Review Article

用于超声成像和靶向治疗的生物气泡

卷 29, 期 8, 2022

发表于: 05 July, 2021

页: [1316 - 1330] 页: 15

弟呕挨: 10.2174/0929867328666210705145642

价格: $65

摘要

超声不仅因其实时、无辐射、便携和低成本等优点而成为应用最广泛的医学影像诊断方式,而且通过产生一系列强大的生物效应,是一种很有前途的靶向药物/基因传递技术。微米级或纳米级超声试剂或递送载体的发展进一步使超声成为准确诊断和有效治疗的独特方式。在这篇综述中,我们介绍了一种独特的生物气体填充蛋白质纳米结构,称为气体囊泡,它具有一些超越传统微泡的独特特性。囊泡不仅可以作为超声造影剂,通过交叉调幅谐波成像等创新成像方法,还可以通过基因工程技术进一步调整和优化。此外,它们不仅可以作为声学基因报告器、声学生物传感器来监测细胞代谢,还可以作为空化核和药物载体用于治疗目的。我们重点介绍了超声成像和靶向治疗领域的最新发展和应用,并简要介绍了相应的机制。总之,这些生物气泡比传统的 MBs 具有一些优势,值得付出更多努力来促进它们的发展。

关键词: 超声成像、气体囊泡、声学报告基因、基因工程、空化、药物输送

[1]
Mitragotri, S. Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov., 2005, 4(3), 255-260.
[http://dx.doi.org/10.1038/nrd1662] [PMID: 15738980]
[2]
Liu, J.; Levine, A.L.; Mattoon, J.S.; Yamaguchi, M.; Lee, R.J.; Pan, X.; Rosol, T.J. Nanoparticles as image enhancing agents for ultrasonography. Phys. Med. Biol., 2006, 51(9), 2179-2189.
[http://dx.doi.org/10.1088/0031-9155/51/9/004] [PMID: 16625034]
[3]
Mulvagh, S.L.; DeMaria, A.N.; Feinstein, S.B.; Burns, P.N.; Kaul, S.; Miller, J.G.; Monaghan, M.; Porter, T.R.; Shaw, L.J.; Villanueva, F.S. Contrast echocardiography: Current and future applications. J. Am. Soc. Echocardiogr., 2000, 13(4), 331-342.
[http://dx.doi.org/10.1067/mje.2000.105462] [PMID: 10756254]
[4]
Gao, Z.; Kennedy, A.M.; Christensen, D.A.; Rapoport, N.Y. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics, 2008, 48(4), 260-270.
[http://dx.doi.org/10.1016/j.ultras.2007.11.002] [PMID: 18096196]
[5]
Nahire, R.; Haldar, M.K.; Paul, S.; Mergoum, A.; Ambre, A.H.; Katti, K.S.; Gange, K.N.; Srivastava, D.K.; Sarkar, K.; Mallik, S. Polymer-coated echogenic lipid nanoparticles with dual release triggers. Biomacromolecules, 2013, 14(3), 841-853.
[http://dx.doi.org/10.1021/bm301894z] [PMID: 23394107]
[6]
Paul, S.; Nahire, R.; Mallik, S.; Sarkar, K. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. Comput. Mech., 2014, 53(3), 413-435.
[http://dx.doi.org/10.1007/s00466-013-0962-4] [PMID: 26097272]
[7]
Blaurock, A.E.; Wober, W. Structure of the wall of Halobacterium halobium gas vesicles. J. Mol. Biol., 1976, 106(3), 871-878.
[http://dx.doi.org/10.1016/0022-2836(76)90270-9] [PMID: 978738]
[8]
Walsby, A.E. Gas vesicles. Microbiol. Rev., 1994, 58(1), 94-144.
[http://dx.doi.org/10.1128/MR.58.1.94-144.1994] [PMID: 8177173]
[9]
Klebahn, H. Gasvakuolen, ein Bastendteil der Zellen der wasserblutenbildenden Phycochromaceen.Flora oder Allgemeine Botanische Zeitung, 1895, 80, 241-82.Available at:. https://www.zobodat.at/pdf/Flora_80_0241-0282.pdf
[10]
Bowen, C.C.; Jensen, T.E. Blue-green algae. Science, 1965, 147(3664), 1460-1462.
[http://dx.doi.org/10.1126/science.147.3664.1460] [PMID: 17776627]
[11]
Gosink, J.J.; Herwig, R.P.; Staley, J.T. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst. Appl. Microbiol., 1997, 20(3), 356-365.
[http://dx.doi.org/10.1016/S0723-2020(97)80003-3]
[12]
Ramsay, J. P.; Williamson, N. R.; Spring, D. R.; Salmond, G. P. C. A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium., 2011, 108(36), 14932-14937.
[http://dx.doi.org/10.1073/pnas.1109169108]
[13]
Li, N.; Cannon, M.C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol., 1998, 180(9), 2450-2458.
[http://dx.doi.org/10.1128/JB.180.9.2450-2458.1998] [PMID: 9573198]
[14]
Huang, R.; Lin, J.; Gao, D.; Zhang, F.; Yi, L.; Huang, Y.; Yan, X.; Duan, Y.; Zhu, X. Discovery of gas vesicles in Streptomyces sp. CB03234-S and potential effects of gas vesicle gene overexpression on morphological and metabolic changes in streptomycetes. Appl. Microbiol. Biotechnol., 2019, 103(14), 5751-5761.
[http://dx.doi.org/10.1007/s00253-019-09891-z] [PMID: 31115635]
[15]
Houwink, A.L. Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J. Gen. Microbiol., 1956, 15(1), 146-150.
[http://dx.doi.org/10.1099/00221287-15-1-146] [PMID: 13357722]
[16]
Englert, C.; Horne, M.; Pfeifer, F. Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol. Gen. Genet., 1990, 222(2-3), 225-232.
[http://dx.doi.org/10.1007/BF00633822] [PMID: 1703266]
[17]
Walsby, A.E. A square bacterium. Nature, 1980, 283(5742), 69-71.
[http://dx.doi.org/10.1038/283069a0]
[18]
Tashiro, Y.; Monson, R.E.; Ramsay, J.P.; Salmond, G.P.C. Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria. Environ. Microbiol., 2016, 18(4), 1264-1276.
[http://dx.doi.org/10.1111/1462-2920.13203] [PMID: 26743231]
[19]
Walsby, A.E. The mechanical properties of the Microcystis gas vesicle. J. Gen. Microbiol., 1991, 137(10), 2401-2408.
[http://dx.doi.org/10.1099/00221287-137-10-2401]
[20]
Lakshmanan, A.; Lu, G.J.; Farhadi, A.; Nety, S.P.; Kunth, M.; Lee-Gosselin, A.; Maresca, D.; Bourdeau, R.W.; Yin, M.; Yan, J.; Witte, C.; Malounda, D.; Foster, F.S.; Schröder, L.; Shapiro, M.G. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protoc., 2017, 12(10), 2050-2080.
[http://dx.doi.org/10.1038/nprot.2017.081] [PMID: 28880278]
[21]
Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol., 2012, 10(10), 705-715.
[http://dx.doi.org/10.1038/nrmicro2834] [PMID: 22941504]
[22]
Hill, A.M.; Salmond, G.P.C. Microbial gas vesicles as nanotechnology tools: Exploiting intracellular organelles for translational utility in biotechnology, medicine and the environment. Microbiology (Reading), 2020, 166(6), 501-509.
[http://dx.doi.org/10.1099/mic.0.000912] [PMID: 32324529]
[23]
Cai, K.; Xu, B.Y.; Jiang, Y.L.; Wang, Y.; Chen, Y.; Zhou, C.Z.; Li, Q. The model cyanobacteria Anabaena sp. PCC 7120 possess an intact but partially degenerated gene cluster encoding gas vesicles. BMC Microbiol., 2020, 20(1), 110.
[http://dx.doi.org/10.1186/s12866-020-01805-8] [PMID: 32375647]
[24]
Leclercq, D.J.J.; Hobson, C.Q.H. P.; Dickson, S.; Zander M. Burch, A.C. Controlling cyanobacteria with ultrasound. Inter-noise and noise-con congress and conference proceedings, 2014, pp. 4457-4466.
[25]
Belenky, M.; Meyers, R.; Herzfeld, J. Subunit structure of gas vesicles: a MALDI-TOF mass spectrometry study. Biophys. J., 2004, 86(1 Pt 1), 499-505.
[http://dx.doi.org/10.1016/S0006-3495(04)74128-4] [PMID: 14695294]
[26]
R. D. WIFFEN, M. J. H. Isolation and purification of intact gas vesicles from a blue-green alga.. 1969, 224, 716-717.
[27]
Sonja Offner, U.Z. Gerhard, Wanner; Dieter, Typke; Felicitas, Pfeiferl Structural characteristics of halobacterial gas vesicles. Microbiology, 1998, 144, 1331-1342.
[http://dx.doi.org/10.1099/00221287-144-5-1331]
[28]
Shapiro, M.G.; Goodwill, P.W.; Neogy, A.; Yin, M.; Foster, F.S.; Schaffer, D.V.; Conolly, S.M. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol., 2014, 9(4), 311-316.
[http://dx.doi.org/10.1038/nnano.2014.32] [PMID: 24633522]
[29]
Timbie, K.F.; Mead, B.P.; Price, R.J. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J. Control. Release, 2015, 219, 61-75.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.059] [PMID: 26362698]
[30]
Ferrara, K.; Pollard, R.; Borden, M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng., 2007, 9, 415-447.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095852] [PMID: 17651012]
[31]
Qin, S.; Ferrara, K.W. Acoustic response of compliable microvessels containing ultrasound contrast agents. Phys. Med. Biol., 2006, 51(20), 5065-5088.
[http://dx.doi.org/10.1088/0031-9155/51/20/001] [PMID: 17019026]
[32]
Walsby, A.E. The pressure relationships of gas vacuoles. Proc. R. Soc. Lond. B Biol. Sci., 1971, 178(1052), 301-326.
[http://dx.doi.org/10.1098/rspb.1971.0067]
[33]
Cherin, E.; Melis, J.M.; Bourdeau, R.W.; Yin, M.; Kochmann, D.M.; Foster, F.S.; Shapiro, M.G. Acoustic behavior of halobacterium salinarum gas vesicles in the high-frequency range: Experiments and modeling. Ultrasound Med. Biol., 2017, 43(5), 1016-1030.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.12.020] [PMID: 28258771]
[34]
Lakshmanan, A.; Farhadi, A.; Nety, S.P.; Lee-Gosselin, A.; Bourdeau, R.W.; Maresca, D.; Shapiro, M.G. Molecular engineering of acoustic protein nanostructures. ACS Nano, 2016, 10(8), 7314-7322.
[http://dx.doi.org/10.1021/acsnano.6b03364] [PMID: 27351374]
[35]
Vliegenthart, G.A.; Gompper, G. Compression, crumpling and collapse of spherical shells and capsules. New J. Phys., 2011, 13, 045020.
[http://dx.doi.org/10.1088/1367-2630/13/4/045020]]
[36]
Maresca, D.; Lakshmanan, A.; Lee-Gosselin, A.; Melis, J.M.; Ni, Y.L.; Bourdeau, R.W.; Kochmann, D.M.; Shapiro, M.G. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Appl. Phys. Lett., 2017, 110(7), 073704.
[http://dx.doi.org/10.1063/1.4976105] [PMID: 28289314]
[37]
Maresca, D.; Sawyer, D.P.; Renaud, G.; Lee-Gosselin, A.; Shapiro, M.G. Nonlinear x-wave ultrasound imaging of acoustic biomolecules. Phys. Rev. X, 2018, 8, 041002.
[http://dx.doi.org/10.1103/PhysRevX.8.041002]
[38]
Wang, G.; Song, L.; Hou, X.; Kala, S.; Wong, K.F.; Tang, L.; Dai, Y.; Sun, L. Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor. Biomaterials, 2020, 236, 119803.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119803] [PMID: 32028170]
[39]
Bourdeau, R.W.; Lee-Gosselin, A.; Lakshmanan, A.; Farhadi, A.; Kumar, S.R.; Nety, S.P.; Shapiro, M.G. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature, 2018, 553(7686), 86-90.
[http://dx.doi.org/10.1038/nature25021] [PMID: 29300010]
[40]
Farhadi, A.; Ho, G.H.; Sawyer, D.P.; Bourdeau, R.W.; Shapiro, M.G. Ultrasound imaging of gene expression in mammalian cells. Science, 2019, 365(6460), 1469-1475.
[http://dx.doi.org/10.1126/science.aax4804] [PMID: 31604277]
[41]
Hayes, P.K.; Buchholz, B.; Walsby, A.E. Gas vesicles are strengthened by the outer-surface protein. GvpC. Arch. Microbiol., 1992, 157(3), 229-234.
[http://dx.doi.org/10.1007/BF00245155] [PMID: 1510555]
[42]
Kinsman, R.; Walsby, A.E.; Hayes, P.K. GvpCs with reduced numbers of repeating sequence elements bind to and strengthen cyanobacterial gas vesicles. Mol. Microbiol., 1995, 17(1), 147-154.
[http://dx.doi.org/10.1111/j.1365-2958.1995.mmi17010147.x] [PMID: 7476201]
[43]
Tsien, R.Y. Imagining imaging’s future. Nat. Rev. Mol. Cell Biol., 2003, SS16-SS21.
[PMID: 14587522]
[44]
Ozbakir, H.F.; Anderson, N.T.; Fan, K.C.; Mukherjee, A. Beyond the green fluorescent protein: Biomolecular reporters for anaerobic and deep-tissue imaging. Bioconjug. Chem., 2020, 31(2), 293-302.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00688] [PMID: 31794658]
[45]
Heim, R.; Prasher, D.C.; Tsien, R.Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA, 1994, 91(26), 12501-12504.
[http://dx.doi.org/10.1073/pnas.91.26.12501] [PMID: 7809066]
[46]
Mukherjee, A.; Walker, J.; Weyant, K.B.; Schroeder, C.M. Characterization of flavin-based fluorescent proteins: An emerging class of fluorescent reporters. PLoS One, 2013, 8(5), e64753.
[http://dx.doi.org/10.1371/journal.pone.0064753] [PMID: 23741385]
[47]
Chia, H.E.; Marsh, E.N.G.; Biteen, J.S. Extending fluorescence microscopy into anaerobic environments. Curr. Opin. Chem. Biol., 2019, 51, 98-104.
[http://dx.doi.org/10.1016/j.cbpa.2019.05.008] [PMID: 31252372]
[48]
Lakshmanan, A.; Jin, Z.; Nety, S.P.; Sawyer, D.P.; Lee-Gosselin, A.; Malounda, D.; Swift, M.B.; Maresca, D.; Shapiro, M.G. Acoustic biosensors for ultrasound imaging of enzyme activity. Nat. Chem. Biol., 2020, 16(9), 988-996.
[http://dx.doi.org/10.1038/s41589-020-0591-0] [PMID: 32661379]
[49]
Le Floc’h, J.; Zlitni, A.; Bilton, H.A.; Yin, M.; Farhadi, A.; Janzen, N.R.; Shapiro, M.G.; Valliant, J.F.; Foster, F.S. In vivo biodistribution of radiolabeled acoustic protein nanostructures. Mol. Imaging Biol., 2018, 20(2), 230-239.
[http://dx.doi.org/10.1007/s11307-017-1122-6] [PMID: 28956265]
[50]
Maresca, D.; Payen, T.; Lee-Gosselin, A.; Ling, B.; Malounda, D.; Demené, C.; Tanter, M.; Shapiro, M.G. Acoustic biomolecules enhance hemodynamic functional ultrasound imaging of neural activity. Neuroimage, 2020, 209, 116467.
[http://dx.doi.org/10.1016/j.neuroimage.2019.116467] [PMID: 31846757]
[51]
Ling, B.; Lee, J.; Maresca, D.; Lee-Gosselin, A.; Malounda, D.; Swift, M.B.; Shapiro, M.G. Biomolecular ultrasound imaging of phagolysosomal function. ACS Nano, 2020, 14(9), 12210-12221.
[http://dx.doi.org/10.1021/acsnano.0c05912] [PMID: 32902951]
[52]
Lu, G.J.; Farhadi, A.; Szablowski, J.O.; Lee-Gosselin, A.; Barnes, S.R.; Lakshmanan, A.; Bourdeau, R.W.; Shapiro, M.G. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. Nat. Mater., 2018, 17(5), 456-463.
[http://dx.doi.org/10.1038/s41563-018-0023-7] [PMID: 29483636]
[53]
Bar-Zion, A.; Nourmahnad, A.; Mittelstein, D. R.; Yoo, S.; Malounda, D.; Abedi, M.; Lee-Gosselin, A.; Maresca, D.; Shapiro, M. G. Acoustically detonated biomolecules for genetically encodable inertial cavitation., 2019.62019.567..
[http://dx.doi.org/10.1101/620567]
[54]
Tayier, B.; Deng, Z.; Wang, Y.; Wang, W.; Mu, Y.; Yan, F. Biosynthetic nanobubbles for targeted gene delivery by focused ultrasound. Nanoscale, 2019, 11(31), 14757-14768.
[http://dx.doi.org/10.1039/C9NR03402A] [PMID: 31348476]
[55]
Song, L.; Wang, G.; Hou, X.; Kala, S.; Qiu, Z.; Wong, K.F.; Cao, F.; Sun, L. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater., 2020, 108, 313-325.
[http://dx.doi.org/10.1016/j.actbio.2020.03.034] [PMID: 32268236]
[56]
Fernando, A.; Gariépy, J. Coupling chlorin e6 to the surface of nanoscale gas vesicles strongly enhance their intracellular delivery and photodynamic killing of cancer cells. Sci. Rep., 2020, 10(1), 2802.
[http://dx.doi.org/10.1038/s41598-020-59584-1] [PMID: 32071325]
[57]
Richard, D.E.; Berra, E.; Pouysségur, J. Angiogenesis: How a tumor adapts to hypoxia. Biochem. Biophys. Res. Commun., 1999, 266(3), 718-722.
[http://dx.doi.org/10.1006/bbrc.1999.1889] [PMID: 10603309]
[58]
Rockwell, S.; Dobrucki, I.T.; Kim, E.Y.; Marrison, S.T.; Vu, V.T. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr. Mol. Med., 2009, 9(4), 442-458.
[http://dx.doi.org/10.2174/156652409788167087] [PMID: 19519402]
[59]
Postema, M.; Bouakaz, A.; ten Cate, F.J.; Schmitz, G.; de Jong, N.; van Wamel, A. Nitric oxide delivery by ultrasonic cracking: Some limitations. Ultrasonics, 2006, 44(Suppl. 1), e109-e113.
[http://dx.doi.org/10.1016/j.ultras.2006.06.003] [PMID: 16889810]
[60]
Maresca, D.; Lakshmanan, A.; Abedi, M.; Bar-Zion, A.; Farhadi, A.; Lu, G.J.; Szablowski, J.O.; Wu, D.; Yoo, S.; Shapiro, M.G. Biomolecular ultrasound and sonogenetics. Annu. Rev. Chem. Biomol. Eng., 2018, 9, 229-252.
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-084034] [PMID: 29579400]
[61]
Yu, J.; Chen, Z.; Yan, F. Advances in mechanism studies on ultrasonic gene delivery at cellular level. Prog. Biophys. Mol. Biol., 2019, 142, 1-9.
[http://dx.doi.org/10.1016/j.pbiomolbio.2018.07.012] [PMID: 30031881]
[62]
Katsuro Tachibana, T. U. Koichi, Ogawa; Nobuya, Yamashita; Kazuo, Tamura Induction of cell-membrane porosity by ultrasound. The lancet, 1999, 353(1999), 1049.
[63]
Duvshani-Eshet, M.; Haber, T.; Machluf, M. Insight concerning the mechanism of therapeutic ultrasound facilitating gene delivery: Increasing cell membrane permeability or interfering with intracellular pathways? Hum. Gene Ther., 2014, 25(2), 156-164.
[http://dx.doi.org/10.1089/hum.2013.140] [PMID: 24251908]
[64]
Helfield, B.; Chen, X.; Watkins, S.C.; Villanueva, F.S. Biophysical insight into mechanisms of sonoporation. Proc. Natl. Acad. Sci. USA, 2016, 113(36), 9983-9988.
[http://dx.doi.org/10.1073/pnas.1606915113] [PMID: 27551081]
[65]
Furusawa, Y.; Hassan, M.A.; Zhao, Q.L.; Ogawa, R.; Tabuchi, Y.; Kondo, T. Effects of therapeutic ultrasound on the nucleus and genomic DNA. Ultrason. Sonochem., 2014, 21(6), 2061-2068.
[http://dx.doi.org/10.1016/j.ultsonch.2014.02.028] [PMID: 24657073]
[66]
Guzmán, H.R.; McNamara, A.J.; Nguyen, D.X.; Prausnitz, M.R. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: A unified explanation based on cell-to-bubble ratio and blast radius. Ultrasound Med. Biol., 2003, 29(8), 1211-1222.
[http://dx.doi.org/10.1016/S0301-5629(03)00899-8] [PMID: 12946524]
[67]
Qin, P.; Han, T.; Yu, A.C.H.; Xu, L. Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery. J. Control. Release, 2018, 272, 169-181.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.001] [PMID: 29305924]
[68]
Waschke, J.; Curry, F.E.; Adamson, R.H.; Drenckhahn, D. Regulation of actin dynamics is critical for endothelial barrier functions. Am. J. Physiol. Heart Circ. Physiol., 2005, 288(3), H1296-H1305.
[http://dx.doi.org/10.1152/ajpheart.00687.2004] [PMID: 15528228]
[69]
Vercauteren, D.; Vandenbroucke, R.E.; Jones, A.T.; Rejman, J.; Demeester, J.; De Smedt, S.C.; Sanders, N.N.; Braeckmans, K. The use of inhibitors to study endocytic pathways of gene carriers: Optimization and pitfalls. Mol. Ther., 2010, 18(3), 561-569.
[http://dx.doi.org/10.1038/mt.2009.281] [PMID: 20010917]
[70]
Meijering, B.D.; Juffermans, L.J.; van Wamel, A.; Henning, R.H.; Zuhorn, I.S.; Emmer, M.; Versteilen, A.M.; Paulus, W.J.; van Gilst, W.H.; Kooiman, K.; de Jong, N.; Musters, R.J.; Deelman, L.E.; Kamp, O. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ. Res., 2009, 104(5), 679-687.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.183806] [PMID: 19168443]
[71]
Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J., 2004, 377(Pt 1), 159-169.
[http://dx.doi.org/10.1042/bj20031253] [PMID: 14505488]
[72]
Hynynen, K.; McDannold, N.; Vykhodtseva, N.; Jolesz, F.A. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology, 2001, 220(3), 640-646.
[http://dx.doi.org/10.1148/radiol.2202001804] [PMID: 11526261]
[73]
Dromi, S.; Frenkel, V.; Luk, A.; Traughber, B.; Angstadt, M.; Bur, M.; Poff, J.; Xie, J.; Libutti, S.K.; Li, K.C.; Wood, B.J. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res., 2007, 13(9), 2722-2727.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2443] [PMID: 17473205]
[74]
Rapoport, N.Y.; Kennedy, A.M.; Shea, J.E.; Scaife, C.L.; Nam, K.H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release, 2009, 138(3), 268-276.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.026] [PMID: 19477208]
[75]
Aw, M.S.; Paniwnyk, L.; Overcoming, T. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release. Biomater. Sci., 2017, 5(10), 1944-1961.
[http://dx.doi.org/10.1039/C7BM00425G] [PMID: 28776612]
[76]
Zhang, S.; Huang, A.; Bar‐Zion, A.; Wang, J.; Mena, O.V.; Shapiro, M.G.; Friend, J. The vibration behavior of sub‐micrometer gas vesicles in response to acoustic excitation determined via laser doppler vibrometry. Adv. Funct. Mater., 2020, 30(13), 2000239.
[http://dx.doi.org/10.1002/adfm.202000239]
[77]
Rayleigh, L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci., 2009, 34(200), 94-98.
[http://dx.doi.org/10.1080/14786440808635681]
[78]
Lo, C.W.; Desjouy, C.; Chen, S.R.; Lee, J.L.; Inserra, C.; Béra, J.C.; Chen, W.S. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation. Ultrason. Sonochem., 2014, 21(2), 833-839.
[http://dx.doi.org/10.1016/j.ultsonch.2013.10.017] [PMID: 24216067]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy