Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Indian Indigenous Fruits as Radioprotective Agents: Past, Present and Future

Author(s): Avinash Kundadka Kudva, Shamprasad Varija Raghu, Suresh Rao, Ponemone Venkatesh, Sanath Kumar Hegde, Rhea Katherine D’souza, Manjeshwar Poonam Baliga-Rao, Paul Simon and Manjeshwar Shrinath Baliga*

Volume 22, Issue 1, 2022

Published on: 21 December, 2021

Page: [53 - 63] Pages: 11

DOI: 10.2174/1871520621666210706124315

Price: $65

Abstract

Abstract: Ionising radiation has been an important modality in cancer treatment and its value is immense when surgical intervention is risky or might debilitate/adversely affect the patient. However, the beneficial effect of radiation modality is negated by the damage to the adjacent healthy tissue in the field of radiation. Under these situations, the use of radioprotective compounds that can selectively protect normal tissues against radiation injury is considered very useful. However, research spanning over half a century has shown that there are no ideal radioprotectors available. The United States Food and Drug Administration (FDA or USFDA) approved amifostine, or WR-2721 (Walter Reed-2721) [chemically S-2-(3-aminopropyl-amino) ethyl phosphorothioic acid] is toxic at their optimal concentrations. This has necessitated the need for agents that are safe and easily acceptable to humans.

Background: Dietary agents with beneficial effects like free radical scavenging, antioxidant and immunomodulatory effects are being recognized as useful and have been investigated for their radioprotective properties. Studies in these lines have shown that the fruits of Aegle marmelos (stone apple or bael), Emblica officinalis or Phyllanthus emblica (Indian gooseberry/amla), Eugenia jambolana or Syzygium jambolana (black plum/jamun), Mangifera indica (mango) and Grewia asiatica (phalsa or falsa) that are originally reported to be indigenous to India have been investigated for their usefulness as radioprotective agents.

Objective: The objective of this review is to summarize the beneficial effects of the Indian indigenous fruits, stone apple, mango, Indian gooseberry, black plum, and phalsa, in mitigating radiation-induced side effects, emphasize the underlying mechanism of action for the beneficial effects and address aspects that merit detail investigations for these fruits to move towards clinical application in the near future.

Methods: The authors data-mined Google Scholar, PubMed, Embase, and the Cochrane Library for publications in the field from 1981 up to July 2020. The focus was on the radioprotection and the mechanism responsible for the beneficial effects, and accordingly, the articles were collated and analyzed.

Results: This article emphasizes the usefulness of stone apple, mango, Indian gooseberry, black plum, and phalsa as radioprotective agents. From a mechanistic view, reports are suggestive that the beneficial effects are mediated by triggering free radical scavenging, antioxidant, anti-mutagenic and anti-inflammatory effects.

Conclusion: For the first time, this review addresses the beneficial effects of mango, Indian gooseberry, black plum, stone apple and phalsa as radioprotective agents. The authors suggest that future studies should be directed at understanding the selective radioprotective effects with tumor-bearing laboratory animals to understand their usefulness as radioprotective drug/s during radiotherapy and as a food supplement to protect people from getting exposed to low doses of radiation in occupational settings. Phase I clinical trial studies are also required to ascertain the optimal dose and the schedule to be followed with the standardized extract of these fruits. The most important aspect is that these fruits, being a part of the diet, have been consumed since the beginning of mankind, are non-toxic, possess diverse medicinal properties, have easy acceptability, all of which will help take research forward and be of benefit to patients, occupational workers, agro-based sectors and pharma industries.

Keywords: Aegle marmelos, Emblica officinalis, Phyllanthus emblica, Eugenia jambolana, Syzygium jambolana, Syzygium cumini, Grewia asiatica, Mangifera indica, radiation protection.

Graphical Abstract

[1]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[2]
C Jagetia, G. Radioprotective potential of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr., 2007, 40(2), 74-81.
[http://dx.doi.org/10.3164/jcbn.40.74] [PMID: 18188408]
[3]
Hazra, B.; Ghosh, S.; Kumar, A.; Pandey, B.N. The prospective role of plant products in radiotherapy of cancer: A current overview. Front. Pharmacol., 2012, 2, 94.
[http://dx.doi.org/10.3389/fphar.2011.00094] [PMID: 22291649]
[4]
De Courcy, L.; Bezak, E.; Marcu, L.G. Gender-dependent radiotherapy: The next step in personalised medicine? Crit. Rev. Oncol. Hematol., 2020, 147102881
[http://dx.doi.org/10.1016/j.critrevonc.2020.102881] [PMID: 31991224]
[5]
Arora, R.; Gupta, D.; Chawla, R.; Sagar, R.; Sharma, A.; Kumar, R.; Prasad, J.; Singh, S.; Samanta, N.; Sharma, R.K. Radioprotection by plant products: Present status and future prospects. Phytother. Res., 2005, 19(1), 1-22.
[http://dx.doi.org/10.1002/ptr.1605] [PMID: 15799007]
[6]
Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 2014, 349, g4490.
[http://dx.doi.org/10.1136/bmj.g4490] [PMID: 25073782]
[7]
Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; Stehle, P.; Watzl, B. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr., 2012, 51(6), 637-663.
[http://dx.doi.org/10.1007/s00394-012-0380-y] [PMID: 22684631]
[8]
Ribeiro, S.M.; Morley, J.E.; Malmstrom, T.K.; Miller, D.K. Fruit and vegetable intake and physical activity as predictors of disability risk factors in african-american middle-aged individuals. J. Nutr. Health Aging, 2016, 20(9), 891-896.
[http://dx.doi.org/10.1007/s12603-016-0780-4] [PMID: 27791218]
[9]
Rangarajan, H.; Elumalai, A.; Chidanand, D.V. Traditional fruits of South India: Bioactive components and their potential health implications in chronic diseases. J. Food Biochem., 2021, 45(3)e13266
[http://dx.doi.org/10.1111/jfbc.13266] [PMID: 32529677]
[10]
Sarkar, D.; Walker-Swaney, J.; Shetty, K. Food diversity and indigenous food systems to combat diet-linked chronic diseases. Curr. Dev. Nutr., 2019, 4(Suppl. 1), 3-11.
[http://dx.doi.org/10.1093/cdn/nzz099] [PMID: 32258994]
[11]
Baliga, M.S.; Bhat, H.P.; Joseph, N.; Fazal, F. Phytochemistry and medicinal uses of the bael fruit (Aegle marmelos Correa): A concise review. Food Res. Int., 2011, 44(7), 1768-1775.
[http://dx.doi.org/10.1016/j.foodres.2011.02.008]
[12]
Baliga, M.S.; Thilakchand, K.R.; Rai, M.P.; Rao, S.; Venkatesh, P. Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integr. Cancer Ther., 2013, 12(3), 187-196.
[http://dx.doi.org/10.1177/1534735412451320] [PMID: 23089553]
[13]
Manandhar, B.; Paudel, K.R.; Sharma, B.; Karki, R. Phytochemical profile and pharmacological activity of Aegle marmelos Linn. J. Integr. Med., 2018, 16(3), 153-163.
[http://dx.doi.org/10.1016/j.joim.2018.04.007] [PMID: 29709412]
[14]
Lampronti, I.; Martello, D.; Bianchi, N.; Borgatti, M.; Lambertini, E.; Piva, R.; Jabbar, S.; Choudhuri, M.S.; Khan, M.T.; Gambari, R. In vitro antiproliferative effects on human tumor cell lines of extracts from the Bangladeshi medicinal plant Aegle marmelos Correa. Phytomedicine, 2003, 10(4), 300-308.
[http://dx.doi.org/10.1078/094471103322004794] [PMID: 12809360]
[15]
Jagetia, G.C.; Venkatesh, P.; Baliga, M.S. Aegle marmelos (L.) Correa inhibits the proliferation of transplanted Ehrlich ascites carcinoma in mice. Biol. Pharm. Bull., 2005, 28(1), 58-64.
[http://dx.doi.org/10.1248/bpb.28.58] [PMID: 15635164]
[16]
Rahman, A.; Imran, H.; Iqbal, L. STaqvi, S.I.; Fatima, N.; Yaqeen, Z. Dry and ripe fruit of Aegle marmelos. L: A potent source of antioxidant, lipoxygenase inhibitors and free radical scavenger. Pak. J. Pharm. Sci., 2016, 29(4), 1127-1131.
[PMID: 27393425]
[17]
Brijesh, S.; Daswani, P.; Tetali, P.; Antia, N.; Birdi, T. Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: Validating its traditional usage. BMC Complement. Altern. Med., 2009, 9, 47.
[http://dx.doi.org/10.1186/1472-6882-9-47] [PMID: 19930633]
[18]
Kamalakkanan, N.; Rajadurai, M.; Prince, P.S. Effect of Aegle marmelos fruits on normal and streptozotocin-diabetic Wistar rats. J. Med. Food, 2003, 6(2), 93-98.
[http://dx.doi.org/10.1089/109662003322233486] [PMID: 12935319]
[19]
Kamalakkannan, N.; Prince, P.S. Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. J. Ethnopharmacol., 2003, 87(2-3), 207-210.
[http://dx.doi.org/10.1016/S0378-8741(03)00148-X] [PMID: 12860309]
[20]
Patel, P.; Asdaq, S.M. Immunomodulatory activity of methanolic fruit extract of Aegle marmelos in experimental animals. Saudi Pharm. J., 2010, 18(3), 161-165.
[http://dx.doi.org/10.1016/j.jsps.2010.05.006] [PMID: 23964175]
[21]
Das, S.K.; Roy, C. The protective role of Aegle marmelos on aspirin-induced gastro-duodenal ulceration in albino rat model: A possible involvement of antioxidants. Saudi J. Gastroenterol., 2012, 18(3), 188-194.
[http://dx.doi.org/10.4103/1319-3767.96452] [PMID: 22626798]
[22]
Ibrahim, N.A.; Mohammed, M.M.D.; Aly, H.F.; Ali, S.A.; Al-Hady, D.A. Efficiency of the leaves and fruits of Aegle marmelos methanol extract (L.) Correa and their relative hepatotoxicity induced by CCL4 and identification of their active constituents by using LC/MS/MS. Toxicol. Rep., 2018, 5, 1161-1168.
[http://dx.doi.org/10.1016/j.toxrep.2018.09.005] [PMID: 30627516]
[23]
Ramakrishna, Y.G.; Savithri, K.; Kist, M.; Devaraj, S.N. Aegle marmelos fruit extract attenuates Helicobacter pylori Lipopolysaccharide induced oxidative stress in Sprague Dawley rats. BMC Complement. Altern. Med., 2015, 15, 375.
[http://dx.doi.org/10.1186/s12906-015-0915-x] [PMID: 26482072]
[24]
Gautam, M.K.; Ghatule, R.R.; Singh, A.; Purohit, V.; Gangwar, M.; Kumar, M.; Goel, R.K. Healing effects of Aegle marmelos (L.) Correa fruit extract on experimental colitis. Indian J. Exp. Biol., 2013, 51(2), 157-164.
[PMID: 23923609]
[25]
Ghatule, R.R.; Gautam, M.K.; Goel, S.; Singh, A.; Joshi, V.K.; Goel, R.K. Protective effects of Aegle marmelos fruit pulp on 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis. Pharmacogn. Mag., 2014, 10(Suppl. 1), S147-S152.
[http://dx.doi.org/10.4103/0973-1296.127366] [PMID: 24914296]
[26]
Behera, J.P.; Mohanty, B.; Ramani, Y.R.; Rath, B.; Pradhan, S. Effect of aqueous extract of Aegle marmelos unripe fruit on inflammatory bowel disease. Indian J. Pharmacol., 2012, 44(5), 614-618.
[http://dx.doi.org/10.4103/0253-7613.100389] [PMID: 23112424]
[27]
Agrawal, A.; Jahan, S.; Goyal, P.K. Chemically induced skin carcinogenesis in mice and its prevention by Aegle marmelos (an Indian medicinal plant) fruit extract. J. Environ. Pathol. Toxicol. Oncol., 2011, 30(3), 251-259.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.80] [PMID: 22126618]
[28]
Chandel, S.S.; Shirsat, M.; Sahu, R.K.; Nayak, S.S. Modulatory effect of dietary inclusion of aegle marmelos fruits against cisplatin - induced hepatotoxicity in wistar rats. Ann. Hepatol., 2018, 17(3), 482-489.
[http://dx.doi.org/10.5604/01.3001.0011.7393] [PMID: 29735797]
[29]
Pynam, H.; Dharmesh, S.M. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed. Pharmacother., 2018, 106, 98-108.
[http://dx.doi.org/10.1016/j.biopha.2018.06.053] [PMID: 29957472]
[30]
Jagetia, G.C.; Venkatesh, P.; Baliga, M.S. Fruit extract of Aegle marmelos protects mice against radiation-induced lethality. Integr. Cancer Ther., 2004, 3(4), 323-332.
[http://dx.doi.org/10.1177/1534735404270641] [PMID: 15523103]
[31]
Baliga, M.S.; Dsouza, J.J. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur. J. Cancer Prev., 2011, 20(3), 225-239.
[http://dx.doi.org/10.1097/CEJ.0b013e32834473f4] [PMID: 21317655]
[32]
Sancheti, G.; Jindal, A.; Kumari, R.; Goyal, P.K. Chemopreventive action of Emblica officinalis on skin carcinogenesis in mice. Asian Pac. J. Cancer Prev., 2005, 6(2), 197-201.
[PMID: 16101333]
[33]
Krishnaveni, M.; Mirunalini, S. Chemopreventive efficacy of Phyllanthus emblica L. (amla) fruit extract on 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis-a dose-response study. Environ. Toxicol. Pharmacol., 2012, 34(3), 801-810.
[http://dx.doi.org/10.1016/j.etap.2012.09.006] [PMID: 23058484]
[34]
Chen, K.H.; Lin, B.R.; Chien, C.T.; Ho, C.H. Emblica officinalis Gaertn. attentuates N-nitrosodiethylamine-induced apoptosis, autophagy, and inflammation in rat livers. J. Med. Food, 2011, 14(7-8), 746-755.
[http://dx.doi.org/10.1089/jmf.2010.1459] [PMID: 21761987]
[35]
Rajeshkumar, N.V.; Pillai, M.R.; Kuttan, R. Induction of apoptosis in mouse and human carcinoma cell lines by Emblica officinalis polyphenols and its effect on chemical carcinogenesis. J. Exp. Clin. Cancer Res., 2003, 22(2), 201-212.
[PMID: 12866570]
[36]
Sultana, S.; Ahmed, S.; Jahangir, T. Emblica officinalis and hepatocarcinogenesis: A chemopreventive study in Wistar rats. J. Ethnopharmacol., 2008, 118(1), 1-6.
[http://dx.doi.org/10.1016/j.jep.2007.04.021] [PMID: 18467048]
[37]
Sultana, S.; Ahmed, S.; Sharma, S.; Jahangir, T. Emblica officinalis reverses thioacetamide-induced oxidative stress and early promotional events of primary hepatocarcinogenesis. J. Pharm. Pharmacol., 2004, 56(12), 1573-1579.
[http://dx.doi.org/10.1211/0022357044931] [PMID: 15586980]
[38]
Singh, I.; Sharma, A.; Nunia, V.; Goyal, P.K. Radioprotection of Swiss albino mice by Emblica officinalis. Phytother. Res., 2005, 19(5), 444-446.
[http://dx.doi.org/10.1002/ptr.1600] [PMID: 16106381]
[39]
Singh, I.; Sharma, A.; Jindal, A.; Soyal, D.; Goyal, P.K. Fruit extract of Emblica officinalis (amla) protects radiation induced biochemical lesions in the brain of swiss albino mice. Ann. Neurosci., 2006, 13(3), 65-71.
[http://dx.doi.org/10.5214/ans.0972.7531.2006.130302]
[40]
Hari Kumar, K.B.; Sabu, M.C.; Lima, P.S.; Kuttan, R. Modulation of haematopoetic system and antioxidant enzymes by Emblica officinalis gaertn and its protective role against gamma-radiation induced damages in mice. J. Radiat. Res. (Tokyo), 2004, 45(4), 549-555.
[http://dx.doi.org/10.1269/jrr.45.549] [PMID: 15635265]
[41]
Jindal, A.; Soyal, D.; Sharma, A.; Goyal, P.K. Protective effect of an extract of Emblica officinalis against radiation-induced damage in mice. Integr. Cancer Ther., 2009, 8(1), 98-105.
[http://dx.doi.org/10.1177/1534735409331455] [PMID: 19223372]
[42]
Bhattacharya, S.; Subramanian, M.; Kamat, J.P.; Bandyopadhyay, S.K.; Chattopadhyay, S. Radioprotective property of Emblica officinalis fruit ethanol extract. Pharm. Biol., 2006, 44(9), 682-690.
[http://dx.doi.org/10.1080/13880200601009131]
[43]
Sharma, N.; Trikha, P.; Athar, M.; Raisuddin, S. Inhibitory effect of Emblica officinalis on the in vivo clastogenicity of benzo[a]pyrene and cyclophosphamide in mice. Hum. Exp. Toxicol., 2000, 19(6), 377-384.
[http://dx.doi.org/10.1191/096032700678815945] [PMID: 10962512]
[44]
Dhir, H.; Roy, A.K.; Sharma, A.; Talukder, G. Modification of clastogenicity of lead and aluminium in mouse bone marrow cells by dietary ingestion of Phyllanthus emblica fruit extract. Mutat. Res., 1990, 241(3), 305-312.
[http://dx.doi.org/10.1016/0165-1218(90)90029-2] [PMID: 2366810]
[45]
Biswas, S.; Talukder, G.; Sharma, A. Protection against cytotoxic effects of arsenic by dietary supplementation with crude extract of Emblica officinalis fruit. Phytother. Res., 1999, 13(6), 513-516.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199909)13:6<513:AID-PTR525>3.0.CO;2-6] [PMID: 10479764]
[46]
Ghosh, A.; Sharma, A.; Talukder, G. Relative protection given by extract of Phyllanthus emblica fruit and an equivalent amount of vitamin C against a known clastogen--caesium chloride. Food Chem. Toxicol., 1992, 30(10), 865-869.
[http://dx.doi.org/10.1016/0278-6915(92)90052-M] [PMID: 1427509]
[47]
Dhir, H.; Agarwal, K.; Sharma, A.; Talukder, G. Modifying role of Phyllanthus emblica and ascorbic acid against nickel clastogenicity in mice. Cancer Lett., 1991, 59(1), 9-18.
[http://dx.doi.org/10.1016/0304-3835(91)90129-6] [PMID: 1878862]
[48]
Sai Ram, M.; Neetu, D.; Deepti, P.; Vandana, M.; Ilavazhagan, G.; Kumar, D.; Selvamurthy, W. Cytoprotective activity of Amla (Emblica officinalis) against chromium (VI) induced oxidative injury in murine macrophages. Phytother. Res., 2003, 17(4), 430-433.
[http://dx.doi.org/10.1002/ptr.1157] [PMID: 12722158]
[49]
Nandi, P.; Talukder, G.; Sharma, A. Dietary chemoprevention of clastogenic effects of 3,4-benzo(a)pyrene by Emblica officinalis Gaertn. fruit extract. Br. J. Cancer, 1997, 76(10), 1279-1283.
[http://dx.doi.org/10.1038/bjc.1997.548] [PMID: 9374371]
[50]
Banu, S.M.; Selvendiran, K.; Singh, J.P.V.; Sakthisekaran, D. Protective effect of Emblica officinalis ethanolic extract against 7,12-dimethylbenz(a) anthracene (DMBA) induced genotoxicity in Swiss albino mice. Hum. Exp. Toxicol., 2004, 23(11), 527-531.
[http://dx.doi.org/10.1191/0960327104ht484oa] [PMID: 15625778]
[51]
Haque, R.; Bin-Hafeez, B.; Ahmad, I.; Parvez, S.; Pandey, S.; Raisuddin, S. Protective effects of Emblica officinalis Gaertn. in cyclophosphamide-treated mice. Hum. Exp. Toxicol., 2001, 20(12), 643-650.
[http://dx.doi.org/10.1191/096032701718890568] [PMID: 11936579]
[52]
Nair, G.G.; Nair, C.K. Radioprotective effects of gallic acid in mice. BioMed Res. Int., 2013, 2013953079
[http://dx.doi.org/10.1155/2013/953079] [PMID: 24069607]
[53]
Ow, Y.Y.; Stupans, I. Gallic acid and gallic acid derivatives: Effects on drug metabolizing enzymes. Curr. Drug Metab., 2003, 4(3), 241-248.
[http://dx.doi.org/10.2174/1389200033489479] [PMID: 12769668]
[54]
Kang, K.A.; Lee, I.K.; Zhang, R.; Piao, M.J.; Kim, K.C.; Kim, S.Y.; Shin, T.; Kim, B.J.; Lee, N.H.; Hyun, J.W. Radioprotective effect of geraniin via the inhibition of apoptosis triggered by γ-radiation-induced oxidative stress. Cell Biol. Toxicol., 2011, 27(2), 83-94.
[http://dx.doi.org/10.1007/s10565-010-9172-4] [PMID: 20680428]
[55]
Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother., 2018, 99, 43-50.
[http://dx.doi.org/10.1016/j.biopha.2018.01.030] [PMID: 29324311]
[56]
Nemavarkar, P.; Chourasia, B.K.; Pasupathy, K. Evaluation of radioprotective action of compounds using Saccharomyces cerevisiae. J. Environ. Pathol. Toxicol. Oncol., 2004, 23(2), 145-151.
[http://dx.doi.org/10.1615/JEnvPathToxOncol.v23.i2.70] [PMID: 15163293]
[57]
Ahire, V.; Kumar, A.; Mishra, K.P.; Kulkarni, G. Ellagic acid enhances apoptotic sensitivity of breast cancer cells to γ-radiation. Nutr. Cancer, 2017, 69(6), 904-910.
[http://dx.doi.org/10.1080/01635581.2017.1339811] [PMID: 28718725]
[58]
Bhosle, S.M.; Huilgol, N.G.; Mishra, K.P. Enhancement of radiation-induced oxidative stress and cytotoxicity in tumor cells by ellagic acid. Clin. Chim. Acta, 2005, 359(1-2), 89-100.
[http://dx.doi.org/10.1016/j.cccn.2005.03.037] [PMID: 15922998]
[59]
Priyadarsini, K.I.; Khopde, S.M.; Kumar, S.S.; Mohan, H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J. Agric. Food Chem., 2002, 50(7), 2200-2206.
[http://dx.doi.org/10.1021/jf011275g] [PMID: 11902978]
[60]
Benković, V.; Knezević, A.H.; Dikić, D.; Lisicić, D.; Orsolić, N.; Basić, I.; Kopjar, N. Radioprotective effects of quercetin and ethanolic extract of propolis in gamma-irradiated mice. Arh. Hig. Rada Toksikol., 2009, 60(2), 129-138.
[http://dx.doi.org/10.2478/10004-1254-60-2009-1908] [PMID: 19581205]
[61]
Benkovic, V.; Knezevic, A.H.; Dikic, D.; Lisicic, D.; Orsolic, N.; Basic, I.; Kosalec, I.; Kopjar, N. Radioprotective effects of propolis and quercetin in gamma-irradiated mice evaluated by the alkaline comet assay. Phytomedicine, 2008, 15(10), 851-858.
[http://dx.doi.org/10.1016/j.phymed.2008.02.010] [PMID: 18424105]
[62]
Devipriya, N.; Sudheer, A.R.; Srinivasan, M.; Menon, V.P. Quercetin ameliorates gamma radiation-induced DNA damage and biochemical changes in human peripheral blood lymphocytes. Mutat. Res., 2008, 654(1), 1-7.
[http://dx.doi.org/10.1016/j.mrgentox.2008.03.003] [PMID: 18436471]
[63]
Mashhadi Akbar Boojar, M. An overview of the cellular mechanisms of flavonoids radioprotective effects. Adv. Pharm. Bull., 2020, 10(1), 13-19.
[http://dx.doi.org/10.15171/apb.2020.002] [PMID: 32002357]
[64]
Baliga, M.S. Anticancer, chemopreventive and radioprotective potential of black plum (Eugenia jambolana lam.). Asian Pac. J. Cancer Prev., 2011, 12(1), 3-15.
[PMID: 21517226]
[65]
Baliga, M.S.; Bhat, H.P.; Baliga, B.R.V.; Wilson, R.; Palatty, P.L. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): A review. Food Res. Int., 2011, 44(7), 1776-1789.
[http://dx.doi.org/10.1016/j.foodres.2011.02.007]
[66]
Chhikara, N.; Kaur, R.; Jaglan, S.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds and pharmacological and food applications of Syzygium cumini - a review. Food Funct., 2018, 9(12), 6096-6115.
[http://dx.doi.org/10.1039/C8FO00654G] [PMID: 30379170]
[67]
Srivastava, S.; Chandra, D. Pharmacological potentials of Syzygium cumini: A review. J. Sci. Food Agric., 2013, 93(9), 2084-2093.
[http://dx.doi.org/10.1002/jsfa.6111] [PMID: 23460190]
[68]
Aqil, F.; Gupta, A.; Munagala, R.; Jeyabalan, J.; Kausar, H.; Sharma, R.J.; Singh, I.P.; Gupta, R.C. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry). Nutr. Cancer, 2012, 64(3), 428-438.
[http://dx.doi.org/10.1080/01635581.2012.657766] [PMID: 22420901]
[69]
Parmar, J.; Sharma, P.; Verma, P.; Goyal, P.K. Chemopreventive action of Syzygium cumini on DMBA-induced skin papillomagenesis in mice. Asian Pac. J. Cancer Prev., 2010, 11(1), 261-265.
[PMID: 20593968]
[70]
Parmar, J.; Sharma, P.; Verma, P.; Sharma, P.; Goyal, P.K. Elimination of deleterious effects of DMBA-induced skin carcinogenesis in mice by Syzygium cumini seed extract. Integr. Cancer Ther., 2011, 10(3), 289-297.
[http://dx.doi.org/10.1177/1534735410385112] [PMID: 21147816]
[71]
Goyal, P.K.; Verma, P.; Sharma, P.; Parmar, J.; Agarwal, A. Evaluation of anti-cancer and anti-oxidative potential of Syzygium Cumini against benzo[a]pyrene (BaP) induced gastric carcinogenesis in mice. Asian Pac. J. Cancer Prev., 2010, 11(3), 753-758.
[PMID: 21039048]
[72]
Benherlal, P.S.; Arumughan, C. Chemical composition and in vitro antioxidant studies on Syzygium cumini fruit. J. Sci. Food Agric., 2007, 87(14), 2560-2569.
[http://dx.doi.org/10.1002/jsfa.2957] [PMID: 20836162]
[73]
Islam, S.; Nasrin, S.; Khan, M.A.; Hossain, A.S.; Islam, F.; Khandokhar, P.; Mollah, M.N.; Rashid, M.; Sadik, G.; Rahman, M.A.; Alam, A.H. Evaluation of antioxidant and anticancer properties of the seed extracts of Syzygium fruticosum Roxb. growing in Rajshahi, Bangladesh. BMC Complement. Altern. Med., 2013, 13, 142.
[http://dx.doi.org/10.1186/1472-6882-13-142] [PMID: 23800021]
[74]
Soubir, T. Antioxidant activities of some local bangladeshi fruits (Artocarpus heterophyllus, Annona squamosa, Terminalia bellirica, Syzygium samarangense, Averrhoa carambola and Olea europa). Sheng Wu Gong Cheng Xue Bao, 2007, 23(2), 257-261.
[PMID: 17460898]
[75]
Tanwar, R.S.; Sharma, S.B.; Prabhu, K.M. In vivo assessment of antidiabetic and antioxidative activity of natural phytochemical isolated from fruit-pulp of Eugenia jambolana in streptozotocin-induced diabetic rats. Redox Rep., 2017, 22(6), 301-307.
[http://dx.doi.org/10.1080/13510002.2016.1229892] [PMID: 27654810]
[76]
Saxena, S.; Gautam, S.; Sharma, A. Comparative evaluation of antimutagenicity of commonly consumed fruits and activity-guided identification of bioactive principles from the most potent fruit, Java plum (Syzygium cumini). J. Agric. Food Chem., 2013, 61(42), 10033-10042.
[http://dx.doi.org/10.1021/jf403005x] [PMID: 24073660]
[77]
Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J.K. Eugenia jambolana (java plum) fruit extract exhibits anti-cancer activity against early stage human hct-116 colon cancer cells and colon cancer stem cells. Cancers (Basel), 2016, 8(3)E29
[http://dx.doi.org/10.3390/cancers8030029] [PMID: 26927179]
[78]
Li, L.; Adams, L.S.; Chen, S.; Killian, C.; Ahmed, A.; Seeram, N.P. Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J. Agric. Food Chem., 2009, 57(3), 826-831.
[http://dx.doi.org/10.1021/jf803407q] [PMID: 19166352]
[79]
Vuolo, M.M.; Batista, A.G.; Biasoto, A.C.T.; Correa, L.C.; Júnior, M.R.M.; Liu, R.H. Red-jambo peel extract shows antiproliferative activity against HepG2 human hepatoma cells. Food Res. Int., 2019, 124, 93-100.
[http://dx.doi.org/10.1016/j.foodres.2018.08.040] [PMID: 31466655]
[80]
Chaturvedi, A.; Bhawani, G.; Agarwal, P.K.; Goel, S.; Singh, A.; Goel, R.K. Antidiabetic and antiulcer effects of extract of Eugenia jambolana seed in mild diabetic rats: Study on gastric mucosal offensive acid-pepsin secretion. Indian J. Physiol. Pharmacol., 2009, 53(2), 137-146.
[PMID: 20112817]
[81]
Sharma, S.B.; Nasir, A.; Prabhu, K.M.; Murthy, P.S. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J. Ethnopharmacol., 2006, 104(3), 367-373.
[http://dx.doi.org/10.1016/j.jep.2005.10.033] [PMID: 16386863]
[82]
Srikanta, A.H.; Kumar, A.; Sukhdeo, S.V.; Peddha, M.S.; Govindaswamy, V. The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin-induced diabetic Wistar rats. Food Funct., 2016, 7(10), 4422-4431.
[http://dx.doi.org/10.1039/C6FO00372A] [PMID: 27711821]
[83]
Xu, J.; Liu, T.; Li, Y.; Yuan, C.; Ma, H.; Seeram, N.P.; Liu, F.; Mu, Y.; Huang, X.; Li, L. Hypoglycemic and hypolipidemic effects of triterpenoid-enriched Jamun (Eugenia jambolana Lam.) fruit extract in streptozotocin-induced type 1 diabetic mice. Food Funct., 2018, 9(6), 3330-3337.
[http://dx.doi.org/10.1039/C8FO00095F] [PMID: 29808185]
[84]
Yadav, M.; Lavania, A.; Tomar, R.; Prasad, G.B.; Jain, S.; Yadav, H. Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Appl. Biochem. Biotechnol., 2010, 160(8), 2388-2400.
[http://dx.doi.org/10.1007/s12010-009-8799-1] [PMID: 19904502]
[85]
Yousaf, S.; Hussain, A.; Rehman, S.; Aslam, M.S.; Abbas, Z. Hypoglycemic and hypolipidemic effects of Lactobacillus fermentum, fruit extracts of Syzygium cumini and Momordica charantia on diabetes induced mice. Pak. J. Pharm. Sci., 2016, 29(5), 1535-1540.
[PMID: 27731809]
[86]
Bilal, R.; Zakaria, M.; Usman, A.; Aftab, S.; Zia, A. Antihyperlipidaemic effects of Eugenia jambolana fruit in diet induced hyperlipidaemic rats. J. Pak. Med. Assoc., 2011, 61(5), 433-437.
[PMID: 22204172]
[87]
Sharma, S.B.; Tanwar, R.S.; Nasir, A.; Prabhu, K.M. Antihyperlipidemic effect of active principle isolated from seed of Eugenia jambolana on alloxan-induced diabetic rabbits. J. Med. Food, 2011, 14(4), 353-359.
[http://dx.doi.org/10.1089/jmf.2010.1227] [PMID: 21370965]
[88]
Tanwar, R.S.; Sharma, S.B.; Singh, U.R.; Prabhu, K.M. Antiatherosclerotic potential of active principle isolated from eugenia jambolana in streptozotocin-induced diabetic rats. Evid. Based Complement. Alternat. Med., 2011, 2011127641
[http://dx.doi.org/10.1155/2011/127641] [PMID: 21584267]
[89]
Veigas, J.M.; Shrivasthava, R.; Neelwarne, B. Efficient amelioration of carbon tetrachloride induced toxicity in isolated rat hepatocytes by Syzygium cumini Skeels extract. Toxicol. In Vitro, 2008, 22(6), 1440-1446.
[http://dx.doi.org/10.1016/j.tiv.2008.04.015] [PMID: 18538978]
[90]
Donepudi, A.C.; Aleksunes, L.M.; Driscoll, M.V.; Seeram, N.P.; Slitt, A.L. The traditional ayurvedic medicine, Eugenia jambolana (Jamun fruit), decreases liver inflammation, injury and fibrosis during cholestasis. Liver Int., 2012, 32(4), 560-573.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02724.x] [PMID: 22212619]
[91]
Atale, N.; Chakraborty, M.; Mohanty, S.; Bhattacharya, S.; Nigam, D.; Sharma, M.; Rani, V. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovasc. Toxicol., 2013, 13(3), 278-289.
[http://dx.doi.org/10.1007/s12012-013-9207-1] [PMID: 23512199]
[92]
Shukla, S.K.; Sharma, S.B.; Singh, U.R.; Ahmad, S.; Maheshwari, A.; Misro, M.; Dwivedi, S. Eugenia jambolana pretreatment prevents isoproterenol-induced myocardial damage in rats: Evidence from biochemical, molecular, and histopathological studies. J. Med. Food, 2014, 17(2), 244-253.
[http://dx.doi.org/10.1089/jmf.2013.2795] [PMID: 24325453]
[93]
Jagetia, G.C.; Baliga, M.S.; Venkatesh, P. Influence of seed extract of Syzygium Cumini (Jamun) on mice exposed to different doses of gamma-radiation. J. Radiat. Res. (Tokyo), 2005, 46(1), 59-65.
[http://dx.doi.org/10.1269/jrr.46.59] [PMID: 15802860]
[94]
Jagetia, G.C.; Baliga, M.S. Syzygium cumini (Jamun) reduces the radiation-induced DNA damage in the cultured human peripheral blood lymphocytes: A preliminary study. Toxicol. Lett., 2002, 132(1), 19-25.
[http://dx.doi.org/10.1016/S0378-4274(02)00032-2] [PMID: 12084616]
[95]
Jagetia, G.C.; Baliga, M.S. Evaluation of the radioprotective effect of the leaf extract of Syzygium cumini (Jamun) in mice exposed to a lethal dose of gamma-irradiation. Nahrung, 2003, 47(3), 181-185.
[http://dx.doi.org/10.1002/food.200390042] [PMID: 12866620]
[96]
Kim, H.M.; Kim, S.H.; Kang, B.S. Radioprotective effects of delphinidin on normal human lung cells against proton beam exposure. Nutr. Res. Pract., 2018, 12(1), 41-46.
[http://dx.doi.org/10.4162/nrp.2018.12.1.41] [PMID: 29399295]
[97]
Mehmood, A.; Ishaq, M.; Usman, M.; Zhao, L.; Ullah, A.; Wang, C. Nutraceutical perspectives and value addition of phalsa (Grewia asiatica L.): A review. J. Food Biochem., 2020, 44(7)e13228
[http://dx.doi.org/10.1111/jfbc.13228] [PMID: 32320069]
[98]
Shukla, R.; Sharma, D.C.; Baig, M.H.; Bano, S.; Roy, S.; Provazník, I.; Kamal, M.A. Antioxidant, antimicrobial activity and medicinal properties of Grewia asiatica L. Med. Chem., 2016, 12(3), 211-216.
[http://dx.doi.org/10.2174/1573406411666151030110530] [PMID: 26516779]
[99]
Zia-Ul-Haq, M.; Stanković, M.S.; Rizwan, K.; Feo, V.D. Grewia asiatica L., a food plant with multiple uses. Molecules, 2013, 18(3), 2663-2682.
[http://dx.doi.org/10.3390/molecules18032663] [PMID: 23449066]
[100]
Khatune, N.A.; Rahman, B.M.; Barman, R.K.; Wahed, M.I. Antidiabetic, antihyperlipidemic and antioxidant properties of ethanol extract of Grewia asiatica Linn. bark in alloxan-induced diabetic rats. BMC Complement. Altern. Med., 2016, 16, 295.
[http://dx.doi.org/10.1186/s12906-016-1276-9] [PMID: 27538464]
[101]
Khattab, H.A.; El-Shitany, N.A.; Abdallah, I.Z.; Yousef, F.M.; Alkreathy, H.M. Antihyperglycemic potential of Grewia asiatica fruit extract against streptozotocin-induced hyperglycemia in rats: Anti-inflammatory and antioxidant mechanisms. Oxid. Med. Cell. Longev., 2015, 2015549743
[http://dx.doi.org/10.1155/2015/549743] [PMID: 26347423]
[102]
Akhtar, B.; Ashraf, M.; Javeed, A.; Sharif, A.; Akhtar, M.F.; Saleem, A.; Hamid, I.; Alvi, S.; Murtaza, G. Analgesic, antipyretic and anti-inflammatory activities of Grewia asiatica fruit extracts in albino mice. Acta Pol. Pharm., 2016, 73(4), 983-989.
[PMID: 29648724]
[103]
Sharma, K.K.; Singh, S.; Sisodia, R. Radioprotective effect of fruit extract of Grewia asiatica in swiss albino mice against lethal dose of γ-irradiation. Asian J Exp Sci., 2007, 21, 297-310.
[104]
Sharma, K.V.; Sisodia, R. Radioprotective role of Grewia asiatica in mice blood. Pharmacologyonline, 2007, 2, 32-43.
[105]
Sharma, K.V.; Sisodia, R. Hepatoprotective efficacy of Grewia asiatica fruit against oxidative stress in swiss albino mice. Int J Radiat Res., 2010, 8(2), 75-85.
[106]
Sisodia, R.; Ahaskar, M.; Sharma, K.V.; Singh, S. Modulation of radiation-induced biochemical changes in cerebrum of Swiss albino mice by Grewia asiatica. Acta Neurobiol. Exp. (Warsz.), 2008, 68(1), 32-38.
[PMID: 18389012]
[107]
Sisodia, R.; Singh, S. Biochemical, behavioural and quantitative alterations in cerebellum of Swiss albino mice following irradiation and its modulation by Grewia asiatica. Int. J. Radiat. Biol., 2009, 85(9), 787-795.
[http://dx.doi.org/10.1080/09553000903009555] [PMID: 19657863]
[108]
Sisodia, R.; Singh, S.; Sharma, K.V.; Ahaskar, M. Post treatment effect of Grewia asiatica against radiation-induced biochemical alterations in Swiss albino mice. J. Environ. Pathol. Toxicol. Oncol., 2008, 27(2), 113-121.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v27.i2.40] [PMID: 18540847]
[109]
Shah, K.A.; Patel, M.B.; Patel, R.J.; Parmar, P.K. Mangifera indica (mango). Pharmacogn. Rev., 2010, 4(7), 42-48.
[http://dx.doi.org/10.4103/0973-7847.65325] [PMID: 22228940]
[110]
Tharanathan, R.N.; Yashoda, H.M.; Prabha, T.N. Mango (Mangifera indica L.), “The king of fruits” - an overview. Food Rev. Int., 2006, 22(2), 95-123.
[http://dx.doi.org/10.1080/87559120600574493]
[111]
Baliga, M.S.; Rao, S.; Rao, P. Krishnaprasad; Hegde, SK.; Akbar, KCJ. Use of indian indigenous fruits in cancer prevention and treatment.Anticancer plants: Properties and application; Akhtar, M; Swamy, M., Ed.; Springer: Singapore, 2018, pp. 57-76.
[http://dx.doi.org/10.1007/978-981-10-8548-2_3]
[112]
Iyer, C.P.A.; Degani, C. Classical breeding and genetics.The mango, botany, production and uses; Lr, E., Ed.; CAB International: Wallingford, UK, 1997.
[113]
Morton, J.F.; Dowling, C.F. Mango.Fruits of warm climates; Morton, J.F.Ed.; Creative Resources Systems: ; Miami, FL, USA, 1987, pp. 221-239.
[114]
Jagetia, G.C.; Baliga, M.S. Radioprotection by mangiferin in DBAxC57BL mice: A preliminary study. Phytomedicine, 2005, 12(3), 209-215.
[http://dx.doi.org/10.1016/j.phymed.2003.08.003] [PMID: 15830843]
[115]
Lei, J.; Zhou, C.; Hu, H.; Hu, L.; Zhao, M.; Yang, Y.; Chuai, Y.; Ni, J.; Cai, J. Mangiferin aglycone attenuates radiation-induced damage on human intestinal epithelial cells. J. Cell. Biochem., 2012, 113(8), 2633-2642.
[http://dx.doi.org/10.1002/jcb.24138] [PMID: 22422649]
[116]
Jagetia, G.C.; Venkatesha, V.A. Effect of mangiferin on radiation-induced micronucleus formation in cultured human peripheral blood lymphocytes. Environ. Mol. Mutagen., 2005, 46(1), 12-21.
[http://dx.doi.org/10.1002/em.20124] [PMID: 15795888]
[117]
Menkovic, N.; Juranic, Z.; Stanojkovic, T.; Raonic-Stevanovic, T.; Savikin, K.; Zdunić, G.; Borojevic, N. Radioprotective activity of Gentiana lutea extract and mangiferin. Phytother. Res., 2010, 24(11), 1693-1696.
[http://dx.doi.org/10.1002/ptr.3225] [PMID: 21031630]
[118]
Mu, F.; Liu, T.; Zheng, H.; Xie, X.; Lei, T.; He, X.; Du, S.; Tong, R.; Wang, Y. Mangiferin induces radiosensitization in glioblastoma cells by inhibiting nonhomologous end joining. Oncol. Rep., 2018, 40(6), 3663-3673.
[http://dx.doi.org/10.3892/or.2018.6756] [PMID: 30272350]
[119]
Kapinova, A.; Kubatka, P.; Golubnitschaja, O.; Kello, M.; Zubor, P.; Solar, P.; Pec, M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med., 2018, 23(1), 36.
[http://dx.doi.org/10.1186/s12199-018-0724-1] [PMID: 30092754]
[120]
Kapinova, A.; Stefanicka, P.; Kubatka, P.; Zubor, P.; Uramova, S.; Kello, M.; Mojzis, J.; Blahutova, D.; Qaradakhi, T.; Zulli, A.; Caprnda, M.; Danko, J.; Lasabova, Z.; Busselberg, D.; Kruzliak, P. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed. Pharmacother., 2017, 96, 1465-1477.
[http://dx.doi.org/10.1016/j.biopha.2017.11.134] [PMID: 29198744]
[121]
Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 517S-520S.
[http://dx.doi.org/10.1093/ajcn/78.3.517S] [PMID: 12936943]
[122]
Phan, M.A.T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1310-1329.
[http://dx.doi.org/10.1080/10408398.2016.1254595] [PMID: 27880063]
[123]
Thomas, B.; Devi, P.U. Chromosome protection by WR-2721 and MPG-single and combination treatments. Strahlenther. Onkol., 1987, 163(12), 807-810.
[PMID: 2827332]
[124]
Uma Devi, P.; Prasanna, P.G. Radioprotective effect of combinations of WR-2721 and mercaptopropionylglycine on mouse bone marrow chromosomes. Radiat. Res., 1990, 124(2), 165-170.
[http://dx.doi.org/10.2307/3577861] [PMID: 2174174]
[125]
Prasanna, P.G.; Uma Devi, P. Modification of WR-2721 radiation protection from gastrointestinal injury and death in mice by 2-mercaptopropionylglycine. Radiat. Res., 1993, 133(1), 111-115.
[http://dx.doi.org/10.2307/3578265] [PMID: 8381976]
[126]
Bisht, K.S.; Uma Devi, P.; Jagetia, G.C.; Kamath, G. Drug combination against single drug treatment in radiation protection of the bone marrow CFU. Strahlenther. Onkol., 1990, 166(8), 545-548.
[PMID: 2168583]
[127]
Singh, A. A note on variation of active principles in indian medicinal plants and tim formulations. Ethnobotanical Leaflets., 2008, 12, 603-606.
[128]
Gholkar, M.S.; Laddha, K.S. Seasonal variation in the content of mangiferin in leaves of mangifera indica L. Int. J. Pharm. Pharm. Sci., 2015, 7(2), 578-580..

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy