Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Retracted: miR-27b-3p Inhibits Invasion, Migration and Epithelial-mesenchymal Transition in Gastric Cancer by Targeting RUNX1 and Activation of the Hippo Signaling Pathway

Author(s): Chen-hui Bao and Lin Guo*

Volume 22, Issue 5, 2022

Published on: 10 January, 2022

Page: [864 - 873] Pages: 10

DOI: 10.2174/1871520621666210707095833

Price: $65

Abstract

The article entitled “miR-27b-3p Inhibits Invasion, Migration and Epithelial-mesenchymal Transition in Gastric Cancer by Targeting RUNX1 and Activation of the Hippo Signaling Pathway”, by Chen-Hui Bao and Lin Guo, has been retracted on the request of the Author in light of the changes to the University’s promotion policy, due to which the article needs further content.

Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.

Kindly see Bentham Science Policy on Article retraction at the link https://benthamscience.com/journals/anti-canceragents-in-medicinal-chemistry/editorial-policies/

Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure, or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

Keywords: miR-27b-3p, RUNX1, epithelial-mesenchymal transition, Hippo pathway, invasion, migration, gastric cancer.

Graphical Abstract

[1]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Digklia, A.; Wagner, A.D. Advanced gastric cancer: Current treatment landscape and future perspectives. World J. Gastroenterol., 2016, 22(8), 2403-2414.
[http://dx.doi.org/10.3748/wjg.v22.i8.2403] [PMID: 26937129]
[4]
Vrána, D.; Matzenauer, M.; Neoral, Č.; Aujeský, R.; Vrba, R.; Melichar, B.; Rušarová, N.; Bartoušková, M.; Jankowski, J. From tumor immunology to immunotherapy in gastric and esophageal cancer. Int. J. Mol. Sci., 2018, 20(1), E13.
[http://dx.doi.org/10.3390/ijms20010013] [PMID: 30577521]
[5]
Pellino, A.; Riello, E.; Nappo, F.; Brignola, S.; Murgioni, S.; Djaballah, S.A.; Lonardi, S.; Zagonel, V.; Rugge, M.; Loupakis, F.; Fassan, M. Targeted therapies in metastatic gastric cancer: Current knowledge and future perspectives. World J. Gastroenterol., 2019, 25(38), 5773-5788.
[http://dx.doi.org/10.3748/wjg.v25.i38.5773] [PMID: 31636471]
[6]
Strong, V.E.; Wu, A.W.; Selby, L.V.; Gonen, M.; Hsu, M.; Song, K.Y.; Park, C.H.; Coit, D.G.; Ji, J.F.; Brennan, M.F. Differences in gastric cancer survival between the U.S. and China. J. Surg. Oncol., 2015, 112(1), 31-37.
[http://dx.doi.org/10.1002/jso.23940] [PMID: 26175203]
[7]
Li, T.; Huang, H.; Shi, G.; Zhao, L.; Li, T.; Zhang, Z.; Liu, R.; Hu, Y.; Liu, H.; Yu, J.; Li, G. TGF-β1-SOX9 axis-inducible COL10A1 promotes invasion and metastasis in gastric cancer via epithelial-to-mesenchymal transition. Cell Death Dis., 2018, 9(9), 849.
[http://dx.doi.org/10.1038/s41419-018-0877-2] [PMID: 30154451]
[8]
Lu, J.; Wang, Y.H.; Yoon, C.; Huang, X.Y.; Xu, Y.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Zheng, C.H.; Li, P.; Huang, C.M. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett., 2020, 471, 38-48.
[http://dx.doi.org/10.1016/j.canlet.2019.11.038] [PMID: 31811909]
[9]
Lu, T.X.; Rothenberg, M.E.; Micro, R.N.A. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[10]
Das, S.; Ansel, K.M.; Bitzer, M.; Breakefield, X.O.; Charest, A.; Galas, D.J.; Gerstein, M.B.; Gupta, M.; Milosavljevic, A.; McManus, M.T.; Patel, T.; Raffai, R.L.; Rozowsky, J.; Roth, M.E.; Saugstad, J.A.; Van Keuren-Jensen, K.; Weaver, A.M.; Laurent, L.C. The extracellular RNA communication consortium: Establishing foundational knowledge and technologies for extracellular rna research. Cell, 2019, 177(2), 231-242.
[http://dx.doi.org/10.1016/j.cell.2019.03.023] [PMID: 30951667]
[11]
Cai, Y.; Yu, X.; Hu, S.; Yu, J. A brief review on the mechanisms of miRNA regulation. Genom. Proteom. Bioinform., 2009, 7(4), 147-154.
[http://dx.doi.org/10.1016/S1672-0229(08)60044-3] [PMID: 20172487]
[12]
Vishnoi, A.; Rani, S. MiRNA biogenesis and regulation of diseases: An overview. Methods Mol. Biol., 2017, 1509, 1-10.
[http://dx.doi.org/10.1007/978-1-4939-6524-3_1] [PMID: 27826912]
[13]
Pu, M.; Chen, J.; Tao, Z.; Miao, L.; Qi, X.; Wang, Y.; Ren, J. Regulatory network of miRNA on its target: Coordination between transcriptional and post-transcriptional regulation of gene expression. Cell. Mol. Life Sci., 2019, 76(3), 441-451.
[http://dx.doi.org/10.1007/s00018-018-2940-7] [PMID: 30374521]
[14]
Akhtar, M.M.; Micolucci, L.; Islam, M.S.; Olivieri, F.; Procopio, A.D. A practical guide to mirna target prediction. Methods Mol. Biol., 2019, 1970, 1-13.
[http://dx.doi.org/10.1007/978-1-4939-9207-2_1] [PMID: 30963484]
[15]
Hermyt, E.; Zmarzły, N.; Grabarek, B.; Kruszniewska-Rajs, C.; Gola, J.; Jęda-Golonka, A.; Szczepanek, K.; Mazurek, U.; Witek, A. Interplay between miRNAs and genes associated with cell proliferation in endometrial cancer. Int. J. Mol. Sci., 2019, 20(23), E6011.
[http://dx.doi.org/10.3390/ijms20236011] [PMID: 31795319]
[16]
Lima, C.R.; Gomes, C.C.; Santos, M.F. Role of microRNAs in endocrine cancer metastasis. Mol. Cell. Endocrinol., 2017, 456, 62-75.
[http://dx.doi.org/10.1016/j.mce.2017.03.015] [PMID: 28322989]
[17]
Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[18]
Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory mechanism of microrna expression in cancer. Int. J. Mol. Sci., 2020, 21(5), E1723.
[http://dx.doi.org/10.3390/ijms21051723] [PMID: 32138313]
[19]
Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. (Pozn.), 2015, 19(1A), A68-A77.
[http://dx.doi.org/10.5114/wo.2014.47136] [PMID: 25691825]
[20]
Hu, S.; Zheng, Q.; Wu, H.; Wang, C.; Liu, T.; Zhou, W. miR-532 promoted gastric cancer migration and invasion by targeting NKD1. Life Sci., 2017, 177, 15-19.
[http://dx.doi.org/10.1016/j.lfs.2017.03.019] [PMID: 28356225]
[21]
Luo, Y.; Wu, J.; Wu, Q.; Li, X.; Wu, J.; Zhang, J.; Rong, X.; Rao, J.; Liao, Y.; Bin, J.; Huang, N.; Liao, W. miR-577 regulates tgf-β induced cancer progression through a sdpr-modulated positive-feedback loop with erk-nf-κb in gastric cancer. Mol. Ther., 2019, 27(6), 1166-1182.
[22]
Yang, H.; Fu, H.; Wang, B.; Zhang, X.; Mao, J.; Li, X.; Wang, M.; Sun, Z.; Qian, H.; Xu, W. Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol. Carcinog., 2018, 57(9), 1223-1236.
[http://dx.doi.org/10.1002/mc.22838] [PMID: 29749061]
[23]
Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; Ceccarelli, M.; Bontempi, G.; Noushmehr, H. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res., 2016, 44(8), e71.
[http://dx.doi.org/10.1093/nar/gkv1507] [PMID: 26704973]
[24]
Kuijjer, M.L.; Paulson, J.N.; Salzman, P.; Ding, W.; Quackenbush, J. Cancer subtype identification using somatic mutation data. Br. J. Cancer, 2018, 118(11), 1492-1501.
[http://dx.doi.org/10.1038/s41416-018-0109-7] [PMID: 29765148]
[25]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformstics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[26]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[27]
Ito, K.; Murphy, D. Application of ggplot2 to Pharmacometric Graphics. CPT Pharmacometrics Syst. Pharmacol., 2013, 2(10), e79.
[http://dx.doi.org/10.1038/psp.2013.56] [PMID: 24132163]
[28]
Maag, J.L.V. gganatogram: An R package for modular visualisation of anatograms and tissues based on ggplot2. F1000 Res., 2018, 7, 1576.
[http://dx.doi.org/10.12688/f1000research.16409.1] [PMID: 30467523]
[29]
Rooney, N.; Riggio, A.I.; Mendoza-Villanueva, D.; Shore, P.; Cameron, E.R.; Blyth, K. Runx genes in breast cancer and the mammary lineage. Adv. Exp. Med. Biol., 2017, 962, 353-368.
[http://dx.doi.org/10.1007/978-981-10-3233-2_22] [PMID: 28299668]
[30]
van Bragt, M.P.; Hu, X.; Xie, Y.; Li, Z. RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. eLife, 2014, 3, e03881.
[http://dx.doi.org/10.7554/eLife.03881] [PMID: 25415051]
[31]
Liu, S.; Zhang, J.; Yin, L.; Wang, X.; Zheng, Y.; Zhang, Y.; Gu, J.; Yang, L.; Yang, J.; Zheng, P.; Jiang, Y.; Shuai, L.; Cai, X.; Wang, H. The lncRNA RUNX1-IT1 regulates C-FOS transcription by interacting with RUNX1 in the process of pancreatic cancer proliferation, migration and invasion. Cell Death Dis., 2020, 11(6), 412.
[http://dx.doi.org/10.1038/s41419-020-2617-7] [PMID: 32487998]
[32]
Chen, X.; Li, J.; Liang, D.; Zhang, L.; Wang, Q. LncRNA AWPPH participates in the development of non-traumatic osteonecrosis of femoral head by upregulating Runx2. Exp. Ther. Med., 2020, 19(1), 153-159.
[PMID: 31853285]
[33]
Zhang, X.; Yang, L.; Szeto, P.; Abali, G.K.; Zhang, Y.; Kulkarni, A.; Amarasinghe, K.; Li, J.; Vergara, I.A.; Molania, R.; Papenfuss, A.T.; McLean, C.; Shackleton, M.; Harvey, K.F. The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis. Oncogene, 2020, 39(30), 5267-5281.
[http://dx.doi.org/10.1038/s41388-020-1362-9] [PMID: 32561850]
[34]
Kim, J.; Kwon, H.; Shin, Y.K.; Song, G.; Lee, T.; Kim, Y.; Jeong, W.; Lee, U.; Zhang, X.; Nam, G.; Jeung, H.C.; Kim, W.; Jho, E.H. MAML1/2 promote YAP/TAZ nuclear localization and tumorigenesis. Proc. Natl. Acad. Sci. USA, 2020, 117(24), 13529-13540.
[http://dx.doi.org/10.1073/pnas.1917969117] [PMID: 32482852]
[35]
Kim, W.; Khan, S.K.; Liu, Y.; Xu, R.; Park, O.; He, Y.; Cha, B.; Gao, B.; Yang, Y. Hepatic hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut, 2018, 67(9), 1692-1703.
[http://dx.doi.org/10.1136/gutjnl-2017-314061] [PMID: 28866620]
[36]
Peng, Q.S.; Cheng, Y.N.; Zhang, W.B.; Fan, H.; Mao, Q.H.; Xu, P. circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis., 2020, 11(2), 112.
[http://dx.doi.org/10.1038/s41419-020-2273-y] [PMID: 32041942]
[37]
Yu, S.; Zhang, Y.; Li, Q.; Zhang, Z.; Zhao, G.; Xu, J. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis., 2019, 10(12), 949.
[http://dx.doi.org/10.1038/s41419-019-2168-y] [PMID: 31827075]
[38]
Necula, L.; Matei, L.; Dragu, D.; Neagu, A.I.; Mambet, C.; Nedeianu, S.; Bleotu, C.; Diaconu, C.C.; Chivu-Economescu, M. Recent advances in gastric cancer early diagnosis. World J. Gastroenterol., 2019, 25(17), 2029-2044.
[http://dx.doi.org/10.3748/wjg.v25.i17.2029] [PMID: 31114131]
[39]
Rahman, R.; Asombang, A.W.; Ibdah, J.A. Characteristics of gastric cancer in Asia. World J. Gastroenterol., 2014, 20(16), 4483-4490.
[http://dx.doi.org/10.3748/wjg.v20.i16.4483] [PMID: 24782601]
[40]
Tanioka, H.; Nagasaka, T.; Uno, F.; Inoue, M.; Okita, H.; Katata, Y.; Kanzaki, H.; Kuramochi, H.; Satake, H.; Shindo, Y.; Doi, A.; Nasu, J.; Yamashita, H.; Yamaguchi, Y. The relationship between peripheral neuropathy and efficacy in second-line chemotherapy for unresectable advanced gastric cancer: A prospective observational multicenter study protocol (IVY). BMC Cancer, 2019, 19(1), 941.
[http://dx.doi.org/10.1186/s12885-019-6163-6] [PMID: 31604467]
[41]
Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; Shilo, S.; Lador, D.; Vila, A.V.; Zmora, N.; Pevsner-Fischer, M.; Israeli, D.; Kosower, N.; Malka, G.; Wolf, B.C.; Avnit-Sagi, T.; Lotan-Pompan, M.; Weinberger, A.; Halpern, Z.; Carmi, S.; Fu, J.; Wijmenga, C.; Zhernakova, A.; Elinav, E.; Segal, E. Environment dominates over host genetics in shaping human gut microbiota. Nature, 2018, 555(7695), 210-215.
[http://dx.doi.org/10.1038/nature25973] [PMID: 29489753]
[42]
Molina-Castro, S.; Pereira-Marques, J.; Figueiredo, C.; Machado, J. C.; Varon, C. Gastric cancer: Basic aspects. Helicobacter 2017, 22(Suppl 1)
[43]
Zhao, Z.; Ji, M.; Wang, Q.; He, N.; Li, Y. miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer. Mol. Ther. Oncolytics, 2020, 17, 509-517.
[http://dx.doi.org/10.1016/j.omto.2020.05.008] [PMID: 32577500]
[44]
Kim, T.W.; Lee, Y.S.; Yun, N.H.; Shin, C.H.; Hong, H.K.; Kim, H.H.; Cho, Y.B. MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. Br. J. Cancer, 2020.
[45]
Petri, B.J.; Klinge, C.M. Regulation of breast cancer metastasis signaling by miRNAs. Cancer Metastasis Rev., 2020, 39(3), 837-886.
[http://dx.doi.org/10.1007/s10555-020-09905-7] [PMID: 32577859]
[46]
Yang, C.M.; Qiao, G.L.; Song, L.N.; Bao, S.; Ma, L.J. Circular RNAs in gastric cancer: Biomarkers for early diagnosis. Oncol. Lett., 2020, 20(1), 465-473.
[http://dx.doi.org/10.3892/ol.2020.11623] [PMID: 32565971]
[47]
Zhang, Z.; Dong, Y.; Hua, J.; Xue, H.; Hu, J.; Jiang, T.; Shi, L.; Du, J. A five-miRNA signature predicts survival in gastric cancer using bioinformatics analysis. Gene, 2019, 699, 125-134.
[http://dx.doi.org/10.1016/j.gene.2019.02.058] [PMID: 30849543]
[48]
Chen, C.; Hou, J.; Tanner, J.J.; Cheng, J. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int. J. Mol. Sci., 2020, 21(8), E2873.
[http://dx.doi.org/10.3390/ijms21082873] [PMID: 32326049]
[49]
Miao, W.; Li, N.; Gu, B.; Yi, G.; Su, Z.; Cheng, H. MiR-27b-3p suppresses glioma development via targeting YAP1. Biochem. Cell Biol., 2020, 98(4), 466-473.
[50]
Sun, W.; Li, J.; Zhou, L.; Han, J.; Liu, R.; Zhang, H.; Ning, T.; Gao, Z.; Liu, B.; Chen, X.; Ba, Y. The c-Myc/miR-27b-3p/ATG10 regulatory axis regulates chemoresistance in colorectal cancer. Theranostics, 2020, 10(5), 1981-1996.
[http://dx.doi.org/10.7150/thno.37621] [PMID: 32104496]
[51]
Tao, J.; Zhi, X.; Zhang, X.; Fu, M.; Huang, H.; Fan, Y.; Guan, W.; Zou, C. miR-27b-3p suppresses cell proliferation through targeting receptor tyrosine kinase like orphan receptor 1 in gastric cancer. J. Exp. Clin. Cancer Res., 2015, 34, 139.
[http://dx.doi.org/10.1186/s13046-015-0253-3] [PMID: 26576539]
[52]
Zhang, C.; Zou, Y.; Dai, D.Q. Downregulation of microRNA-27b-3p via aberrant DNA methylation contributes to malignant behavior of gastric cancer cells by targeting GSPT1. Biomed. Pharmacother., 2019, 119, 109417.
[53]
Coffman, J.A. Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol. Int., 2003, 27(4), 315-324.
[http://dx.doi.org/10.1016/S1065-6995(03)00018-0] [PMID: 12788047]
[54]
Otálora-Otálora, B.A.; Henríquez, B.; López-Kleine, L.; Rojas, A. RUNX family: Oncogenes or tumor suppressors. (Review). Oncol. Rep., 2019, 42(1), 3-19.
[PMID: 31059069]
[55]
Samarakkody, A.S.; Shin, N.Y.; Cantor, A.B. Role of runx family transcription factors in dna damage response. Mol. Cells, 2020, 43(2), 99-106.
[PMID: 32024352]
[56]
Yzaguirre, A.D.; de Bruijn, M.F.; Speck, N.A. The role of runx1 in embryonic blood cell formation. Adv. Exp. Med. Biol., 2017, 962, 47-64.
[http://dx.doi.org/10.1007/978-981-10-3233-2_4] [PMID: 28299650]
[57]
Yokota, A.; Huo, L.; Lan, F.; Wu, J.; Huang, G. The clinical, molecular, and mechanistic basis of runx1 mutations identified in hematological malignancies. Mol. Cells, 2020, 43(2), 145-152.
[PMID: 31964134]
[58]
Komori, T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem. Cell Biol., 2018, 149(4), 313-323.
[http://dx.doi.org/10.1007/s00418-018-1640-6] [PMID: 29356961]
[59]
Gomathi, K.; Akshaya, N.; Srinaath, N.; Moorthi, A.; Selvamurugan, N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci., 2020, 245, 117389.
[http://dx.doi.org/10.1016/j.lfs.2020.117389] [PMID: 32007573]
[60]
Boto, P.; Csuth, T.I.; Szatmari, I. RUNX3-mediated immune cell development and maturation. Crit. Rev. Immunol., 2018, 38(1), 63-78.
[http://dx.doi.org/10.1615/CritRevImmunol.2018025488] [PMID: 29717663]
[61]
Park, Y.; Moon, S.J.; Lee, S.W. Lineage re-commitment of CD4CD8αα intraepithelial lymphocytes in the gut. BMB Rep., 2016, 49(1), 11-17.
[http://dx.doi.org/10.5483/BMBRep.2016.49.1.242] [PMID: 26592937]
[62]
Deltcheva, E.; Nimmo, R. RUNX transcription factors at the interface of stem cells and cancer. Biochem. J., 2017, 474(11), 1755-1768.
[http://dx.doi.org/10.1042/BCJ20160632] [PMID: 28490659]
[63]
Miyoshi, H.; Shimizu, K.; Kozu, T.; Maseki, N.; Kaneko, Y.; Ohki, M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA, 1991, 88(23), 10431-10434.
[http://dx.doi.org/10.1073/pnas.88.23.10431] [PMID: 1720541]
[64]
Sood, R.; Kamikubo, Y.; Liu, P. Role of RUNX1 in hematological malignancies. Blood, 2017, 129(15), 2070-2082.
[http://dx.doi.org/10.1182/blood-2016-10-687830] [PMID: 28179279]
[65]
Passaniti, A.; Brusgard, J.L.; Qiao, Y.; Sudol, M.; Finch-Edmondson, M. Roles of RUNX in Hippo Pathway Signaling. Adv. Exp. Med. Biol., 2017, 962, 435-448.
[http://dx.doi.org/10.1007/978-981-10-3233-2_26] [PMID: 28299672]
[66]
Meng, Z.; Moroishi, T.; Guan, K.L. Mechanisms of hippo pathway regulation. Genes Dev., 2016, 30(1), 1-17.
[http://dx.doi.org/10.1101/gad.274027.115] [PMID: 26728553]
[67]
Dcona, M.M.; Morris, B.L.; Ellis, K.C.; Grossman, S.R. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol. Ther., 2017, 18(6), 379-391.
[http://dx.doi.org/10.1080/15384047.2017.1323586] [PMID: 28532298]
[68]
Hipp, S.; Berg, D.; Ergin, B.; Schuster, T.; Hapfelmeier, A.; Walch, A.; Avril, S.; Schmalfeldt, B.; Höfler, H.; Becker, K.F. Interaction of Snail and p38 mitogen-activated protein kinase results in shorter overall survival of ovarian cancer patients. Virchows Arch., 2010, 457(6), 705-713.
[http://dx.doi.org/10.1007/s00428-010-0986-5] [PMID: 20957493]
[69]
Bennett, C.F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med., 2019, 70, 307-321.
[http://dx.doi.org/10.1146/annurev-med-041217-010829] [PMID: 30691367]
[70]
Bennett, C.F.; Baker, B.F.; Pham, N.; Swayze, E.; Geary, R.S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 81-105.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104846] [PMID: 27732800]
[71]
Sheng, L.; Rigo, F.; Bennett, C.F.; Krainer, A.R.; Hua, Y. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res., 2020, 48(6), 2853-2865.
[http://dx.doi.org/10.1093/nar/gkaa126] [PMID: 32103257]
[72]
Krishnan, A.V.; Mishra, D. Antisense oligonucleotides: A unique treatment approach. Indian Pediatr., 2020, 57(2), 165-171.
[http://dx.doi.org/10.1007/s13312-020-1736-7] [PMID: 32060244]
[73]
Bernardo, B.C.; Ooi, J.Y.; Lin, R.C.; McMullen, J.R. miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Med. Chem., 2015, 7(13), 1771-1792.
[http://dx.doi.org/10.4155/fmc.15.107] [PMID: 26399457]
[74]
Alfano, L.; Costa, C.; Caporaso, A.; Antonini, D.; Giordano, A.; Pentimalli, F. HUR protects NONO from degradation by mir320, which is induced by p53 upon UV irradiation. Oncotarget, 2016, 7(47), 78127-78139.
[http://dx.doi.org/10.18632/oncotarget.13002] [PMID: 27816966]
[75]
Manna, I.; Iaccino, E.; Dattilo, V.; Barone, S.; Vecchio, E.; Mimmi, S.; Filippelli, E.; Demonte, G.; Polidoro, S.; Granata, A.; Scannapieco, S.; Quinto, I.; Valentino, P.; Quattrone, A. Exosomeassociated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients. FASEB J., 2018, 32(8), 4241-4246.
[http://dx.doi.org/10.1096/fj.201701533R] [PMID: 29505299]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy