Review Article

GAG 多价系统与 Langerin 交互

卷 29, 期 7, 2022

发表于: 05 July, 2021

页: [1173 - 1192] 页: 20

弟呕挨: 10.2174/0929867328666210705143102

价格: $65

摘要

Langerin 是一种在朗格汉斯细胞表面表达的 C 型凝集素,在保护生物体免受病原体感染方面发挥着关键作用。为了实现这一目标,Langerin 提供了至少两个识别位点,一个依赖于 Ca2+,另一个不依赖于 Ca2+,它们能够识别多种碳水化合物配体。与其他凝集素相比,Langerin 可识别硫酸化糖胺聚糖 (GAG),这是一种存在于细胞膜和细胞外基质中的复杂且异质的多糖家族,位于以 Langerin 三聚体形式产生但在单体形式中不存在的相间。这些寡糖的复杂性阻碍了开发明确的单分散结构来研究这些相互作用过程。然而,在过去的几十年中,已经描述了合成开发的改进,以实现模拟 GAG 的碳水化合物多价系统的制备。尽管有所有这些贡献,但很少有报道使用 GAG 多价结构来评估与 Langerin 的相互作用的例子。这些分子应该为探索这些 GAG-Langerin 相互作用铺平道路。

关键词: 碳水化合物,GAG,langerin,分子识别,多价系统,NMR

[1]
Varki, A. Biological roles of glycans. Glycobiology, 2017, 27(1), 3-49.
[http://dx.doi.org/10.1093/glycob/cww086] [PMID: 27558841]
[2]
Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; Schnaar, R.L.; Seeberger, P.H. Essentials of glycobiology, 3rd ed; , 2017.
[3]
Sasisekharan, R.; Raman, R.; Prabhakar, V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annu. Rev. Biomed. Eng., 2006, 8, 181-231.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095745] [PMID: 16834555]
[4]
Sasarman, F.; Maftei, C.; Campeau, P.M.; Brunel-Guitton, C.; Mitchell, G.A.; Allard, P. Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests. J. Inherit. Metab. Dis., 2016, 39(2), 173-188.
[http://dx.doi.org/10.1007/s10545-015-9903-z] [PMID: 26689402]
[5]
Mulloy, B. Forster, M.J.; Jones, C.; Davies, D.B. N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem. J., 1993, 293(Pt 3), 849-858.
[http://dx.doi.org/10.1042/bj2930849] [PMID: 8352752]
[6]
Turnbull, J.; Powell, A.; Guimond, S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol., 2001, 11(2), 75-82.
[http://dx.doi.org/10.1016/S0962-8924(00)01897-3] [PMID: 11166215]
[7]
Zhang, F.; Zheng, L.; Cheng, S.; Peng, Y.; Fu, L.; Zhang, X.; Linhardt, R.J. Comparison of the interactions of different growth factors and glycosaminoglycans. Molecules, 2019, 24(18), 3360.
[http://dx.doi.org/10.3390/molecules24183360] [PMID: 31527407]
[8]
Valladeau, J.; Duvert-Frances, V.; Pin, J.J.; Dezutter-Dambuyant, C.; Vincent, C.; Massacrier, C.; Vincent, J.; Yoneda, K.; Banchereau, J.; Caux, C.; Davoust, J.; Saeland, S. The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur. J. Immunol., 1999, 29(9), 2695-2704.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199909)29:09<2695:AID-IMMU2695>3.0.CO;2-Q] [PMID: 10508244]
[9]
Drickamer, K. Engineering galactose-binding activity into a C-type mannose-binding protein. Nature, 1992, 360(6400), 183-186.
[http://dx.doi.org/10.1038/360183a0] [PMID: 1279438]
[10]
Valladeau, J.; Ravel, O.; Dezutter-Dambuyant, C.; Moore, K.; Kleijmeer, M.; Liu, Y.; Duvert-Frances, V.; Vincent, C.; Schmitt, D.; Davoust, J.; Caux, C.; Lebecque, S.; Saeland, S. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity, 2000, 12(1), 71-81.
[http://dx.doi.org/10.1016/S1074-7613(00)80160-0] [PMID: 10661407]
[11]
Feinberg, H.; Powlesland, A.S.; Taylor, M.E.; Weis, W.I. Trimeric structure of langerin. J. Biol. Chem., 2010, 285(17), 13285-13293.
[http://dx.doi.org/10.1074/jbc.M109.086058] [PMID: 20181944]
[12]
Valverde, P.; Martínez, J.D.; Cañada, F.J.; Ardá, A.; Jiménez-Barbero, J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. ChemBioChem, 2020, 21(21), 2999-3025.
[http://dx.doi.org/10.1002/cbic.202000238] [PMID: 32426893]
[13]
Mc Dermott, R.; Ziylan, U.; Spehner, D.; Bausinger, H.; Lipsker, D.; Mommaas, M.; Cazenave, J.P.; Raposo, G.; Goud, B.; de la Salle, H.; Salamero, J.; Hanau, D. Birbeck granules are subdomains of endosomal recycling compartment in human epidermal Langerhans cells, which form where Langerin accumulates. Mol. Biol. Cell, 2002, 13(1), 317-335.
[http://dx.doi.org/10.1091/mbc.01-06-0300] [PMID: 11809842]
[14]
Thépaut, M.; Valladeau, J.; Nurisso, A.; Kahn, R.; Arnou, B.; Vivès, C.; Saeland, S.; Ebel, C.; Monnier, C.; Dezutter-Dambuyant, C.; Imberty, A.; Fieschi, F. Structural studies of langerin and Birbeck granule: a macromolecular organization model. Biochemistry, 2009, 48(12), 2684-2698.
[http://dx.doi.org/10.1021/bi802151w] [PMID: 19175323]
[15]
Valladeau, J.; Dezutter-Dambuyant, C.; Saeland, S. Langerin/CD207 sheds light on formation of birbeck granules and their possible function in Langerhans cells. Immunol. Res., 2003, 28(2), 93-107.
[http://dx.doi.org/10.1385/IR:28:2:93] [PMID: 14610287]
[16]
van der Vlist, M.; Geijtenbeek, T.B.H. Langerin functions as an antiviral receptor on Langerhans cells. Immunol. Cell Biol., 2010, 88(4), 410-415.
[http://dx.doi.org/10.1038/icb.2010.32] [PMID: 20309013]
[17]
de Witte, L.; Nabatov, A.; Pion, M.; Fluitsma, D.; de Jong, M.A.W.P.; de Gruijl, T.; Piguet, V.; van Kooyk, Y.; Geijtenbeek, T.B.H. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med., 2007, 13(3), 367-371.
[http://dx.doi.org/10.1038/nm1541] [PMID: 17334373]
[18]
Takahara, K.; Omatsu, Y.; Yashima, Y.; Maeda, Y.; Tanaka, S.; Iyoda, T.; Clausen, B.E.; Matsubara, K.; Letterio, J.; Steinman, R.M.; Matsuda, Y.; Inaba, K. Identification and expression of mouse Langerin (CD207) in dendritic cells. Int. Immunol., 2002, 14(5), 433-444.
[http://dx.doi.org/10.1093/intimm/14.5.433] [PMID: 11978773]
[19]
Stambach, N.S.; Taylor, M.E. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology, 2003, 13(5), 401-410.
[http://dx.doi.org/10.1093/glycob/cwg045] [PMID: 12626394]
[20]
Galustian, C.; Park, C.G.; Chai, W.; Kiso, M.; Bruening, S.A.; Kang, Y.S.; Steinman, R.M.; Feizi, T. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. Int. Immunol., 2004, 16(6), 853-866.
[http://dx.doi.org/10.1093/intimm/dxh089] [PMID: 15136555]
[21]
Holla, A.; Skerra, A. Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin. Protein Eng. Des. Sel., 2011, 24(9), 659-669.
[http://dx.doi.org/10.1093/protein/gzr016] [PMID: 21540232]
[22]
Tateno, H.; Ohnishi, K.; Yabe, R.; Hayatsu, N.; Sato, T.; Takeya, M.; Narimatsu, H.; Hirabayashi, J. Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J. Biol. Chem., 2010, 285(9), 6390-6400.
[http://dx.doi.org/10.1074/jbc.M109.041863] [PMID: 20026605]
[23]
Weis, W.I.; Drickamer, K.; Hendrickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature, 1992, 360(6400), 127-134.
[http://dx.doi.org/10.1038/360127a0] [PMID: 1436090]
[24]
Chatwell, L.; Holla, A.; Kaufer, B.B.; Skerra, A. The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol. Immunol., 2008, 45(7), 1981-1994.
[http://dx.doi.org/10.1016/j.molimm.2007.10.030] [PMID: 18061677]
[25]
Chabrol, E.; Nurisso, A.; Daina, A.; Vassal-Stermann, E.; Thepaut, M.; Girard, E.; Vivès, R.R.; Fieschi, F. Glycosaminoglycans are interactants of Langerin: comparison with gp120 highlights an unexpected calcium-independent binding mode. PLoS One, 2012, 7(11), e50722.
[http://dx.doi.org/10.1371/journal.pone.0050722] [PMID: 23226363]
[26]
Muñoz-García, J.C.; Chabrol, E.; Vivès, R.R.; Thomas, A.; de Paz, J.L.; Rojo, J.; Imberty, A.; Fieschi, F.; Nieto, P.M.; Angulo, J. Langerin-heparin interaction: two binding sites for small and large ligands as revealed by a combination of NMR spectroscopy and cross-linking mapping experiments. J. Am. Chem. Soc., 2015, 137(12), 4100-4110.
[http://dx.doi.org/10.1021/ja511529x] [PMID: 25747117]
[27]
Hanske, J.; Wawrzinek, R.; Geissner, A.; Wamhoff, E.C.; Sellrie, K.; Schmidt, H.; Seeberger, P.H.; Rademacher, C. Calcium-Independent Activation of an Allosteric Network in Langerin by Heparin Oligosaccharides. ChemBioChem, 2017, 18(13), 1183-1187.
[http://dx.doi.org/10.1002/cbic.201700027] [PMID: 28198086]
[28]
Zhao, J.; Liu, X.; Kao, C.; Zhang, E.; Li, Q.; Zhang, F.; Linhardt, R.J. Kinetic and Structural Studies of Interactions between Glycosaminoglycans and Langerin. Biochemistry, 2016, 55(32), 4552-4559.
[http://dx.doi.org/10.1021/acs.biochem.6b00555] [PMID: 27447199]
[29]
Mende, M.; Bednarek, C.; Wawryszyn, M.; Sauter, P.; Biskup, M.B.; Schepers, U.; Bräse, S. Chemical Synthesis of Glycosaminoglycans. Chem. Rev., 2016, 116(14), 8193-8255.
[http://dx.doi.org/10.1021/acs.chemrev.6b00010] [PMID: 27410264]
[30]
García-Oliva, C.; Cabanillas, A.H.; Perona, A.; Hoyos, P.; Rumbero, Á.; Hernáiz, M.J. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry, 2020, 26(7), 1588-1596.
[http://dx.doi.org/10.1002/chem.201903788] [PMID: 31644824]
[31]
Soria-Martinez, L.; Bauer, S.; Giesler, M.; Schelhaas, S.; Materlik, J.; Janus, K.; Pierzyna, P.; Becker, M.; Snyder, N.L.; Hartmann, L.; Schelhaas, M. Prophylactic antiviral activity of sulfated glycomimetic oligomers and polymers. J. Am. Chem. Soc., 2020, 142(11), 5252-5265.
[http://dx.doi.org/10.1021/jacs.9b13484] [PMID: 32105452]
[32]
Paluck, S.J.; Nguyen, T.H.; Maynard, H.D. Heparin-Mimicking Polymers: Synthesis and Biological Applications. Biomacromolecules, 2016, 17(11), 3417-3440.
[http://dx.doi.org/10.1021/acs.biomac.6b01147] [PMID: 27739666]
[33]
Zubkova, O.V.; Ahmed, Y.A.; Guimond, S.E.; Noble, S-L.; Miller, J.H.; Alfred Smith, R.A.; Nurcombe, V.; Tyler, P.C.; Weissmann, M.; Vlodavsky, I.; Turnbull, J.E. Dendrimer heparan sulfate glycomimetics: potent heparanase inhibitors for anticancer therapy. ACS Chem. Biol., 2018, 13(12), 3236-3242.
[http://dx.doi.org/10.1021/acschembio.8b00909] [PMID: 30480427]
[34]
Domínguez-Rodríguez, P.; Reina, J.J.; Gil-Caballero, S.; Nieto, P.M.; de Paz, J.L.; Rojo, J. Glycodendrimers as chondroitin sulfate mimetics: synthesis and binding to growth factor midkine. Chemistry, 2017, 23(47), 11338-11345.
[http://dx.doi.org/10.1002/chem.201701890] [PMID: 28621483]
[35]
Domínguez-Rodríguez, P.; Vivès, C.; Thepaut, M.; Fieschi, F.; Nieto, P.M.; de Paz, J.L.; Rojo, J. Second-generation dendrimers with chondroitin sulfate type-E disaccharides as multivalent ligands for langerin. Biomacromolecules, 2020, 21(7), 2726-2734.
[http://dx.doi.org/10.1021/acs.biomac.0c00476] [PMID: 32525659]
[36]
Liu, P.; Chen, L.; Toh, J.K.C.; Ang, Y.L.; Jee, J-E.; Lim, J.; Lee, S.S.; Lee, S-G. Tailored chondroitin sulfate glycomimetics via a tunable multivalent scaffold for potentiating NGF/TrkA-induced neurogenesis. Chem. Sci. (Camb.), 2015, 6(1), 450-456.
[http://dx.doi.org/10.1039/C4SC02553A] [PMID: 28694940]
[37]
Vibert, A.; Lopin-Bon, C.; Jacquinet, J.C. From polymer to size-defined oligomers: a step economy process for the efficient and stereocontrolled construction of chondroitin oligosaccharides and biotinylated conjugates thereof: part 1. Chemistry, 2009, 15(37), 9561-9578.
[http://dx.doi.org/10.1002/chem.200900740] [PMID: 19575349]
[38]
Yang, S.; Zhang, H.; Liu, Q.; Sun, S.; Lei, P.; Zhao, Z.; Wu, L.; Wang, Y. The synthesis and biological evaluation of chondroitin sulfate E glycodendrimers. Future Med. Chem., 2019, 11(12), 1403-1415.
[http://dx.doi.org/10.4155/fmc-2019-0011] [PMID: 31304829]
[39]
Yang, S.; Liu, Q.; Zhang, G.; Zhang, X.; Zhao, Z.; Lei, P. An approach to synthesize chondroitin sulfate-e (cs-e) oligosaccharide precursors. J. Org. Chem., 2018, 83(11), 5897-5908.
[http://dx.doi.org/10.1021/acs.joc.8b00157] [PMID: 29756448]
[40]
Zhang, X.; Yao, W.; Xu, X.; Sun, H.; Zhao, J.; Meng, X.; Wu, M.; Li, Z. Synthesis of fucosylated chondroitin sulfate glycoclusters: a robust route to new anticoagulant Agents. Chemistry, 2018, 24(7), 1694-1700.
[http://dx.doi.org/10.1002/chem.201705177] [PMID: 29131431]
[41]
Liu, H.; Zhang, X.; Wu, M.; Li, Z. Synthesis and anticoagulation studies of “short-armed” fucosylated chondroitin sulfate glycoclusters. Carbohydr. Res., 2018, 467, 45-51.
[http://dx.doi.org/10.1016/j.carres.2018.07.008] [PMID: 30114596]
[42]
de Paz, J.L.; Noti, C.; Böhm, F.; Werner, S.; Seeberger, P.H. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol., 2007, 14(8), 879-887.
[http://dx.doi.org/10.1016/j.chembiol.2007.07.007] [PMID: 17719487]
[43]
Noti, C.; de Paz, J.L.; Polito, L.; Seeberger, P.H. Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin-protein interactions. Chemistry, 2006, 12(34), 8664-8686.
[http://dx.doi.org/10.1002/chem.200601103] [PMID: 17066397]
[44]
Tyler, P.C.; Guimond, S.E.; Turnbull, J.E.; Zubkova, O.V. Single-entity heparan sulfate glycomimetic clusters for therapeutic applications. Angew. Chem. Int. Ed. Engl., 2015, 54(9), 2718-2723.
[http://dx.doi.org/10.1002/anie.201410251] [PMID: 25640820]
[45]
Lee, S-G.; Brown, J.M.; Rogers, C.J.; Matson, J.B.; Krishnamurthy, C.; Rawat, M.; Hsieh-Wilson, L.C. End-functionalized glycopolymers as mimetics of chondroitin sulfate proteoglycans. Chem. Sci. (Camb.), 2010, 1(3), 322-325.
[http://dx.doi.org/10.1039/c0sc00271b] [PMID: 21274421]
[46]
Rawat, M.; Gama, C.I.; Matson, J.B.; Hsieh-Wilson, L.C. Neuroactive chondroitin sulfate glycomimetics. J. Am. Chem. Soc., 2008, 130(10), 2959-2961.
[http://dx.doi.org/10.1021/ja709993p] [PMID: 18275195]
[47]
Oh, Y.I.; Sheng, G.J.; Chang, S-K.; Hsieh-Wilson, L.C. Tailored glycopolymers as anticoagulant heparin mimetics. Angew. Chem. Int. Ed. Engl., 2013, 52(45), 11796-11799.
[http://dx.doi.org/10.1002/anie.201306968] [PMID: 24123787]
[48]
Sheng, G.J.; Oh, Y.I.; Chang, S-K.; Hsieh-Wilson, L.C. Tunable heparan sulfate mimetics for modulating chemokine activity. J. Am. Chem. Soc., 2013, 135(30), 10898-10901.
[http://dx.doi.org/10.1021/ja4027727] [PMID: 23879859]
[49]
Loka, R.S.; Yu, F.; Sletten, E.T.; Nguyen, H.M. Design, synthesis, and evaluation of heparan sulfate mimicking glycopolymers for inhibiting heparanase activity. Chem. Commun. (Camb.), 2017, 53(65), 9163-9166.
[http://dx.doi.org/10.1039/C7CC04156J] [PMID: 28766595]
[50]
Li, J.; Cai, C.; Wang, L.; Yang, C.; Jiang, H.; Li, M.; Xu, D.; Li, G.; Li, C.; Yu, G. Chemoenzymatic synthesis of heparan sulfate mimetic glycopolymers and their interactions with the receptor for advanced glycation end-product. ACS Macro Lett., 2019, 8(12), 1570-1574.
[http://dx.doi.org/10.1021/acsmacrolett.9b00780]
[51]
Ota, F.; Hirayama, T.; Kizuka, Y.; Yamaguchi, Y.; Fujinawa, R.; Nagata, M.; Ismanto, H.S.; Lepenies, B.; Aretz, J.; Rademacher, C.; Seeberger, P.H.; Angata, T.; Kitazume, S.; Yoshida, K.; Betsuyaku, T.; Kida, K.; Yamasaki, S.; Taniguchi, N. High affinity sugar ligands of C-type lectin receptor langerin. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(7), 1592-1601.
[http://dx.doi.org/10.1016/j.bbagen.2018.04.004] [PMID: 29631057]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy