Review Article

结核病治疗药物给药系统的新视角

卷 29, 期 11, 2022

发表于: 24 August, 2021

页: [1936 - 1958] 页: 23

弟呕挨: 10.2174/0929867328666210629154908

价格: $65

摘要

背景:结核病是一种由结核分枝杆菌引起的慢性呼吸道疾病。常见的结核病治疗方案很长,副作用不良,患者依从性低和抗菌素耐药性。药物传递系统(DDSs)可以克服这些限制。 目的:本文综述了目前最新的结核病治疗方法。在第一部分中,提出了药物固有特性构成的主要药代动力学和药效学挑战。第二部分详细阐述了使用DDS来克服目前治疗结核病的缺点。 结论:我们回顾了近10年发表的研究文章。DDS可以改善抗结核药物的理化性质,提高其溶解度、稳定性和生物利用度,并能更好地控制药物的释放,并可靶向肺泡巨噬细胞。然而,需要更多的临床前研究和可靠的生物相关分析,DDS才能成为治疗患者和吸引投资者的可行选择。

关键词: 结核分枝杆菌、结核治疗、药物传递系统、纳米技术、控制药物释放、药理活性。

[1]
Dohál, M.; Porvazník, I.; Pršo, K.; Rasmussen, E.M.; Solovič, I.; Mokrý, J. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis (Edinb.), 2020, 123, 101946.
[http://dx.doi.org/10.1016/j.tube.2020.101946] [PMID: 32741530]
[2]
Abdisamadov, A.; Tursunov, O. Ocular tuberculosis epidemiology, clinic features and diagnosis: A brief review. Tuberculosis (Edinb.), 2020, 124, 101963.
[http://dx.doi.org/10.1016/j.tube.2020.101963] [PMID: 32745954]
[3]
Yang, T.; Lee, C.; Lee, K.; Yen, T.; Lu, C.; Lee, P.; Chen, C.; Huang, L.; Chang, L. Clinical features of tuberculosis and bacillus rin (BCG) associated adverse effects in children: A 12-year study. J. Formos. Med. Assoc., 2021, 120(1 Pt 2), 443-451.
[http://dx.doi.org/10.1016/j.jfma.2020.06.012] [PMID: 32553527]
[4]
Tuberculosis-free Brazil - National Plan to End Tuberculosis as a Public Health Problem. Ministry of Health of Brazil 2017. Available at: http://www.aids.gov.br/pt-br/pub/2017/ brasil-livre-da-tuberculose-plano-nacional-pelo-fim-da-tuberculose-como-problema-de-saude
[5]
Sosnik, A.; Carcaboso, Á.M.; Glisoni, R.J.; Moretton, M.A.; Chiappetta, D.A. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev., 2010, 62(4-5), 547-559.
[http://dx.doi.org/10.1016/j.addr.2009.11.023] [PMID: 19914315]
[6]
Rodrigues, B.; Shende, P. Monodispersed metal-based dendrimeric nanoclusters for potentiation of anti-tuberculosis action. J. Mol. Liq., 2020, 304, 112731.
[http://dx.doi.org/10.1016/j.molliq.2020.112731]
[7]
Upadhyay, S.; Khan, I.; Gothwal, A.; Pachouri, P.K.; Bhaskar, N.; Gupta, U.D.; Chauhan, D.S.; Gupta, U. Conjugated and entrapped HPMA-PLA nano-polymeric micelles based dual delivery of first line anti TB drugs: Improved and safe drug delivery against sensitive and resistant Mycobacterium tuberculosis. Pharm. Res., 2017, 34(9), 1944-1955.
[http://dx.doi.org/10.1007/s11095-017-2206-3] [PMID: 28685299]
[8]
Rajabnezhad, S.; Casettari, L.; Lam, J.K.W.; Nomani, A.; Torkamani, M.R.; Palmieri, G.F.; Rajabnejad, M.R.; Darbandi, M.A. Pulmonary delivery of rifampicin microspheres using lower generation polyamidoamine dendrimers as a carrier. Powder Technol., 2016, 291, 366-374.
[http://dx.doi.org/10.1016/j.powtec.2015.12.037]
[9]
Grotz, E.; Tateosian, N.L.; Salgueiro, J.; Bernabeu, E.; Gonzalez, L.; Manca, M.L.; Amiano, N.; Valenti, D.; Manconi, M.; García, V.; Moretton, M.A.; Chiappetta, D.A. Pulmonary delivery of rifampicin-loaded Soluplus micelles against Mycobacterium tuberculosis. J. Drug Deliv. Sci. Technol., 2019, 53, 101170.
[http://dx.doi.org/10.1016/j.jddst.2019.101170]
[10]
Abdelghany, S.; Parumasivam, T.; Pang, A.; Roediger, B.; Tang, P.; Jahn, K.; Britton, W.J.; Chan, H.K. Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J. Drug Deliv. Sci. Technol., 2019, 52, 642-651.
[http://dx.doi.org/10.1016/j.jddst.2019.05.025]
[11]
World Health Organization. Global Tuberculosis Report, 2019. Available at: https://www.who.int/publications/i/item/9789241565714
[12]
Sato, M.R.; Oshiro, Junior J.A.; Machado, R.T.A.; de Souza, P.C.; Campos, D.L.; Pavan, F.R.; da Silva, P.B.; Chorilli, M. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2017, 11, 909-921.
[http://dx.doi.org/10.2147/DDDT.S127048] [PMID: 28356717]
[13]
Rojo, J.; Sousa-Herves, A.; Mascaraque, A. Perspectives of carbohydrates in drug discovery. Comprehensive Medicinal Chemistry III, (3rd Ed.. ) 2017, 577-610.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12311-X]
[14]
Park, K. Nanotechnology: What it can do for drug delivery. J. Control. Release, 2007, 120(1-2), 1-3.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.003] [PMID: 17532520]
[15]
Vieira, A.C.C.; Magalhães, J.; Rocha, S.; Cardoso, M.S.; Santos, S.G.; Borges, M.; Pinheiro, M.; Reis, S. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine (Lond.), 2017, 12(24), 2721-2736.
[http://dx.doi.org/10.2217/nnm-2017-0248] [PMID: 29119867]
[16]
Sheth, U.; Tiwari, S.; Bahadur, A. Preparation and characterization of anti-tubercular drugs encapsulated in polymer micelles. J. Drug Deliv. Sci. Technol., 2018, 48, 422-428.
[http://dx.doi.org/10.1016/j.jddst.2018.10.021]
[17]
Silvestre, A.L.P.; Oshiro-Júnior, J.A.; Garcia, C.; Turco, B.O.; da Silva Leite, J.M.; de Lima Damasceno, B.P.G.; Soares, J.C.M.; Chorilli, M. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr. Med. Chem., 2020, 27, 1-16.
[http://dx.doi.org/10.2174/0929867327666200121121409] [PMID: 31965938]
[18]
De Matteis, L.; Jary, D.; Lucía, A.; García-Embid, S.; Serrano-Sevilla, I.; Pérez, D.; Ainsa, J.A.; Navarro, F.P.; de la Fuente, M.J. New Active Formulations against M. Tuberculosis: Bedaquiline encapsulation in lipid nanoparticles and chitosan nanocapsules. Chem. Eng. J., 2018, 340, 181-191.
[http://dx.doi.org/10.1016/j.cej.2017.12.110]
[19]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[20]
Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond.), 2019, 14(1), 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[21]
Carvalho, S.G.; Araujo, V.H.S.; Dos Santos, A.M.; Duarte, J.L.; Silvestre, A.L.P.; Fonseca-Santos, B.; Villanova, J.C.O.; Gremião, M.P.D.; Chorilli, M. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int. J. Pharm., 2020, 580, 119214.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119214] [PMID: 32165220]
[22]
Griffiths, G.; Nyström, B.; Sable, S.B.; Khuller, G.K. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat. Rev. Microbiol., 2010, 8(11), 827-834.
[http://dx.doi.org/10.1038/nrmicro2437] [PMID: 20938454]
[23]
Kaur, M.; Garg, T.; Rath, G.; Goyal, A.K. Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis. Crit. Rev. Ther. Drug Carrier Syst., 2014, 31(1), 49-88.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008285] [PMID: 24579767]
[24]
Banyal, S.; Malik, P.; Tuli, H.S.; Mukherjee, T.K. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr. Opin. Pulm. Med., 2013, 19(3), 289-297.
[http://dx.doi.org/10.1097/MCP.0b013e32835eff08] [PMID: 23429097]
[25]
Amarnath Praphakar, R.; Munusamy, M.A.; Sadasivuni, K.K.; Rajan, M. Targeted delivery of rifampicin to tuberculosis-infected macrophages: design, in vitro, and in vivo performance of rifampicin-loaded poly(ester amide)s nanocarriers. Int. J. Pharm., 2016, 513(1-2), 628-635.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.080] [PMID: 27693734]
[26]
Batalha, I.L.; Bernut, A.; Schiebler, M.; Ouberai, M.M.; Passemar, C.; Klapholz, C.; Kinna, S.; Michel, S.; Sader, K.; Castro-Hartmann, P.; Renshaw, S.A.; Welland, M.E.; Floto, R.A. Polymeric nanobiotics as a novel treatment for mycobacterial infections. J. Control. Release, 2019, 314, 116-124.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.009] [PMID: 31647980]
[27]
Trousil, J.; Pavliš, O.; Kubíčková, P.; Škorič, M.; Marešová, V.; Pavlova, E.; Knudsen, K.D.; Dai, Y.S.; Zimmerman, M.; Dartois, V.; Fang, J.Y.; Hrubý, M. Antitubercular nanocarrier monotherapy: Study of in vivo efficacy and pharmacokinetics for rifampicin. J. Control. Release, 2020, 321, 312-323.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.026] [PMID: 32067995]
[28]
Tripodo, G.; Perteghella, S.; Grisoli, P.; Trapani, A.; Torre, M.L.; Mandracchia, D. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake. Eur. J. Pharm. Biopharm., 2019, 136, 250-258.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.022] [PMID: 30685506]
[29]
Damasceno, E. Junior; de Almeida, J.M.F.; Silva, I. do N.; Moreira de Assis, M.L.; Santos, L.M. dos; Dias, E.F.; Bezerra Aragão, V.E.; Veríssimo, L.M.; Fernandes, N.S.; da Silva, D.R. PH-responsive release system of isoniazid using palygorskite as a nanocarrier. J. Drug Deliv. Sci. Technol., 2020, 55, 101399.
[http://dx.doi.org/10.1016/j.jddst.2019.101399]
[30]
Li, K.; Gbabode, G.; Barrio, M.; Tamarit, J.L.; Vergé-Depré, M.; Robert, B.; Rietveld, I.B. The phase relationship between the pyrazinamide polymorphs α and γ. Int. J. Pharm., 2020, 580, 119230.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119230] [PMID: 32199962]
[31]
Shi, X.; Amarnath Praphakar, R.; Suganya, K.; Murugan, M.; Sasidharan, P.; Rajan, M. In vivo approach of simply constructed pyrazinamide conjugated chitosan-g-polycaprolactone micelles for methicillin resistance Staphylococcus aureus. Int. J. Biol. Macromol., 2020, 158, 636-647.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.214] [PMID: 32353501]
[32]
Nemati, E.; Mokhtarzadeh, A.; Panahi-Azar, V.; Mohammadi, A.; Hamishehkar, H.; Mesgari-Abbasi, M.; Ezzati Nazhad Dolatabadi, J.; de la Guardia, M. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech, 2019, 20(3), 120.
[http://dx.doi.org/10.1208/s12249-019-1334-y] [PMID: 30796625]
[33]
Mlotha, R.; Waterhouse, D.; Dzinjalamala, F.; Ardrey, A.; Molyneux, E.; Davies, G.R.; Ward, S. Pharmacokinetics of anti-TB drugs in Malawian children: reconsidering the role of ethambutol. J. Antimicrob. Chemother., 2015, 70(6), 1798-1803.
[http://dx.doi.org/10.1093/jac/dkv039] [PMID: 25759035]
[34]
Levy, M.; Rigaudière, F.; de Lauzanne, A.; Koehl, B.; Melki, I.; Lorrot, M.; Faye, A. Ethambutol-related impaired visual function in childrens less than 5 years of age treated for a mycobacterial infection: diagnosis and evolution. Pediatr. Infect. Dis. J., 2015, 34(4), 346-350.
[http://dx.doi.org/10.1097/INF.0000000000000589] [PMID: 25764095]
[35]
Pawde, D.M.; Viswanadh, M.K.; Mehata, A.K.; Sonkar, R. Narendra; Poddar, S.; Burande, A.S.; Jha, A.; Vajanthri, K.Y.; Mahto, S.K.; Azger Dustakeer, V.N.; Muthu, M.S. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm. J., 2020, 28(12), 1616-1625.
[http://dx.doi.org/10.1016/j.jsps.2020.10.008] [PMID: 33424254]
[36]
Gaspar, D.P.; Faria, V.; Gonçalves, L.M.D.; Taboada, P.; Remuñán-López, C.; Almeida, A.J. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int. J. Pharm., 2016, 497(1-2), 199-209.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.050] [PMID: 26656946]
[37]
Yuan, X.; Amarnath Praphakar, R.; Munusamy, M.A.; Alarfaj, A.A.; Suresh Kumar, S.; Rajan, M. Mucoadhesive guargum hydrogel inter-connected chitosan-g-polycaprolactone micelles for rifampicin delivery. Carbohydr. Polym., 2019, 206, 1-10.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.098] [PMID: 30553301]
[38]
Shah, K.; Chan, L.W.; Wong, T.W. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv., 2017, 24(1), 1631-1647.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[39]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, S.; Pinto, S.; Pinheiro, M.; Lima, S.C.; Ferreira, D.; Sarmento, B.; Reis, S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int. J. Pharm., 2018, 536(1), 478-485.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.071] [PMID: 29203137]
[40]
Altamimi, M.; Hussain, A.; Imam, S.S.; Alshehri, S.; Singh, S.K.; Webster, T. Transdermal delivery of isoniazid loaded elastic liposomes to control cutaneous and systemic tuberculosis. J. Drug Deliv. Sci. Technol., 2020, 59, 101848.
[http://dx.doi.org/10.1016/j.jddst.2020.101848]
[41]
Me, M. Rifabutin. Tuberculosis (Edinb.), 2008, 88(2), 145-147.
[http://dx.doi.org/10.1016/S1472-9792(08)70022-2] [PMID: 18486056]
[42]
Kong, K.L.; Jenkin, G. Clofazimine. Kucers’ The Use of Antibiotics. A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Ed. 2017, 88, 2533-2541.
[http://dx.doi.org/10.1201/9781315152110]
[43]
Verma, D.; Sharma, S.K. Recent advances in guar gum based drug delivery systems and their administrative routes. Int. J. Biol. Macromol., 2021, 181, 653-671.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.087] [PMID: 33766594]
[44]
Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm., 2019, 144, 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[45]
Mosaiab, T.; Farr, D.C.; Kiefel, M.J.; Houston, T.A. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv. Drug Deliv. Rev., 2019, 151-152, 94-129.
[http://dx.doi.org/10.1016/j.addr.2019.09.002] [PMID: 31513827]
[46]
Rawal, T.; Parmar, R.; Tyagi, R.K.; Butani, S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf. B Biointerfaces, 2017, 154, 321-330.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.044] [PMID: 28363192]
[47]
Garg, T.; Rath, G.; Goyal, A.K. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 997-1001.
[http://dx.doi.org/10.3109/21691401.2015.1008508] [PMID: 25682840]
[48]
Carneiro, S.P.; Carvalho, K.V.; de Oliveira Aguiar Soares, R.D.; Carneiro, C.M.; de Andrade, M.H.G.; Duarte, R.S.; Dos Santos, O.D.H. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids Surf. B Biointerfaces, 2019, 175, 306-313.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.003] [PMID: 30553206]
[49]
Pinheiro, M.; Ribeiro, R.; Vieira, A.; Andrade, F.; Reis, S. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des. Devel. Ther., 2016, 10, 2467-2475.
[http://dx.doi.org/10.2147/DDDT.S104395] [PMID: 27536067]
[50]
Song, X.; Lin, Q.; Guo, L.; Fu, Y.; Han, J.; Ke, H.; Sun, X.; Gong, T.; Zhang, Z. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Pharm. Res., 2015, 32(5), 1741-1751.
[http://dx.doi.org/10.1007/s11095-014-1572-3] [PMID: 25407545]
[51]
Oliveira, P.M.; Matos, B.N.; Pereira, P.A.T.; Gratieri, T.; Faccioli, L.H.; Cunha-Filho, M.S.S.; Gelfuso, G.M. Microparticles prepared with 50-190kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydr. Polym., 2017, 174, 421-431.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.090] [PMID: 28821088]
[52]
Bhardwaj, A.; Kumar, L.; Narang, R.K.; Murthy, R.S. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Artif. Cells Nanomed. Biotechnol., 2013, 41(1), 52-59.
[http://dx.doi.org/10.3109/10731199.2012.702316] [PMID: 22889361]
[53]
Kulkarni, P.; Rawtani, D.; Barot, T. Formulation and optimization of long acting dual niosomes using box-behnken experimental design method for combinative delivery of ethionamide and D-cycloserine in tuberculosis treatment. Colloids Surf. A Physicochem. Eng. Asp., 2019, 565, 131-142.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.004]
[54]
Hussain, A.; Altamimi, M.A.; Alshehri, S.; Imam, S.S.; Shakeel, F.; Singh, S.K. Novel approach for transdermal delivery of rifampicin to induce synergistic antimycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion gel. Int. J. Nanomedicine, 2020, 15, 1073-1094.
[http://dx.doi.org/10.2147/IJN.S236277] [PMID: 32103956]
[55]
Praphakar, R.A.; Munusamy, M.A.; Rajan, M. Development of extended-voyaging anti-oxidant linked amphiphilic polymeric nanomicelles for anti-tuberculosis drug delivery. Int. J. Pharm., 2017, 524(1-2), 168-177.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.089] [PMID: 28377319]
[56]
Amarnath Praphakar, R.; Sam Ebenezer, R.; Vignesh, S.; Shakila, H.; Rajan, M. Versatile pH-responsive chitosan-g-polycaprolactone/maleic anhydride-isoniazid polymeric micelle to improve the bioavailability of tuberculosis multidrugs. ACS Appl. Bio Mater., 2019, 2(5), 1931-1943.
[http://dx.doi.org/10.1021/acsabm.9b00003]
[57]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures and Nano-Objects, 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[58]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[59]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[60]
Trousil, J.; Filippov, S.K.; Hrubý, M.; Mazel, T.; Syrová, Z.; Cmarko, D.; Svidenská, S.; Matějková, J.; Kováčik, L.; Porsch, B.; Konefał, R.; Lund, R.; Nyström, B.; Raška, I.; Štěpánek, P. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomedicine (Lond.), 2017, 13(1), 307-315.
[http://dx.doi.org/10.1016/j.nano.2016.08.031] [PMID: 27613399]
[61]
Trousil, J.; Syrová, Z.; Dal, N.K.; Rak, D.; Konefał, R.; Pavlova, E.; Matějková, J.; Cmarko, D.; Kubíčková, P.; Pavliš, O.; Urbánek, T.; Sedlák, M.; Fenaroli, F.; Raška, I.; Štěpánek, P.; Hrubý, M. Rifampicin nanoformulation enhances treatment of tuberculosis in zebrafish. Biomacromolecules, 2019, 20(4), 1798-1815.
[http://dx.doi.org/10.1021/acs.biomac.9b00214] [PMID: 30785284]
[62]
Varma, J.N.; Kumar, T.S.; Prasanthi, B.; Ratna, J.V. Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: efficiency for alveolar macrophage targeting. Indian J. Pharm. Sci., 2015, 77(3), 258-266.
[http://dx.doi.org/10.4103/0250-474X.159602] [PMID: 26180270]
[63]
Booysen, L.L.I.J.; Kalombo, L.; Brooks, E.; Hansen, R.; Gilliland, J.; Gruppo, V.; Lungenhofer, P.; Semete-Makokotlela, B.; Swai, H.S.; Kotze, A.F.; Lenaerts, A.; du Plessis, L.H. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int. J. Pharm., 2013, 444(1-2), 10-17.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.038] [PMID: 23357255]
[64]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[65]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[66]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, M.; Lima, S.C.; Neto, P.J.R.; Ferreira, D.; Sarmento, B.; Reis, S. Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydr. Polym., 2021, 252, 116978.
[http://dx.doi.org/10.1016/j.carbpol.2020.116978] [PMID: 33183580]
[67]
Doktorovová, S.; Kovačević, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm., 2016, 108, 235-252.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.001] [PMID: 27519829]
[68]
Jain, P.; Rahi, P.; Pandey, V.; Asati, S.; Soni, V. Nanostructure lipid carriers: A modish contrivance to overcome the ultraviolet effects. Egypt. J. Basic Appl. Sci., 2017, 4(2), 89-100.
[http://dx.doi.org/10.1016/j.ejbas.2017.02.001]
[69]
Phatak, A.A.; Chaudhari, P.D. Development and evaluation of nanostructured lipid carrier (NLC) based topical delivery of an anti-inflammatory Drug. J. Pharm. Res., 2013, 7(8), 677-685.
[http://dx.doi.org/10.1016/j.jopr.2013.08.020]
[70]
Mehta, P.; Bothiraja, C.; Kadam, S.; Pawar, A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. Artif. Cells Nanomed. Biotechnol. , 2018, 46(sup3), S791-S806.
[http://dx.doi.org/10.1080/21691401.2018.1513938] [PMID: 30307321]
[71]
Bale, S.; Khurana, A.; Reddy, A.S.S.; Singh, M.; Godugu, C. Overview on therapeutic applications of microparticulate drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(4), 309-361.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015798] [PMID: 27910739]
[72]
Alves, A.D.; Cavaco, J.S.; Guerreiro, F.; Lourenço, J.P.; Rosa da Costa, A.M.; Grenha, A. Inhalable antitubercular therapy mediated by locust bean gum microparticles. Molecules, 2016, 21(6), 1-22.
[http://dx.doi.org/10.3390/molecules21060702] [PMID: 27240337]
[73]
Rodrigues, S.; Alves, A.D.; Cavaco, J.S.; Pontes, J.F.; Guerreiro, F.; Rosa da Costa, A.M.; Buttini, F.; Grenha, A. Dual antibiotherapy of tuberculosis mediated by inhalable locust bean gum microparticles. Int. J. Pharm., 2017, 529(1-2), 433-441.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.088] [PMID: 28669623]
[74]
Grenha, A.; Alves, A.D.; Guerreiro, F.; Pinho, J.; Simões, S.; Almeida, A.J.; Gaspar, M.M. Inhalable locust bean gum microparticles co-associating isoniazid and rifabutin: Therapeutic assessment in a murine model of tuberculosis infection. Eur. J. Pharm. Biopharm., 2020, 147, 38-44.
[http://dx.doi.org/10.1016/j.ejpb.2019.11.009] [PMID: 31790800]
[75]
Pinheiro, M.; Lúcio, M.; Lima, J.L.F.C.; Reis, S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond.), 2011, 6(8), 1413-1428.
[http://dx.doi.org/10.2217/nnm.11.122] [PMID: 22026379]
[76]
Nkanga, C.I.; Walker, R.B.; Krause, R.W. PH-Dependent release of isoniazid from isonicotinic acid (4-hydroxy-benzylidene)-hydrazide loaded liposomes. J. Drug Deliv. Sci. Technol., 2018, 45, 264-271.
[http://dx.doi.org/10.1016/j.jddst.2018.03.016]
[77]
Manca, M.L.; Sinico, C.; Maccioni, A.M.; Diez, O.; Fadda, A.M.; Manconi, M. Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics, 2012, 4(4), 590-606.
[http://dx.doi.org/10.3390/pharmaceutics4040590] [PMID: 24300372]
[78]
Mata-Espinosa, D.; Molina-Salinas, G.M.; Barrios-Payán, J.; Navarrete-Vázquez, G.; Marquina, B.; Ramos-Espinosa, O.; Bini, E.I.; Baeza, I.; Hernández-Pando, R. Therapeutic efficacy of liposomes containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in a murine model of progressive pulmonary tuberculosis. Pulm. Pharmacol. Ther., 2015, 32, 7-14.
[http://dx.doi.org/10.1016/j.pupt.2015.03.004] [PMID: 25843004]
[79]
El-Ridy, M.S.; Abdelbary, A.; Nasr, E.A.; Khalil, R.M.; Mostafa, D.M.; El-Batal, A.I.; Abd El-Alim, S.H. Niosomal encapsulation of the antitubercular drug, pyrazinamide. Drug Dev. Ind. Pharm., 2011, 37(9), 1110-1118.
[http://dx.doi.org/10.3109/03639045.2011.560605] [PMID: 21417612]
[80]
Kumar, A.; Saw, R.K.; Mandal, A. RSM Optimization of oil-in-water microemulsion stabilized by synthesized zwitterionic surfactant and its properties evaluation for application in enhanced oil recovery. Chem. Eng. Res. Des., 2019, 147, 399-411.
[http://dx.doi.org/10.1016/j.cherd.2019.05.034]
[81]
Vladisavljević, G.T. Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids Surf. A Physicochem. Eng. Asp., 2019, 579, 123709.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123709]
[82]
Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm., 2017, 526(1-2), 425-442.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.005] [PMID: 28495500]
[83]
Kaur, G.; Mehta, S.K.; Kumar, S.; Bhanjana, G.; Dilbaghi, N. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization. J. Pharm. Sci., 2015, 104(7), 2203-2212.
[http://dx.doi.org/10.1002/jps.24469] [PMID: 25951802]
[84]
Golfomitsou, I.; Mitsou, E.; Xenakis, A.; Papadimitriou, V. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. J. Mol. Liq., 2018, 268, 734-742.
[http://dx.doi.org/10.1016/j.molliq.2018.07.109]
[85]
Bazán Henostroza, M.A.; Curo Melo, K.J.; Nishitani Yukuyama, M.; Löbenberg, R.; Araci Bou-Chacra, N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf. A Physicochem. Eng. Asp., 2020, 597, 124755.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124755]
[86]
Upadhyayula, S.S.N.; Sureshkumar, R.; Janani, S.K.; Karthika, C. Lipid-Based nano formulation approach to target brain for the management of tuberculosis through intranasal delivery: Formulation, development and evaluation. Indian J. Pharm. Educ. Res., 2020, 54(2), S189-S199.
[http://dx.doi.org/10.5530/ijper.54.2s.75]
[87]
Cagel, M.; Tesan, F.C.; Bernabeu, E.; Salgueiro, M.J.; Zubillaga, M.B.; Moretton, M.A.; Chiappetta, D.A. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur. J. Pharm. Biopharm., 2017, 113, 211-228.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.019] [PMID: 28087380]
[88]
Kumar, R.; Sirvi, A.; Kaur, S.; Samal, S.K.; Roy, S.; Sangamwar, A.T. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: Intestinal permeability and pharmacokinetic evaluation. Eur. J. Pharm. Sci., 2020, 153, 105466.
[http://dx.doi.org/10.1016/j.ejps.2020.105466] [PMID: 32673792]
[89]
Kesharwani, S.S.; Kaur, S.; Tummala, H.; Sangamwar, A.T. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf. B Biointerfaces, 2019, 173, 581-590.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.022] [PMID: 30352379]
[90]
Rani, S.; Gothwal, A.; Khan, I.; Pachouri, P.K.; Bhaskar, N.; Gupta, U.D.; Chauhan, D.S.; Gupta, U. Smartly engineered PEGylated di-block nanopolymeric micelles: Duo delivery of isoniazid and rifampicin against Mycobacterium tuberculosis. AAPS PharmSciTech, 2018, 19(7), 3237-3248.
[http://dx.doi.org/10.1208/s12249-018-1151-8] [PMID: 30191379]
[91]
Dias, A.P.; da Silva Santos, S.; da Silva, J.V.; Parise-Filho, R.; Igne Ferreira, E.; Seoud, O.E.; Giarolla, J. Dendrimers in the context of nanomedicine. Int. J. Pharm., 2020, 573, 118814.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118814] [PMID: 31759101]
[92]
Kharwade, R.; More, S.; Warokar, A.; Agrawal, P.; Mahajan, N. Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications. Arab. J. Chem., 2020, 13(7), 6009-6039.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.002]
[93]
Bapat, R.A.; Dharmadhikari, S.; Chaubal, T.V.; Amin, M.C.I.M.; Bapat, P.; Gorain, B.; Choudhury, H.; Vincent, C.; Kesharwani, P. The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon, 2019, 5(10), e02544.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02544] [PMID: 31687479]
[94]
Bellini, R.G.; Guimarães, A.P.; Pacheco, M.A.C.; Dias, D.M.; Furtado, V.R.; de Alencastro, R.B.; Horta, B.A.C. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J. Mol. Graph. Model., 2015, 60, 34-42.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.012] [PMID: 26093506]
[95]
Sharma, P.; Garg, S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv. Drug Deliv. Rev., 2010, 62(4-5), 491-502.
[http://dx.doi.org/10.1016/j.addr.2009.11.019] [PMID: 19931328]
[96]
Alves, L.P.; da Silva Oliveira, K.; da Paixão Santos, J.A.; da Silva Leite, J.M.; Rocha, B.P.; de Lucena Nogueira, P.; de Araújo Rêgo, R.I.; Oshiro-Junior, J.A.; Damasceno, B.P.G. de L. A review on developments and prospects of anti-inflammatory in microemulsions. J. Drug Deliv. Sci. Technol., 2020, 60, 102008.
[http://dx.doi.org/10.1016/j.jddst.2020.102008]
[97]
Kesharwani, S.S.; Jain, V.; Dey, S.; Sharma, S.; Mallya, P.; Kumar, V.A. An Overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J. Drug Deliv. Sci. Technol., 2020, 60, 102021.
[http://dx.doi.org/10.1016/j.jddst.2020.102021]
[98]
Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release, 2015, 219, 500-518.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[99]
Shah, S.; Cristopher, D.; Sharma, S.; Soniwala, M.; Chavda, J. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J. Drug Deliv. Sci. Technol., 2020, 60, 102013.
[http://dx.doi.org/10.1016/j.jddst.2020.102013]
[100]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[101]
Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release, 2014, 190, 15-28.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.053] [PMID: 24747160]
[102]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[103]
Forecast, I. Global pharmaceutical drug delivery industry (2019 to 2026) - By route of administration and application. ResearchAndMarkets.com’s 2020. Available at: https:// www. globenewswire.com/news-release/2020/06/02/20423 05/0/en/Global-Pharmaceutical-Drug-Delivery-Industry2019-to-2026-by-Route-of-Administration-and-Application. html

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy