Bachofen, V. Nitric oxide in autoimmune disease: Cytotoxic or regulatory mediator? Immunol. Today, 1998, 19(12), 556-561.
[http://dx.doi.org/10.1016/S0167-5699(98)01366-8] [PMID: 9864946]
[54]
Zech, B.; Köhl, R.; von Knethen, A.; Brüne, B. Nitric oxide donors inhibit formation of the Apaf-1/caspase-9 apoptosome and activation of caspases. Biochem. J., 2003, 371(Pt 3), 1055-1064.
[http://dx.doi.org/10.1042/bj20021720] [PMID: 12605597]
[55]
McKay, D.M.; Lu, J.; Jedrzkiewicz, S.; Ho, W.; Sharkey, K.A. Nitric oxide participates in the recovery of normal jejunal epithelial ion transport following exposure to the superantigen, Staphylococcus aureus enterotoxin B. J. Immunol., 1999, 163(8), 4519-4526.
[PMID: 10510395]
[56]
Bronte, V.; Serafini, P.; Mazzoni, A.; Segal, D.M.; Zanovello, P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol., 2003, 24(6), 302-306.
[http://dx.doi.org/10.1016/S1471-4906(03)00132-7] [PMID: 12810105]
[57]
Wink, D.A.; Hines, H.B.; Cheng, R.Y.; Switzer, C.H.; Flores-Santana, W.; Vitek, M.P.; Ridnour, L.A.; Colton, C.A. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol., 2011, 89(6), 873-891.
[http://dx.doi.org/10.1189/jlb.1010550] [PMID: 21233414]
[58]
Fulton, D.; Gratton, J-P.; Sessa, W.C. Post-translational control of endothelial nitric oxide synthase: Why isn’t calcium/calmodulin enough? J. Pharmacol. Exp. Ther., 2001, 299(3), 818-824.
[PMID: 11714864]
[59]
Thomas, D.D.; Ridnour, L.A.; Isenberg, J.S.; Flores-Santana, W.; Switzer, C.H.; Donzelli, S.; Hussain, P.; Vecoli, C.; Paolocci, N.; Ambs, S.; Colton, C.A.; Harris, C.C.; Roberts, D.D.; Wink, D.A. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic. Biol. Med., 2008, 45(1), 18-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.020] [PMID: 18439435]
[60]
Takeuchi, O.; Akira, S. Genetic approaches to the study of Toll-like receptor function. Microbes Infect., 2002, 4(9), 887-895.
[http://dx.doi.org/10.1016/S1286-4579(02)01615-5] [PMID: 12106781]
[61]
Shreshtha, S.; Sharma, P.; Kumar, P. Nitric oxide: it's role in immunity. J. clin. diagn. 2018, 12(7)
[62]
Hummel, S.G.; Fischer, A.J.; Martin, S.M.; Schafer, F.Q.; Buettner, G.R. Nitric oxide as a cellular antioxidant: A little goes a long way. Free Radic. Biol. Med., 2006, 40(3), 501-506.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.08.047] [PMID: 16443165]
[63]
Brüne, B.; von Knethen, A.; Sandau, K.B. Nitric oxide and its role in apoptosis. Eur. J. Pharmacol., 1998, 351(3), 261-272.
[http://dx.doi.org/10.1016/S0014-2999(98)00274-X] [PMID: 9721017]
[64]
Vandal, O.H.; Roberts, J.A.; Odaira, T.; Schnappinger, D.; Nathan, C.F.; Ehrt, S. Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J. Bacteriol., 2009, 191(2), 625-631.
[http://dx.doi.org/10.1128/JB.00932-08] [PMID: 19011036]
[65]
Torres, D.; Barrier, M.; Bihl, F.; Quesniaux, V.J.; Maillet, I.; Akira, S.; Ryffel, B.; Erard, F. Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infect. Immun., 2004, 72(4), 2131-2139.
[http://dx.doi.org/10.1128/IAI.72.4.2131-2139.2004] [PMID: 15039335]
[66]
Yang, Z.; Huang, Y-C.T.; Koziel, H.; de Crom, R.; Ruetten, H.; Wohlfart, P.; Thomsen, R.W.; Kahlert, J.A.; Sørensen, H.T.; Jozefowski, S.; Colby, A.; Kobzik, L. Female resistance to pneumonia identifies lung macrophage nitric oxide synthase-3 as a therapeutic target. eLife, 2014, 3e03711
[http://dx.doi.org/10.7554/eLife.03711] [PMID: 25317947]
[67]
Silva, N.M.; Vieira, J.C.M.; Carneiro, C.M.; Tafuri, W.L. Toxoplasma gondii: The role of IFN-gamma, TNFRp55 and iNOS in inflammatory changes during infection. Exp. Parasitol., 2009, 123(1), 65-72.
[http://dx.doi.org/10.1016/j.exppara.2009.05.011] [PMID: 19501090]
[68]
Hayes, M.M.; Lane, B.R.; King, S.R.; Markovitz, D.M.; Coffey, M.J. Prostaglandin E(2) inhibits replication of HIV-1 in macrophages through activation of protein kinase A. Cell. Immunol., 2002, 215(1), 61-71.
[http://dx.doi.org/10.1016/S0008-8749(02)00017-5] [PMID: 12142037]
[69]
Mendes-Ribeiro, A.C.; Moss, M.B.; Siqueira, M.A.; Moraes, T.L.; Ellory, J.C.; Mann, G.E.; Brunini, T.M. Dengue fever activates the L-arginine-nitric oxide pathway: An explanation for reduced aggregation of human platelets. Clin. Exp. Pharmacol. Physiol., 2008, 35(10), 1143-1146.
[http://dx.doi.org/10.1111/j.1440-1681.2008.04970.x] [PMID: 18505438]
[70]
van der Veen, R.C. Nitric oxide and T helper cell immunity. Int. Immunopharmacol., 2001, 1(8), 1491-1500.
[http://dx.doi.org/10.1016/S1567-5769(01)00093-5] [PMID: 11515814]
[71]
López-Sánchez, L.M.; López-Pedrera, C.; Rodríguez-Ariza, A. Proteomic approaches to evaluate protein S-nitrosylation in disease. Mass Spectrom. Rev., 2014, 33(1), 7-20.
[http://dx.doi.org/10.1002/mas.21373] [PMID: 23775552]
[72]
Niedbala, W.; Cai, B.; Liew, F.Y. Role of nitric oxide in the regulation of T cell functions. Ann. Rheum. Dis., 2006, 65(Suppl. 3), iii37-iii40.
[http://dx.doi.org/10.1136/ard.2006.058446] [PMID: 17038470]
[73]
Vig, M.; Srivastava, S.; Kandpal, U.; Sade, H.; Lewis, V.; Sarin, A.; George, A.; Bal, V.; Durdik, J.M.; Rath, S. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J. Clin. Invest., 2004, 113(12), 1734-1742.
[http://dx.doi.org/10.1172/JCI20225] [PMID: 15199408]
[74]
Moss, R.B.; Moll, T.; El-Kalay, M.; Kohne, C.; Soo Hoo, W.; Encinas, J.; Carlo, D.J. Th1/Th2 cells in inflammatory disease states: Therapeutic implications. Expert Opin. Biol. Ther., 2004, 4(12), 1887-1896.
[http://dx.doi.org/10.1517/14712598.4.12.1887] [PMID: 15571451]
[75]
McInnes, I.B.; Leung, B.; Wei, X-Q.; Gemmell, C.C.; Liew, F.Y. Septic arthritis following Staphylococcus aureus infection in mice lacking inducible nitric oxide synthase. J. Immunol., 1998, 160(1), 308-315.
[PMID: 9551985]
[76]
Walker, M.R.; Kasprowicz, D.J.; Gersuk, V.H.; Benard, A.; Van Landeghen, M.; Buckner, J.H.; Ziegler, S.F. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J. Clin. Invest., 2003, 112(9), 1437-1443.
[http://dx.doi.org/10.1172/JCI19441] [PMID: 14597769]
[77]
Niedbala, W.; Cai, B.; Liu, H.; Pitman, N.; Chang, L.; Liew, F.Y. Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40. Proc. Natl. Acad. Sci. USA, 2007, 104(39), 15478-15483.
[http://dx.doi.org/10.1073/pnas.0703725104] [PMID: 17875988]
[78]
Brennan, P.A.; Palacios-Callender, M.; Umar, T.; Hughes, D.; Spedding, A.V.; Zaki, G.A.; Langdon, J.D. Correlation between type II nitric oxide synthase and p53 expression in oral squamous cell carcinoma. Br. J. Oral Maxillofac. Surg., 2000, 38(6), 627-632.
[http://dx.doi.org/10.1054/bjom.2000.0540] [PMID: 11092782]
[79]
Ambs, S.; Bennett, W.P.; Merriam, W.G.; Ogunfusika, M.O.; Oser, S.M.; Harrington, A.M.; Shields, P.G.; Felley-Bosco, E.; Hussain, S.P.; Harris, C.C. Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J. Natl. Cancer Inst., 1999, 91(1), 86-88.
[http://dx.doi.org/10.1093/jnci/91.1.86] [PMID: 9890175]
[80]
Kitano, H.; Kitanishi, T.; Nakanishi, Y.; Suzuki, M.; Takeuchi, E.; Yazawa, Y.; Kitajima, K.; Kimura, H.; Tooyama, I. Expression of inducible nitric oxide synthase in human thyroid papillary carcinomas. Thyroid, 1999, 9(2), 113-117.
[http://dx.doi.org/10.1089/thy.1999.9.113] [PMID: 10090309]
[81]
Daniel, S.K.; Sullivan, K.M.; Labadie, K.P.; Pillarisetty, V.G. Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma. Clin. Transl. Med., 2019, 8(1), 10.
[http://dx.doi.org/10.1186/s40169-019-0226-9] [PMID: 30931508]
[82]
Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[83]
Barsoum, I.B.; Hamilton, T.K.; Li, X.; Cotechini, T.; Miles, E.A.; Siemens, D.R.; Graham, C.H. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: Role of nitric oxide. Cancer Res., 2011, 71(24), 7433-7441.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2104] [PMID: 22006996]
[84]
Augsten, M.; Sjöberg, E.; Frings, O.; Vorrink, S.U.; Frijhoff, J.; Olsson, E.; Borg, Å.; Östman, A. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. Cancer Res., 2014, 74(11), 2999-3010.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2740] [PMID: 24710408]
[85]
Lee, S.Y.; Rim, Y.; McPherson, D.D.; Huang, S.L.; Kim, H. A novel liposomal nanomedicine for nitric oxide delivery and breast cancer treatment. Biomed. Mater. Eng., 2014, 24(1), 61-67.
[http://dx.doi.org/10.3233/BME-130784] [PMID: 24211883]
[86]
Pfeifer, G.P.; Denissenko, M.F.; Olivier, M.; Tretyakova, N.; Hecht, S.S.; Hainaut, P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene, 2002, 21(48), 7435-7451.
[http://dx.doi.org/10.1038/sj.onc.1205803] [PMID: 12379884]
[87]
deRojas-Walker, T.; Tamir, S.; Ji, H.; Wishnok, J.S.; Tannenbaum, S.R. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem. Res. Toxicol., 1995, 8(3), 473-477.
[http://dx.doi.org/10.1021/tx00045a020] [PMID: 7578935]
[88]
Gal, A.; Wogan, G.N. Mutagenesis associated with nitric oxide production in transgenic SJL mice. Proc. Natl. Acad. Sci. USA, 1996, 93(26), 15102-15107.
[http://dx.doi.org/10.1073/pnas.93.26.15102] [PMID: 8986771]
[89]
Fukumura, D.; Kashiwagi, S.; Jain, R.K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer, 2006, 6(7), 521-534.
[http://dx.doi.org/10.1038/nrc1910] [PMID: 16794635]
[90]
Thomsen, L.L.; Miles, D.W.; Happerfield, L.; Bobrow, L.G.; Knowles, R.G.; Moncada, S. Nitric oxide synthase activity in human breast cancer. Br. J. Cancer, 1995, 72(1), 41-44.
[http://dx.doi.org/10.1038/bjc.1995.274] [PMID: 7541238]
[91]
Choi, B-M.; Pae, H-O.; Jang, S-I.; Kim, Y.M.; Chung, H.T. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J. Biochem. Mol. Biol., 2002, 35(1), 116-126.
[PMID: 16248976]
[92]
Ziche, M.; Morbidelli, L.; Morbidelli, L. Nitric oxide and angiogenesis. J. Neurooncol., 2000, 50(1-2), 139-148.
[http://dx.doi.org/10.1023/A:1006431309841] [PMID: 11245273]
[93]
Loibl, S.; von Minckwitz, G.; Weber, S.; Sinn, H.P.; Schini-Kerth, V.B.; Lobysheva, I.; Nepveu, F.; Wolf, G.; Strebhardt, K.; Kaufmann, M. Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer, 2002, 95(6), 1191-1198.
[http://dx.doi.org/10.1002/cncr.10817] [PMID: 12216084]
[94]
Alagöl, H.; Erdem, E.; Sancak, B.; Turkmen, G.; Camlibel, M.; Bugdayci, G. Nitric oxide biosynthesis and malondialdehyde levels in advanced breast cancer. Aust. N. Z. J. Surg., 1999, 69(9), 647-650.
[http://dx.doi.org/10.1046/j.1440-1622.1999.01656.x] [PMID: 10515337]
[95]
Tschugguel, W.; Knogler, W.; Czerwenka, K.; Mildner, M.; Weninger, W.; Zeillinger, R.; Huber, J.C. Presence of endothelial calcium-dependent nitric oxide synthase in breast apocrine metaplasia. Br. J. Cancer, 1996, 74(9), 1423-1426.
[http://dx.doi.org/10.1038/bjc.1996.559] [PMID: 8912539]
[96]
Fardoun, M.; Dehaini, H.; Shaito, A.; Mesmar, J.; El-Yazbi, A.; Badran, A.; Beydoun, E.; Eid, A.H. The hypertensive potential of estrogen: An untold story. Vascul. Pharmacol., 2020, 124106600
[http://dx.doi.org/10.1016/j.vph.2019.106600] [PMID: 31629918]
[97]
Kolovou, G.; Kolovou, V.; Koutelou, M.; Mavrogeni, S. Atherosclerotic and non-atherosclerotic coronary heart disease in women. Curr. Med. Chem., 2015, 22(31), 3555-3564.
[http://dx.doi.org/10.2174/0929867322666150904105941] [PMID: 26337108]
[98]
Naidu, M.S.K.; Suryakar, A.N.; Swami, S.C.; Katkam, R.V.; Kumbar, K.M. Oxidative stress and antioxidant status in cervical cancer patients. Indian J. Clin. Biochem., 2007, 22(2), 140-144.
[http://dx.doi.org/10.1007/BF02913333] [PMID: 23105702]
[99]
Beevi, S.S.; Rasheed, M.H.; Geetha, A. Evidence of oxidative and nitrosative stress in patients with cervical squamous cell carcinoma. Clin. Chim. Acta, 2007, 375(1-2), 119-123.
[http://dx.doi.org/10.1016/j.cca.2006.06.028] [PMID: 16889762]
[100]
Vahora, H.; Khan, M.A.; Alalami, U.; Hussain, A. The potential role of nitric oxide in halting cancer progression through chemoprevention. J. Cancer Prev., 2016, 21(1), 1-12.
[http://dx.doi.org/10.15430/JCP.2016.21.1.1] [PMID: 27051643]
[101]
Wei, X.M.; Wang, Q.; Gao, S.J.; Sui, L. Relationship between nitric oxide in cervical microenvironment and different HPV types and effect on cervical cancer cells. Zhonghua Fu Chan Ke Za Zhi, 2011, 46(4), 260-265.
[PMID: 21609578]
[102]
Puhakka, A.R.; Harju, T.H.; Pääkkö, P.K.; Soini, Y.M.; Kinnula, V.L. Nitric oxide synthases are associated with bronchial dysplasia. Lung Cancer, 2006, 51(3), 275-282.
[http://dx.doi.org/10.1016/j.lungcan.2005.11.005] [PMID: 16420964]
[103]
Yagihashi, N.; Kasajima, H.; Sugai, S.; Matsumoto, K.; Ebina, Y.; Morita, T.; Murakami, T.; Yagihashi, S. Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch., 2000, 436(2), 109-114.
[http://dx.doi.org/10.1007/PL00008208] [PMID: 10755599]
[104]
Li, W.; Han, W.; Ma, Y.; Cui, L.; Tian, Y.; Zhou, Z.; Wang, H. P53-dependent miRNAs mediate nitric oxide-induced apoptosis in colonic carcinogenesis. Free Radic. Biol. Med., 2015, 85, 105-113.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.016] [PMID: 25912478]
[105]
Wink, D.A.; Kasprzak, K.S.; Maragos, C.M.; Elespuru, R.K.; Misra, M.; Dunams, T.M.; Cebula, T.A.; Koch, W.H.; Andrews, A.W.; Allen, J.S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science, 1991, 254(5034), 1001-1003.
[http://dx.doi.org/10.1126/science.1948068] [PMID: 1948068]
[106]
Nam, K-T.; Oh, S-Y.; Ahn, B.; Kim, Y.B.; Jang, D.D.; Yang, K.H.; Hahm, K.B.; Kim, D.Y. Decreased Helicobacter pylori associated gastric carcinogenesis in mice lacking inducible nitric oxide synthase. Gut, 2004, 53(9), 1250-1255.
[http://dx.doi.org/10.1136/gut.2003.030684] [PMID: 15306579]
[107]
Safarinejad, M.R.; Safarinejad, S.; Shafiei, N., Eds.; Effects of the T-786C, G894T, and Intron 4 VNTR (4a/b) polymorphisms of the endothelial nitric oxide synthase gene on the risk of prostate cancer. Urol. Oncol; Elsevier, 2013.
[http://dx.doi.org/10.1016/j.urolonc.2012.01.002]
[108]
Lahdenranta, J.; Hagendoorn, J.; Padera, T.P.; Hoshida, T.; Nelson, G.; Kashiwagi, S.; Jain, R.K.; Fukumura, D. Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis. Cancer Res., 2009, 69(7), 2801-2808.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4051] [PMID: 19318557]
[109]
Cardenas, H.; Vieth, E.; Lee, J.; Segar, M.; Liu, Y.; Nephew, K.P.; Matei, D. TGF-β induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells. Epigenetics, 2014, 9(11), 1461-1472.
[http://dx.doi.org/10.4161/15592294.2014.971608] [PMID: 25470663]
[110]
Hama, S.; Takeichi, O.; Fujisaki, K.; Tanabe, N.; Maeno, M.; Ochiai, K. Nitric oxide attenuates vascular endothelial cadherin-mediated vascular integrity in human chronic inflammation. Clin. Exp. Immunol., 2008, 154(3), 384-390.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03789.x] [PMID: 19037921]
[111]
Gallo, O.; Franchi, A.; Magnelli, L.; Sardi, I.; Vannacci, A.; Boddi, V.; Chiarugi, V.; Masini, E. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia, 2001, 3(1), 53-61.
[http://dx.doi.org/10.1038/sj.neo.7900127] [PMID: 11326316]
[112]
Sano, H.; Kawahito, Y.; Wilder, R.L.; Hashiramoto, A.; Mukai, S.; Asai, K.; Kimura, S.; Kato, H.; Kondo, M.; Hla, T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res., 1995, 55(17), 3785-3789.
[PMID: 7641194]
[113]
Keller, J; Giardello, F. Chemopreventive strategies using NSAIDs and COX-2 inhibitors. Cancer Biol Ther. 2003, 2(sup1), 139-148.
[114]
Aiyengar, T.M.; Chiranjeevi, P.; Rani, H.S. Role of endothelial nitric oxide synthase in breast cancer. Nitric Oxide Synthase: Simple Enzyme-Complex Roles, 2017, 179
[http://dx.doi.org/10.5772/67493]
[115]
Rahat, M.A.; Hemmerlein, B. Macrophage-tumor cell interactions regulate the function of nitric oxide. Front. Physiol., 2013, 4, 144.
[http://dx.doi.org/10.3389/fphys.2013.00144] [PMID: 23785333]
[116]
Blaise, G.A.; Gauvin, D.; Gangal, M.; Authier, S. Nitric oxide, cell signaling and cell death. Toxicology, 2005, 208(2), 177-192.
[http://dx.doi.org/10.1016/j.tox.2004.11.032] [PMID: 15691583]
[117]
Forrester, K.; Ambs, S.; Lupold, S.E.; Kapust, R.B.; Spillare, E.A.; Weinberg, W.C.; Felley-Bosco, E.; Wang, X.W.; Geller, D.A.; Tzeng, E.; Billiar, T.R.; Harris, C.C. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc. Natl. Acad. Sci. USA, 1996, 93(6), 2442-2447.
[http://dx.doi.org/10.1073/pnas.93.6.2442] [PMID: 8637893]
[118]
Zhang, J.; Dawson, V.L.; Dawson, T.M.; Snyder, S.H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science, 1994, 263(5147), 687-689.
[http://dx.doi.org/10.1126/science.8080500] [PMID: 8080500]
[119]
Xu, W.; Liu, L.Z.; Loizidou, M.; Ahmed, M.; Charles, I.G. The role of nitric oxide in cancer. Cell Res., 2002, 12(5-6), 311-320.
[http://dx.doi.org/10.1038/sj.cr.7290133] [PMID: 12528889]
[120]
Li, L.M.; Kilbourn, R.G.; Adams, J.; Fidler, I.J. Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial cells. Cancer Res., 1991, 51(10), 2531-2535.
[PMID: 1902393]
[121]
Lepoivre, M.; Flaman, J.M.; Henry, Y. Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J. Biol. Chem., 1992, 267(32), 22994-23000.
[http://dx.doi.org/10.1016/S0021-9258(18)50046-6] [PMID: 1385411]
[122]
Aranda, E.; López-Pedrera, C.; De La Haba-Rodriguez, J.R.; Rodriguez-Ariza, A. Nitric oxide and cancer: The emerging role of S-nitrosylation. Curr. Mol. Med., 2012, 12(1), 50-67.
[http://dx.doi.org/10.2174/156652412798376099] [PMID: 22082481]
[123]
Singh, S.; Gupta, A.K. Nitric oxide: Role in tumour biology and iNOS/NO-based anticancer therapies. Cancer Chemother. Pharmacol., 2011, 67(6), 1211-1224.
[http://dx.doi.org/10.1007/s00280-011-1654-4] [PMID: 21544630]
[124]
Ignarro, L.J. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol., 1990, 30(1), 535-560.
[http://dx.doi.org/10.1146/annurev.pa.30.040190.002535] [PMID: 2188578]
[125]
Clapp, C.; Thebault, S.; Jeziorski, M.C.; Martínez De La Escalera, G. Peptide hormone regulation of angiogenesis. Physiol. Rev., 2009, 89(4), 1177-1215.
[http://dx.doi.org/10.1152/physrev.00024.2009] [PMID: 19789380]
[126]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. nature, 2000, 407(6801), 249-257.
[127]
Carmeliet, P. Angiogenesis in health and disease. Nat. Med., 2003, 9(6), 653-660.
[http://dx.doi.org/10.1038/nm0603-653] [PMID: 12778163]
[128]
Luttun, A.; Tjwa, M.; Moons, L.; Wu, Y.; Angelillo-Scherrer, A.; Liao, F.; Nagy, J.A.; Hooper, A.; Priller, J.; De Klerck, B.; Compernolle, V.; Daci, E.; Bohlen, P.; Dewerchin, M.; Herbert, J.M.; Fava, R.; Matthys, P.; Carmeliet, G.; Collen, D.; Dvorak, H.F.; Hicklin, D.J.; Carmeliet, P. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med., 2002, 8(8), 831-840.
[http://dx.doi.org/10.1038/nm731] [PMID: 12091877]
[129]
Morbidelli, L.; Donnini, S.; Ziche, M. Therapeutic implications of the nitric oxide pathway in the angiogenesis of tumors and inflammatory-related disorders. Therapeutic Application of Nitric Oxide in Cancer and Inflammatory Disorders; Elsevier, 2019, pp. 65-91.
[http://dx.doi.org/10.1016/B978-0-12-816545-4.00004-9]
[130]
Morbidelli, L.; Donnini, S.; Ziche, M. Role of nitric oxide in the modulation of angiogenesis. Curr. Pharm. Des., 2003, 9(7), 521-530.
[http://dx.doi.org/10.2174/1381612033391405] [PMID: 12570800]
[131]
Pan, J.W.; Zhan, R.Y.; Tong, Y.; Zhou, Y.Q.; Zhang, M. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in association with neovascularization in human primary astrocytoma. J. Zhejiang Univ. Sci. B, 2005, 6(7), 693-698.
[http://dx.doi.org/10.1631/jzus.2005.B0693] [PMID: 15973775]
[132]
Plate, K.H.; Scholz, A.; Dumont, D.J. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol., 2012, 124(6), 763-775.
[http://dx.doi.org/10.1007/s00401-012-1066-5] [PMID: 23143192]
[133]
Vimalraj, S.; Bhuvaneswari, S.; Lakshmikirupa, S.; Jyothsna, G.; Chatterjee, S. Nitric oxide signaling regulates tumor-induced intussusceptive-like angiogenesis. Microvasc. Res., 2018, 119, 47-59.
[http://dx.doi.org/10.1016/j.mvr.2018.04.001] [PMID: 29649432]
[134]
Vong, L.B.; Bui, T.Q.; Tomita, T.; Sakamoto, H.; Hiramatsu, Y.; Nagasaki, Y. Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials, 2018, 167, 143-152.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.023] [PMID: 29571050]
[135]
Yang, C.; Hwang, H.H.; Jeong, S.; Seo, D.; Jeong, Y.; Lee, D.Y.; Lee, K. Inducing angiogenesis with the controlled release of nitric oxide from biodegradable and biocompatible copolymeric nanoparticles. Int. J. Nanomedicine, 2018, 13, 6517-6530.
[http://dx.doi.org/10.2147/IJN.S174989] [PMID: 30410336]
[136]
Dong, R.; Wang, X.; Wang, H.; Liu, Z.; Liu, J.; Saavedra, J.E. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells. Biomed. Pharmacother., 2017, 88, 367-373.
[http://dx.doi.org/10.1016/j.biopha.2017.01.080] [PMID: 28122301]
[137]
Hulin, J-A.; Tommasi, S.; Elliot, D.; Hu, D.G.; Lewis, B.C.; Mangoni, A.A. MiR-193b regulates breast cancer cell migration and vasculogenic mimicry by targeting dimethylarginine dimethylaminohydrolase 1. Sci. Rep., 2017, 7(1), 13996.
[http://dx.doi.org/10.1038/s41598-017-14454-1] [PMID: 29070803]
[138]
Florio, T.; Morini, M.; Villa, V.; Arena, S.; Corsaro, A.; Thellung, S.; Culler, M.D.; Pfeffer, U.; Noonan, D.M.; Schettini, G.; Albini, A. Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology, 2003, 144(4), 1574-1584.
[http://dx.doi.org/10.1210/en.2002-220949] [PMID: 12639942]
[139]
Yin, M.B.; Li, Z.R.; Tóth, K.; Cao, S.; Durrani, F.A.; Hapke, G.; Bhattacharya, A.; Azrak, R.G.; Frank, C.; Rustum, Y.M. Potentiation of irinotecan sensitivity by Se-methylselenocysteine in an in vivo tumor model is associated with downregulation of cyclooxygenase-2, inducible nitric oxide synthase, and hypoxia-inducible factor 1α expression, resulting in reduced angiogenesis. Oncogene, 2006, 25(17), 2509-2519.
[http://dx.doi.org/10.1038/sj.onc.1209073] [PMID: 16518418]
[140]
Sogawa, K.; Numayama-Tsuruta, K.; Ema, M.; Abe, M.; Abe, H.; Fujii-Kuriyama, Y. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. USA, 1998, 95(13), 7368-7373.
[http://dx.doi.org/10.1073/pnas.95.13.7368] [PMID: 9636155]
[141]
Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA, 1990, 87(4), 1620-1624.
[http://dx.doi.org/10.1073/pnas.87.4.1620] [PMID: 2154753]
[142]
Murphy, M.P.; Packer, M.A.; Scarlett, J.L.; Martin, S.W. Peroxynitrite: A biologically significant oxidant. Gen. Pharmacol., 1998, 31(2), 179-186.
[http://dx.doi.org/10.1016/S0306-3623(97)00418-7] [PMID: 9688457]
[143]
Takakura, K.; Beckman, J.S.; MacMillan-Crow, L.A.; Crow, J.P. Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. Arch. Biochem. Biophys., 1999, 369(2), 197-207.
[http://dx.doi.org/10.1006/abbi.1999.1374] [PMID: 10486138]
[144]
Liu, X.; Miller, M.J.; Joshi, M.S.; Thomas, D.D.; Lancaster, J.R. Jr Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc. Natl. Acad. Sci. USA, 1998, 95(5), 2175-2179.
[http://dx.doi.org/10.1073/pnas.95.5.2175] [PMID: 9482858]
[145]
Wink, D.A.; Ford, P.C. Nitric oxide reactions important to biological systems: A survey of some kinetics investigations. Methods, 1995, 7(1), 14-20.
[http://dx.doi.org/10.1006/meth.1995.1003]
[146]
Bedoya, F.J.; Salguero-Aranda, C.; Cahuana, G.M.; Tapia-Limonchi, R.; Soria, B.; Tejedo, J.R. Regulation of pancreatic β-cell survival by nitric oxide: Clinical relevance. Islets, 2012, 4(2), 108-118.
[http://dx.doi.org/10.4161/isl.19822] [PMID: 22614339]
[147]
Saldeen, J.; Tillmar, L.; Karlsson, E.; Welsh, N. Nicotinamide- and caspase-mediated inhibition of poly(ADP-ribose) polymerase are associated with p53-independent cell cycle (G2) arrest and apoptosis. Mol. Cell. Biochem., 2003, 243(1-2), 113-122.
[http://dx.doi.org/10.1023/A:1021651811345] [PMID: 12619896]
[148]
Mora-Castilla, S.; Tejedo, J.R.; Hmadcha, A.; Cahuana, G.M.; Martín, F.; Soria, B.; Bedoya, F.J. Nitric oxide repression of nanog promotes mouse embryonic stem cell differentiation. Cell Death Differ., 2010, 17(6), 1025-1033.
[http://dx.doi.org/10.1038/cdd.2009.204] [PMID: 20075941]
[149]
Blaydes, J.P.; Luciani, M.G.; Pospisilova, S.; Ball, H.M.; Vojtesek, B.; Hupp, T.R. Stoichiometric phosphorylation of human p53 at Ser315 stimulates p53-dependent transcription. J. Biol. Chem., 2001, 276(7), 4699-4708.
[http://dx.doi.org/10.1074/jbc.M003485200] [PMID: 11078726]
[150]
Cahuana, G.M.; Tejedo, J.R.; Jiménez, J.; Ramírez, R.; Sobrino, F.; Bedoya, F.J. Nitric oxide-induced carbonylation of Bcl-2, GAPDH and ANT precedes apoptotic events in insulin-secreting RINm5F cells. Exp. Cell Res., 2004, 293(1), 22-30.
[http://dx.doi.org/10.1016/j.yexcr.2003.10.004] [PMID: 14729054]
[151]
Allagnat, F.; Cunha, D.; Moore, F.; Vanderwinden, J.M.; Eizirik, D.L.; Cardozo, A.K. Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to β-cell apoptosis. Cell Death Differ., 2011, 18(2), 328-337.
[http://dx.doi.org/10.1038/cdd.2010.105] [PMID: 20798690]
[152]
Hogg, M.E.; Varu, V.N.; Vavra, A.K.; Popowich, D.A.; Banerjee, M.N.; Martinez, J.; Jiang, Q.; Saavedra, J.E.; Keefer, L.K.; Kibbe, M.R. Effect of nitric oxide on neointimal hyperplasia based on sex and hormone status. Free Radic. Biol. Med., 2011, 50(9), 1065-1074.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.016] [PMID: 21256959]
[153]
Kibbe, M.R.; Li, J.; Nie, S.; Watkins, S.C.; Lizonova, A.; Kovesdi, I.; Simmons, R.L.; Billiar, T.R.; Tzeng, E. Inducible nitric oxide synthase (iNOS) expression upregulates p21 and inhibits vascular smooth muscle cell proliferation through p42/44 mitogen-activated protein kinase activation and independent of p53 and cyclic guanosine monophosphate. J. Vasc. Surg., 2000, 31(6), 1214-1228.
[http://dx.doi.org/10.1067/mva.2000.105006] [PMID: 10842159]
[154]
Wang, S.; Zhang, J.; Theel, S.; Barb, J.J.; Munson, P.J.; Danner, R.L. Nitric oxide activation of Erk1/2 regulates the stability and translation of mRNA transcripts containing CU-rich elements. Nucleic Acids Res., 2006, 34(10), 3044-3056.
[http://dx.doi.org/10.1093/nar/gkl386] [PMID: 16757573]
[155]
Tejedo, J.R.; Tapia-Limonchi, R.; Mora-Castilla, S.; Cahuana, G.M.; Hmadcha, A.; Martin, F.; Bedoya, F.J.; Soria, B. Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival. Cell Death Dis., 2010, 1(10)e80
[http://dx.doi.org/10.1038/cddis.2010.57] [PMID: 21368853]
[156]
Kurohane Kaneko, Y.; Ishikawa, T. Dual role of nitric oxide in pancreatic β-cells. J. Pharmacol. Sci., 2013, 123(4), 295-300.
[http://dx.doi.org/10.1254/jphs.13R10CP] [PMID: 24285083]
[157]
Francis, S.H.; Busch, J.L.; Corbin, J.D.; Sibley, D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev., 2010, 62(3), 525-563.
[http://dx.doi.org/10.1124/pr.110.002907] [PMID: 20716671]
[158]
Hess, D.T.; Stamler, J.S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem., 2012, 287(7), 4411-4418.
[http://dx.doi.org/10.1074/jbc.R111.285742] [PMID: 22147701]
[159]
PeÑarando, J.; Aranda, E. RodrÍguez-Ariza, A. Immunomodulatory roles of nitric oxide in cancer: Tumor microenvironment says “NO” to antitumor immune response. Transl. Res., 2019, 210, 99-108.
[http://dx.doi.org/10.1016/j.trsl.2019.03.003] [PMID: 30953610]
[160]
Tórtora, V.; Quijano, C.; Freeman, B.; Radi, R.; Castro, L. Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: Mechanisms and relative contributions to aconitase inactivation. Free Radic. Biol. Med., 2007, 42(7), 1075-1088.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.007] [PMID: 17349934]
[161]
Grune, T.; Blasig, I.E.; Sitte, N.; Roloff, B.; Haseloff, R.; Davies, K.J. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J. Biol. Chem., 1998, 273(18), 10857-10862.
[http://dx.doi.org/10.1074/jbc.273.18.10857] [PMID: 9556559]
[162]
Grune, T.; Klotz, L.O.; Gieche, J.; Rudeck, M.; Sies, H. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite. Free Radic. Biol. Med., 2001, 30(11), 1243-1253.
[http://dx.doi.org/10.1016/S0891-5849(01)00515-9] [PMID: 11368922]
[163]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(Pt 2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[164]
Erusalimsky, J.D.; Moncada, S. Nitric oxide and mitochondrial signaling: From physiology to pathophysiology. Arterioscler. Thromb. Vasc. Biol., 2007, 27(12), 2524-2531.
[http://dx.doi.org/10.1161/ATVBAHA.107.151167] [PMID: 17885213]
[165]
Csala, M.; Kereszturi, É.; Mandl, J.; Bánhegyi, G. The endoplasmic reticulum as the extracellular space inside the cell: Role in protein folding and glycosylation. Antioxid. Redox Signal., 2012, 16(10), 1100-1108.
[http://dx.doi.org/10.1089/ars.2011.4227] [PMID: 22149109]
[166]
Oyadomari, S.; Takeda, K.; Takiguchi, M.; Gotoh, T.; Matsumoto, M.; Wada, I.; Akira, S.; Araki, E.; Mori, M. Nitric oxide-induced apoptosis in pancreatic β cells is mediated by the endoplasmic reticulum stress pathway. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10845-10850.
[http://dx.doi.org/10.1073/pnas.191207498] [PMID: 11526215]
[167]
Gotoh, T.; Oyadomari, S.; Mori, K.; Mori, M. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J. Biol. Chem., 2002, 277(14), 12343-12350.
[http://dx.doi.org/10.1074/jbc.M107988200] [PMID: 11805088]
[168]
Velayutham, M.; Zweier, J.L. Nitric oxide signaling in biology. Messenger (Los Angel.), 2013, 2(1), 1-18.
[http://dx.doi.org/10.1166/msr.2013.1018]
[169]
Lee, T.I.; Young, R.A. Transcriptional regulation and its misregulation in disease. Cell, 2013, 152(6), 1237-1251.
[http://dx.doi.org/10.1016/j.cell.2013.02.014] [PMID: 23498934]
[170]
SenBanerjee, S.; Lin, Z.; Atkins, G.B.; Greif, D.M.; Rao, R.M.; Kumar, A.; Feinberg, M.W.; Chen, Z.; Simon, D.I.; Luscinskas, F.W.; Michel, T.M.; Gimbrone, M.A., Jr; García-Cardeña, G.; Jain, M.K. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med., 2004, 199(10), 1305-1315.
[http://dx.doi.org/10.1084/jem.20031132] [PMID: 15136591]
[171]
Zhou, G.; Hamik, A.; Nayak, L.; Tian, H.; Shi, H.; Lu, Y.; Sharma, N.; Liao, X.; Hale, A.; Boerboom, L.; Feaver, R.E.; Gao, H.; Desai, A.; Schmaier, A.; Gerson, S.L.; Wang, Y.; Atkins, G.B.; Blackman, B.R.; Simon, D.I.; Jain, M.K. Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. J. Clin. Invest., 2012, 122(12), 4727-4731.
[http://dx.doi.org/10.1172/JCI66056] [PMID: 23160196]
[172]
Hamik, A.; Jain, M.K. MiRrored regulation of KLF2 and KLF4. Arterioscler. Thromb. Vasc. Biol., 2012, 32(4), 839-840.
[http://dx.doi.org/10.1161/ATVBAHA.112.245563] [PMID: 22423032]
[173]
Ting, S.B.; Caddy, J.; Hislop, N.; Wilanowski, T.; Auden, A.; Zhao, L.L.; Ellis, S.; Kaur, P.; Uchida, Y.; Holleran, W.M.; Elias, P.M.; Cunningham, J.M.; Jane, S.M. A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science, 2005, 308(5720), 411-413.
[http://dx.doi.org/10.1126/science.1107511] [PMID: 15831758]
[174]
Ting, S.B.; Wilanowski, T.; Cerruti, L.; Zhao, L.L.; Cunningham, J.M.; Jane, S.M. The identification and characterization of human Sister-of-Mammalian Grainyhead (SOM) expands the grainyhead-like family of developmental transcription factors. Biochem. J., 2003, 370(Pt 3), 953-962.
[http://dx.doi.org/10.1042/bj20021476] [PMID: 12549979]
[175]
Lukosz, M.; Mlynek, A.; Czypiorski, P.; Altschmied, J.; Haendeler, J. The transcription factor Grainyhead like 3 (GRHL3) affects endothelial cell apoptosis and migration in a NO-dependent manner. Biochem. Biophys. Res. Commun., 2011, 412(4), 648-653.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.018] [PMID: 21856281]
[176]
Kohlgrüber, S.; Upadhye, A.; Dyballa-Rukes, N.; McNamara, C.A.; Altschmied, J. Regulation of transcription factors by reactive oxygen species and nitric oxide in vascular physiology and pathology. Antioxid. Redox Signal., 2017, 26(13), 679-699.
[http://dx.doi.org/10.1089/ars.2016.6946] [PMID: 27841660]
[177]
Haendeler, J.; Mlynek, A.; Büchner, N.; Lukosz, M.; Graf, M.; Guettler, C.; Jakob, S.; Farrokh, S.; Kunze, K.; Goy, C.; Guardiola-Serrano, F.; Schaal, H.; Cortese-Krott, M.; Deenen, R.; Köhrer, K.; Winkler, C.; Altschmied, J. Two isoforms of Sister-Of-Mammalian Grainyhead have opposing functions in endothelial cells and in vivo. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1639-1646.
[http://dx.doi.org/10.1161/ATVBAHA.113.301428] [PMID: 23685552]
[178]
Fulton, D.; Gratton, J-P.; McCabe, T.J.; Fontana, J.; Fujio, Y.; Walsh, K.; Franke, T.F.; Papapetropoulos, A.; Sessa, W.C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 1999, 399(6736), 597-601.
[http://dx.doi.org/10.1038/21218] [PMID: 10376602]
[179]
Hishikawa, K.; Nakaki, T.; Marumo, T.; Suzuki, H.; Kato, R.; Saruta, T. Up-regulation of nitric oxide synthase by estradiol in human aortic endothelial cells. FEBS Lett., 1995, 360(3), 291-293.
[http://dx.doi.org/10.1016/0014-5793(95)00124-R] [PMID: 7533729]
[180]
MacRitchie, A.N.; Jun, S.S.; Chen, Z.; German, Z.; Yuhanna, I.S.; Sherman, T.S.; Shaul, P.W. Estrogen upregulates endothelial nitric oxide synthase gene expression in fetal pulmonary artery endothelium. Circ. Res., 1997, 81(3), 355-362.
[http://dx.doi.org/10.1161/01.RES.81.3.355] [PMID: 9285637]
[181]
Prossnitz, E.R.; Arterburn, J.B.; Smith, H.O.; Oprea, T.I.; Sklar, L.A.; Hathaway, H.J. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu. Rev. Physiol., 2008, 70, 165-190.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100518] [PMID: 18271749]
[182]
Dehaini, H.; Fardoun, M.; Abou-Saleh, H.; El-Yazbi, A.; Eid, A.A.; Eid, A.H. Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul. Pharmacol., 2018, 111, 15-21.
[http://dx.doi.org/10.1016/j.vph.2018.09.001] [PMID: 30227233]
[183]
Wehbe, Z.; Nasser, S.A.; El-Yazbi, A.; Nasreddine, S.; Eid, A.H. Estrogen and bisphenol A in hypertension. Curr. Hypertens. Rep., 2020, 22(3), 23.
[http://dx.doi.org/10.1007/s11906-020-1022-z] [PMID: 32114652]
[184]
Li, L.; Haynes, M.P.; Bender, J.R. Plasma membrane localization and function of the estrogen receptor α variant (ER46) in human endothelial cells. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4807-4812.
[http://dx.doi.org/10.1073/pnas.0831079100] [PMID: 12682286]
[185]
Figtree, G.A.; McDonald, D.; Watkins, H.; Channon, K.M. Truncated estrogen receptor α 46-kDa isoform in human endothelial cells: Relationship to acute activation of nitric oxide synthase. Circulation, 2003, 107(1), 120-126.
[http://dx.doi.org/10.1161/01.CIR.0000043805.11780.F5] [PMID: 12515753]
[186]
Chevalier, N.; Hinault, C.; Clavel, S.; Paul-Bellon, R.; Fenichel, P. GPER and testicular germ cell cancer. Front. Endocrinol. (Lausanne), 2021, 11600404
[http://dx.doi.org/10.3389/fendo.2020.600404] [PMID: 33574796]
[187]
Pupo, M.; Pisano, A.; Lappano, R.; Santolla, M.F.; De Francesco, E.M.; Abonante, S.; Rosano, C.; Maggiolini, M. Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ. Health Perspect., 2012, 120(8), 1177-1182.
[http://dx.doi.org/10.1289/ehp.1104526] [PMID: 22552965]
[188]
Gohar, E.Y. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am. J. Physiol. Renal Physiol., 2020, 319(4), F612-F617.
[http://dx.doi.org/10.1152/ajprenal.00045.2020] [PMID: 32893662]
[189]
Meyer, M.R.; Fredette, N.C.; Howard, T.A.; Hu, C.; Ramesh, C.; Daniel, C.; Amann, K.; Arterburn, J.B.; Barton, M.; Prossnitz, E.R. G protein-coupled estrogen receptor protects from atherosclerosis. Sci. Rep., 2014, 4, 7564.
[http://dx.doi.org/10.1038/srep07564] [PMID: 25532911]
[190]
Rosano, C.; Lappano, R.; Santolla, M.F.; Ponassi, M.; Donadini, A.; Maggiolini, M. Recent advances in the rationale design of GPER ligands. Curr. Med. Chem., 2012, 19(36), 6199-6206.
[http://dx.doi.org/10.2174/0929867311209066199] [PMID: 23116143]
[191]
Giguère, V.; Yang, N.; Segui, P.; Evans, R.M. Identification of a new class of steroid hormone receptors. Nature, 1988, 331(6151), 91-94.
[http://dx.doi.org/10.1038/331091a0] [PMID: 3267207]
[192]
Mukherjee, T.K.; Malik, P.; Hoidal, J.R. The emerging role of estrogen related receptorα in complications of non-small cell lung cancers. Oncol. Lett., 2021, 21(4), 258.
[http://dx.doi.org/10.3892/ol.2021.12519] [PMID: 33664821]
[193]
Tak, P.P.; Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[194]
Park, S.W.; Huq, M.D.; Hu, X.; Wei, L.N. Tyrosine nitration on p65: A novel mechanism to rapidly inactivate nuclear factor-kappaB. Mol. Cell. Proteomics, 2005, 4(3), 300-309.
[http://dx.doi.org/10.1074/mcp.M400195-MCP200] [PMID: 15657065]
[195]
Hierholzer, C.; Harbrecht, B.; Menezes, J.M.; Kane, J.; MacMicking, J.; Nathan, C.F.; Peitzman, A.B.; Billiar, T.R.; Tweardy, D.J. Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J. Exp. Med., 1998, 187(6), 917-928.
[http://dx.doi.org/10.1084/jem.187.6.917] [PMID: 9500794]
[196]
Spiecker, M.; Peng, H-B.; Liao, J.K. Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of Ikappa Balpha. J. Biol. Chem., 1997, 272(49), 30969-30974.
[http://dx.doi.org/10.1074/jbc.272.49.30969] [PMID: 9388244]
[197]
Matthews, J.R.; Botting, C.H.; Panico, M.; Morris, H.R.; Hay, R.T. Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res., 1996, 24(12), 2236-2242.
[http://dx.doi.org/10.1093/nar/24.12.2236] [PMID: 8710491]
[198]
Bogdan, C. Nitric oxide and the regulation of gene expression. Trends Cell Biol., 2001, 11(2), 66-75.
[http://dx.doi.org/10.1016/S0962-8924(00)01900-0] [PMID: 11166214]
[199]
Haby, C.; Lisovoski, F.; Aunis, D.; Zwiller, J. Stimulation of the cyclic GMP pathway by NO induces expression of the immediate early genes c-fos and junB in PC12 cells. J. Neurochem., 1994, 62(2), 496-501.
[http://dx.doi.org/10.1046/j.1471-4159.1994.62020496.x] [PMID: 8294911]
[200]
Peunova, N.; Enikolopov, G. Amplification of calcium-induced gene transcription by nitric oxide in neuronal cells. Nature, 1993, 364(6436), 450-453.
[http://dx.doi.org/10.1038/364450a0] [PMID: 8392663]
[201]
Dhakshinamoorthy, S.; Sridharan, S.R.; Li, L.; Ng, P.Y.; Boxer, L.M.; Porter, A.G. Protein/DNA arrays identify nitric oxide-regulated cis-element and trans-factor activities some of which govern neuroblastoma cell viability. Nucleic Acids Res., 2007, 35(16), 5439-5451.
[http://dx.doi.org/10.1093/nar/gkm594] [PMID: 17702766]
[202]
Tamir, S.; Burney, S.; Tannenbaum, S.R. DNA damage by nitric oxide. Chem. Res. Toxicol., 1996, 9(5), 821-827.
[http://dx.doi.org/10.1021/tx9600311] [PMID: 8828916]
[203]
Jaiswal, M.; LaRusso, N.F.; Burgart, L.J.; Gores, G.J. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res., 2000, 60(1), 184-190.
[PMID: 10646872]
[204]
Gurr, J-R.; Yih, L-H.; Samikkannu, T.; Bau, D.T.; Lin, S.Y.; Jan, K.Y. Nitric oxide production by arsenite. Mutat. Res., 2003, 533(1-2), 173-182.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.08.024] [PMID: 14643419]
[205]
Hickok, J.R.; Vasudevan, D.; Thomas, D.D. Nitric oxide modifies histone methylation patterns by inhibiting jumonji C domain containing demethylases. Free Radic. Biol. Med., 2012, (53), S181.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.499]
[206]
Demircan, B.; Yucel, B.; Radosevich, J.A. DNA methylation in human breast cancer cell lines adapted to high nitric oxide. in vivo, 2020, 34(1), 169-176.
[http://dx.doi.org/10.21873/invivo.11758] [PMID: 31882476]
[207]
Vesper, B.J.; Onul, A.; Haines, G.K., III; Tarjan, G.; Xue, J.; Elseth, K.M.; Aydogan, B.; Altman, M.B.; Roeske, J.C.; Paradise, W.A.; De Vitto, H.; Radosevich, J.A.; Part, I. Molecular and cellular characterization of high nitric oxide-adapted human breast adenocarcinoma cell lines. Tumour Biol., 2013, 34(1), 203-214.
[http://dx.doi.org/10.1007/s13277-012-0530-0] [PMID: 23238815]
[208]
Garrido, P.; Shalaby, A.; Walsh, E.M.; Keane, N.; Webber, M.; Keane, M.M.; Sullivan, F.J.; Kerin, M.J.; Callagy, G.; Ryan, A.E.; Glynn, S.A. Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget, 2017, 8(46), 80568-80588.
[http://dx.doi.org/10.18632/oncotarget.19631] [PMID: 29113326]
[209]
An, N.; Shi, Y.; Ye, P.; Pan, Z.; Long, X. Association between MGMT promoter methylation and breast cancer: A Meta-analysis. Cell. Physiol. Biochem., 2017, 42(6), 2430-2440.
[http://dx.doi.org/10.1159/000480196] [PMID: 28848211]
[210]
Fan, J.; Yang, X.; Wang, W.; Wood, W.H., III; Becker, K.G.; Gorospe, M. Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10611-10616.
[http://dx.doi.org/10.1073/pnas.162212399] [PMID: 12149460]
[211]
Kawai, T.; Fan, J.; Mazan-Mamczarz, K.; Gorospe, M. Global mRNA stabilization preferentially linked to translational repression during the endoplasmic reticulum stress response. Mol. Cell. Biol., 2004, 24(15), 6773-6787.
[http://dx.doi.org/10.1128/MCB.24.15.6773-6787.2004] [PMID: 15254244]
[212]
Ryu, S-D.; Kang, J-H.; Yi, H-G.; Nahm, C.H.; Park, C.S. Hepatic flavin-containing monooxygenase activity attenuated by cGMP-independent nitric oxide-mediated mRNA destabilization. Biochem. Biophys. Res. Commun., 2004, 324(1), 409-416.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.065] [PMID: 15465034]
[213]
Ma, P.; Cui, X.; Wang, S.; Zhang, J.; Nishanian, E.V.; Wang, W.; Wesley, R.A.; Danner, R.L. Nitric oxide post-transcriptionally up-regulates LPS-induced IL-8 expression through p38 MAPK activation. J. Leukoc. Biol., 2004, 76(1), 278-287.
[http://dx.doi.org/10.1189/jlb.1203653] [PMID: 15178710]
[214]
Bouton, C.; Demple, B. Nitric oxide-inducible expression of heme oxygenase-1 in human cells. Translation-independent stabilization of the mRNA and evidence for direct action of nitric oxide. J. Biol. Chem., 2000, 275(42), 32688-32693.
[http://dx.doi.org/10.1074/jbc.275.42.32688] [PMID: 11032845]
[215]
Akool, S.; Kleinert, H.; Hamada, F.M.; Abdelwahab, M.H.; Förstermann, U.; Pfeilschifter, J.; Eberhardt, W. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol. Cell. Biol., 2003, 23(14), 4901-4916.
[http://dx.doi.org/10.1128/MCB.23.14.4901-4916.2003] [PMID: 12832476]
[216]
Abdelaziz, N.; Colombo, F.; Mercier, I.; Calderone, A. Nitric oxide attenuates the expression of transforming growth factor-β(3) mRNA in rat cardiac fibroblasts via destabilization. Hypertension, 2001, 38(2), 261-266.
[http://dx.doi.org/10.1161/01.HYP.38.2.261] [PMID: 11509487]
[217]
Cui, X.; Zhang, J.; Ma, P.; Myers, D.E.; Goldberg, I.G.; Sittler, K.J.; Barb, J.J.; Munson, P.J. Cintron, Adel.P.; McCoy, J.P.; Wang, S.; Danner, R.L. cGMP-independent nitric oxide signaling and regulation of the cell cycle. BMC Genomics, 2005, 6(1), 151.
[http://dx.doi.org/10.1186/1471-2164-6-151] [PMID: 16269079]
[218]
Kühn, L.C. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics, 2015, 7(2), 232-243.
[http://dx.doi.org/10.1039/C4MT00164H] [PMID: 25306858]
[219]
Binder, R.; Horowitz, J.A.; Basilion, J.P.; Koeller, D.M.; Klausner, R.D.; Harford, J.B. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3¢ UTR and does not involve poly(A) tail shortening. EMBO J., 1994, 13(8), 1969-1980.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06466.x] [PMID: 7909515]
[220]
Pantopoulos, K.; Weiss, G.; Hentze, M.W. Nitric oxide and the post-transcriptional control of cellular iron traffic. Trends Cell Biol., 1994, 4(3), 82-86.
[http://dx.doi.org/10.1016/0962-8924(94)90179-1] [PMID: 14731597]
[221]
Pantopoulos, K.; Hentze, M.W. Nitric oxide signaling to iron-regulatory protein: Direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc. Natl. Acad. Sci. USA, 1995, 92(5), 1267-1271.
[http://dx.doi.org/10.1073/pnas.92.5.1267] [PMID: 7533289]
[222]
Hickok, J.R.; Sahni, S.; Mikhed, Y.; Bonini, M.G.; Thomas, D.D. Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression: Role of chelatable iron. J. Biol. Chem., 2011, 286(48), 41413-41424.
[http://dx.doi.org/10.1074/jbc.M111.287052] [PMID: 21976667]
[223]
Ando, T.; Ishiguro, H.; Kuwabara, Y.; Kimura, M.; Mitsui, A.; Kurehara, H.; Sugito, N.; Tomoda, K.; Mori, R.; Takashima, N.; Ogawa, R.; Fujii, Y. Expression of ACP6 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol. Rep., 2006, 15(6), 1551-1555.
[http://dx.doi.org/10.3892/or.15.6.1551] [PMID: 16685394]
[224]
van Belzen, N.; Dinjens, W.N.; Diesveld, M.P.; Groen, N.A.; van der Made, A.C.; Nozawa, Y.; Vlietstra, R.; Trapman, J.; Bosman, F.T. A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms. Lab. Invest., 1997, 77(1), 85-92.
[PMID: 9251681]
[225]
Doi, K.; Akaike, T.; Horie, H.; Noguchi, Y.; Fujii, S.; Beppu, T.; Ogawa, M.; Maeda, H. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer, 1996, 77(8)(Suppl.), 1598-1604.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19960415)77:8<1598:AID-CNCR27>3.0.CO;2-U] [PMID: 8608550]
[226]
Pieper, G.M.; Halligan, N.L.; Hilton, G.; Konorev, E.A.; Felix, C.C.; Roza, A.M.; Adams, M.B.; Griffith, O.W. Non-heme iron protein: A potential target of nitric oxide in acute cardiac allograft rejection. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3125-3130.
[http://dx.doi.org/10.1073/pnas.0636938100] [PMID: 12624190]
[227]
Caneba, C.A.; Yang, L.; Baddour, J.; Curtis, R.; Win, J.; Hartig, S.; Marini, J.; Nagrath, D. Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells. Cell Death Dis., 2014, 5(6)e1302
[http://dx.doi.org/10.1038/cddis.2014.264] [PMID: 24967964]
[228]
Li, L.; Zhu, L.; Hao, B.; Gao, W.; Wang, Q.; Li, K.; Wang, M.; Huang, M.; Liu, Z.; Yang, Q.; Li, X.; Zhong, Z.; Huang, W.; Xiao, G.; Xu, Y.; Yao, K.; Liu, Q. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget, 2017, 8(20), 33047-33063.
[http://dx.doi.org/10.18632/oncotarget.16523] [PMID: 28380434]
[229]
Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol., 2015, 6, 334-343.
[http://dx.doi.org/10.1016/j.redox.2015.08.009] [PMID: 26335399]
[230]
Chung, P.; Cook, T.; Liu, K.; Vodovotz, Y.; Zamora, R.; Finkelstein, S.; Billiar, T.; Blumberg, D. Overexpression of the human inducible nitric oxide synthase gene enhances radiation-induced apoptosis in colorectal cancer cells via a caspase-dependent mechanism. Nitric Oxide, 2003, 8(2), 119-126.
[http://dx.doi.org/10.1016/S1089-8603(02)00147-7] [PMID: 12620375]
[231]
Zhang, W.; He, X-J.; Ma, Y-Y.; Wang, H.J.; Xia, Y.J.; Zhao, Z.S.; Ye, Z.Y.; Tao, H.Q. Inducible nitric oxide synthase expression correlates with angiogenesis, lymphangiogenesis, and poor prognosis in gastric cancer patients. Hum. Pathol., 2011, 42(9), 1275-1282.
[http://dx.doi.org/10.1016/j.humpath.2010.09.020] [PMID: 21333324]
[232]
Heinrich, T.A.; da Silva, R.S.; Miranda, K.M.; Switzer, C.H.; Wink, D.A.; Fukuto, J.M. Biological nitric oxide signalling: Chemistry and terminology. Br. J. Pharmacol., 2013, 169(7), 1417-1429.
[http://dx.doi.org/10.1111/bph.12217] [PMID: 23617570]
[233]
Carpenter, A.W.; Schoenfisch, M.H. Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev., 2012, 41(10), 3742-3752.
[http://dx.doi.org/10.1039/c2cs15273h] [PMID: 22362384]
[234]
Thomas, D.D.; Espey, M.G.; Ridnour, L.A.; Hofseth, L.J.; Mancardi, D.; Harris, C.C.; Wink, D.A. Hypoxic inducible factor 1α, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc. Natl. Acad. Sci. USA, 2004, 101(24), 8894-8899.
[http://dx.doi.org/10.1073/pnas.0400453101] [PMID: 15178764]
[235]
Pervin, S.; Singh, R.; Hernandez, E.; Wu, G.; Chaudhuri, G. Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: Involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res., 2007, 67(1), 289-299.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4623] [PMID: 17210710]
[236]
Molon, B.; Ugel, S.; Del Pozzo, F.; Soldani, C.; Zilio, S.; Avella, D.; De Palma, A.; Mauri, P.; Monegal, A.; Rescigno, M.; Savino, B.; Colombo, P.; Jonjic, N.; Pecanic, S.; Lazzarato, L.; Fruttero, R.; Gasco, A.; Bronte, V.; Viola, A. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med., 2011, 208(10), 1949-1962.
[http://dx.doi.org/10.1084/jem.20101956] [PMID: 21930770]
[237]
Hess, D.T.; Matsumoto, A.; Kim, S-O.; Marshall, H.E.; Stamler, J.S. Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell Biol., 2005, 6(2), 150-166.
[http://dx.doi.org/10.1038/nrm1569] [PMID: 15688001]
[238]
Glynn, S.A.; Boersma, B.J.; Dorsey, T.H.; Yi, M.; Yfantis, H.G.; Ridnour, L.A.; Martin, D.N.; Switzer, C.H.; Hudson, R.S.; Wink, D.A.; Lee, D.H.; Stephens, R.M.; Ambs, S. Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J. Clin. Invest., 2010, 120(11), 3843-3854.
[http://dx.doi.org/10.1172/JCI42059] [PMID: 20978357]
[239]
Brito, C.; Naviliat, M.; Tiscornia, A.C.; Vuillier, F.; Gualco, G.; Dighiero, G.; Radi, R.; Cayota, A.M. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J. Immunol., 1999, 162(6), 3356-3366.
[PMID: 10092790]
[240]
Waldron, T.J.; Quatromoni, J.G.; Karakasheva, T.A.; Singhal, S.; Rustgi, A.K. Myeloid derived suppressor cells: Targets for therapy. OncoImmunology, 2013, 2(4)e24117
[http://dx.doi.org/10.4161/onci.24117] [PMID: 23734336]
[241]
Sonveaux, P.; Brouet, A.; Havaux, X.; Grégoire, V.; Dessy, C.; Balligand, J.L.; Feron, O. Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: Implications for tumor radiotherapy. Cancer Res., 2003, 63(5), 1012-1019.
[PMID: 12615716]
[242]
Sato, K.; Ozaki, K.; Oh, I.; Meguro, A.; Hatanaka, K.; Nagai, T.; Muroi, K.; Ozawa, K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 2007, 109(1), 228-234.
[http://dx.doi.org/10.1182/blood-2006-02-002246] [PMID: 16985180]
[243]
Abdi, R.; Fiorina, P.; Adra, C.N.; Atkinson, M.; Sayegh, M.H. Immunomodulation by mesenchymal stem cells: A potential therapeutic strategy for type 1 diabetes. Diabetes, 2008, 57(7), 1759-1767.
[http://dx.doi.org/10.2337/db08-0180] [PMID: 18586907]
[244]
Carretero, J.; Obrador, E.; Esteve, J.M.; Ortega, A.; Pellicer, J.A.; Sempere, F.V.; Estrela, J.M. Tumoricidal activity of endothelial cells. Inhibition of endothelial nitric oxide production abrogates tumor cytotoxicity induced by hepatic sinusoidal endothelium in response to B16 melanoma adhesion in vitro. J. Biol. Chem., 2001, 276(28), 25775-25782.
[http://dx.doi.org/10.1074/jbc.M101148200] [PMID: 11313348]
[245]
Arif, M.; Vedamurthy, B.M.; Choudhari, R.; Ostwal, Y.B.; Mantelingu, K.; Kodaganur, G.S.; Kundu, T.K. Nitric oxide-mediated histone hyperacetylation in oral cancer: Target for a water-soluble HAT inhibitor, CTK7A. Chem. Biol., 2010, 17(8), 903-913.
[http://dx.doi.org/10.1016/j.chembiol.2010.06.014] [PMID: 20797619]
[246]
Angulo, I.; Rullas, J.; Campillo, J.A.; Obregón, E.; Heath, A.; Howard, M.; Muñoz-Fernández, M.A.; Subiza, J.L. Early myeloid cells are high producers of nitric oxide upon CD40 plus IFN-γ stimulation through a mechanism dependent on endogenous TNF-α and IL-1α. Eur. J. Immunol., 2000, 30(5), 1263-1271.
[http://dx.doi.org/10.1002/(SICI)1521-4141(200005)30:5<1263:AID-IMMU1263>3.0.CO;2-5] [PMID: 10820371]
[247]
Jaiswal, M.; LaRusso, N.F.; Shapiro, R.A.; Billiar, T.R.; Gores, G.J. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology, 2001, 120(1), 190-199.
[http://dx.doi.org/10.1053/gast.2001.20875] [PMID: 11208728]
[248]
Holian, O.; Wahid, S.; Atten, M.J.; Attar, B.M. Inhibition of gastric cancer cell proliferation by resveratrol: Role of nitric oxide. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282(5), G809-G816.
[http://dx.doi.org/10.1152/ajpgi.00193.2001] [PMID: 11960777]
[249]
Thomsen, L.L.; Lawton, F.G.; Knowles, R.G.; Beesley, J.E.; Riveros-Moreno, V.; Moncada, S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res., 1994, 54(5), 1352-1354.
[PMID: 7509718]
[250]
Hofseth, L.J.; Saito, S.; Hussain, S.P.; Espey, M.G.; Miranda, K.M.; Araki, Y.; Jhappan, C.; Higashimoto, Y.; He, P.; Linke, S.P.; Quezado, M.M.; Zurer, I.; Rotter, V.; Wink, D.A.; Appella, E.; Harris, C.C. Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc. Natl. Acad. Sci. USA, 2003, 100(1), 143-148.
[http://dx.doi.org/10.1073/pnas.0237083100] [PMID: 12518062]
[251]
Nath, N.; Kashfi, K.; Chen, J.; Rigas, B. Nitric oxide-donating aspirin inhibits β-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear β-catenin-TCF association. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12584-12589.
[http://dx.doi.org/10.1073/pnas.2134840100] [PMID: 14566053]
[252]
Niziolek, M.; Korytowski, W.; Girotti, A.W. Nitric oxide-induced resistance to lethal photooxidative damage in a breast tumor cell line. Free Radic. Biol. Med., 2006, 40(8), 1323-1331.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.11.022] [PMID: 16631522]
[253]
Stevens, E.V.; Carpenter, A.W.; Shin, J.H.; Liu, J.; Der, C.J.; Schoenfisch, M.H. Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol. Pharm., 2010, 7(3), 775-785.
[http://dx.doi.org/10.1021/mp9002865] [PMID: 20205473]
[254]
Bingisser, R.M.; Tilbrook, P.A.; Holt, P.G.; Kees, U.R. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol., 1998, 160(12), 5729-5734.
[PMID: 9637481]
[255]
Yim, C-Y.; Bastian, N.R.; Smith, J.C.; Hibbs, J.B., Jr; Samlowski, W.E. Macrophage nitric oxide synthesis delays progression of ultraviolet light-induced murine skin cancers. Cancer Res., 1993, 53(22), 5507-5511.
[PMID: 8221691]
[256]
Burdelya, L.; Kujawski, M.; Niu, G.; Zhong, B.; Wang, T.; Zhang, S.; Kortylewski, M.; Shain, K.; Kay, H.; Djeu, J.; Dalton, W.; Pardoll, D.; Wei, S.; Yu, H. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J. Immunol., 2005, 174(7), 3925-3931.
[http://dx.doi.org/10.4049/jimmunol.174.7.3925] [PMID: 15778348]
[257]
Rao, C.V.; Reddy, B.S.; Steele, V.E.; Wang, C.X.; Liu, X.; Ouyang, N.; Patlolla, J.M.; Simi, B.; Kopelovich, L.; Rigas, B. Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: Effects on molecular targets. Mol. Cancer Ther., 2006, 5(6), 1530-1538.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0061] [PMID: 16818512]
[258]
Vakkala, M.; Kahlos, K.; Lakari, E.; Pääkkö, P.; Kinnula, V.; Soini, Y. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin. Cancer Res., 2000, 6(6), 2408-2416.
[PMID: 10873093]
[259]
Prueitt, R.L.; Boersma, B.J.; Howe, T.M.; Goodman, J.E.; Thomas, D.D.; Ying, L.; Pfiester, C.M.; Yfantis, H.G.; Cottrell, J.R.; Lee, D.H.; Remaley, A.T.; Hofseth, L.J.; Wink, D.A.; Ambs, S. Inflammation and IGF-I activate the Akt pathway in breast cancer. Int. J. Cancer, 2007, 120(4), 796-805.
[http://dx.doi.org/10.1002/ijc.22336] [PMID: 17096325]
[260]
Uotila, P.; Valve, E.; Martikainen, P.; Nevalainen, M.; Nurmi, M.; Härkönen, P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol. Res., 2001, 29(1), 23-28.
[http://dx.doi.org/10.1007/s002400000148] [PMID: 11310211]
[261]
Alimoradi, H.; Greish, K.; Gamble, A.B.; Giles, G.I. Controlled delivery of nitric oxide for cancer therapy. Pharm. Nanotechnol., 2019, 7(4), 279-303.
[http://dx.doi.org/10.2174/2211738507666190429111306] [PMID: 31595847]
[262]
Huang, J.; Tatsumi, T.; Pizzoferrato, E.; Vujanovic, N.; Storkus, W.J. Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation. Cancer Res., 2005, 65(18), 8461-8470.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0654] [PMID: 16166326]
[263]
Groh, V.; Wu, J.; Yee, C.; Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 2002, 419(6908), 734-738.
[http://dx.doi.org/10.1038/nature01112] [PMID: 12384702]
[264]
Siemens, D.R.; Hu, N.; Sheikhi, A.K.; Chung, E.; Frederiksen, L.J.; Pross, H.; Graham, C.H. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: Role of nitric oxide. Cancer Res., 2008, 68(12), 4746-4753.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0054] [PMID: 18559521]
[265]
Obeid, M.; Tesniere, A.; Panaretakis, T.; Tufi, R.; Joza, N.; van Endert, P.; Ghiringhelli, F.; Apetoh, L.; Chaput, N.; Flament, C.; Ullrich, E.; de Botton, S.; Zitvogel, L.; Kroemer, G. Ecto-calreticulin in immunogenic chemotherapy. Immunol. Rev., 2007, 220(1), 22-34.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00567.x] [PMID: 17979837]
[266]
De Boo, S.; Kopecka, J.; Brusa, D.; Gazzano, E.; Matera, L.; Ghigo, D.; Bosia, A.; Riganti, C. iNOS activity is necessary for the cytotoxic and immunogenic effects of doxorubicin in human colon cancer cells. Mol. Cancer, 2009, 8(1), 108.
[http://dx.doi.org/10.1186/1476-4598-8-108] [PMID: 19925669]
[267]
El-Sherbiny, Y.M.; Meade, J.L.; Holmes, T.D.; McGonagle, D.; Mackie, S.L.; Morgan, A.W.; Cook, G.; Feyler, S.; Richards, S.J.; Davies, F.E.; Morgan, G.J.; Cook, G.P. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res., 2007, 67(18), 8444-8449.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4230] [PMID: 17875681]
[268]
Fionda, C.; Abruzzese, M.P.; Zingoni, A.; Soriani, A.; Ricci, B.; Molfetta, R.; Paolini, R.; Santoni, A.; Cippitelli, M. Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: Role of DNA damage response activation. BMC Cancer, 2015, 15(1), 17.
[http://dx.doi.org/10.1186/s12885-015-1023-5] [PMID: 25609078]
[269]
Kudo, S.; Nagasaki, Y. A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly(l-arginine)-based nanoparticles. J. Control. Release, 2015, 217, 256-262.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.019] [PMID: 26386436]
[270]
Mundy-Bosse, B.L.; Lesinski, G.B.; Jaime-Ramirez, A.C.; Benninger, K.; Khan, M.; Kuppusamy, P.; Guenterberg, K.; Kondadasula, S.V.; Chaudhury, A.R.; La Perle, K.M.; Kreiner, M.; Young, G.; Guttridge, D.C.; Carson, W.E. III Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res., 2011, 71(15), 5101-5110.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2670] [PMID: 21680779]
[271]
Markowitz, J.; Wang, J.; Vangundy, Z.; You, J.; Yildiz, V.; Yu, L.; Foote, I.P.; Branson, O.E.; Stiff, A.R.; Brooks, T.R.; Biesiadecki, B.; Olencki, T.; Tridandapani, S.; Freitas, M.A.; Papenfuss, T.; Phelps, M.A.; Carson, W.E. Nitric oxide mediated inhibition of antigen presentation from DCs to CD4+ T cells in cancer and measurement of STAT1 nitration. Sci. Rep., 2017, 7(1), 15424.
[http://dx.doi.org/10.1038/s41598-017-14970-0] [PMID: 29133913]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy