Review Article

基于超声的药物输送系统

卷 29, 期 8, 2022

发表于: 17 June, 2021

页: [1342 - 1351] 页: 10

弟呕挨: 10.2174/0929867328666210617103905

价格: $65

摘要

癌症仍然是全球人类健康的主要威胁。抗癌药物的有效使用可以减轻患者的临床症状,延长患者的生存时间。目前的抗癌策略包括化疗、中药、生物制药和最新的靶向治疗。然而,由于肿瘤的复杂性和异质性,直接使用抗癌药物可能会产生严重的副作用。此外,目前的治疗策略未能有效缓解转移性肿瘤。最近,超声介导的纳米药物递送系统已成为越来越重要的治疗策略。由于其具有增强疗效、降低毒副作用的能力,已成为生物医学领域的研究热点。在这篇综述中,我们介绍了超声响应纳米药物递送系统的最新研究进展,以及超声作用于载体改变结构或构象以及实现控释的可能机制。此外,还将简要总结超声响应纳米药物递送系统的进展。

关键词: 癌症、纳米药物输送系统、超声波、声动力疗法、纳米技术、抗癌药物

[1]
Yu, S.; Ding, J.; He, C.; Cao, Y.; Xu, W.; Chen, X. Disulfide cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(5), 752-760.
[http://dx.doi.org/10.1002/adhm.201300308] [PMID: 24574261]
[2]
Wang, F.Z.; Xing, L.; Tang, Z.H.; Lu, J.J.; Cui, P.F.; Qiao, J.B.; Jiang, L.; Jiang, H.L.; Zong, L. Codelivery of doxorubicin and shAkt1 by poly(ethylenimine)-glycyrrhetinic acid nanoparticles to induce autophagy-mediated liver cancer combination therapy. Mol. Pharm., 2016, 13(4), 1298-1307.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00879] [PMID: 26894988]
[3]
Li, Y.; Xu, B.; Bai, T.; Liu, W. Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy. Biomaterials, 2015, 55, 12-23.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.034] [PMID: 25934448]
[4]
Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(8), 1299-1308.
[http://dx.doi.org/10.1002/adhm.201300601] [PMID: 24706635]
[5]
Shi, J.; Liu, Y.; Wang, L.; Gao, J.; Zhang, J.; Yu, X.; Ma, R.; Liu, R.; Zhang, Z. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater., 2014, 10(3), 1280-1291.
[http://dx.doi.org/10.1016/j.actbio.2013.10.037] [PMID: 24211343]
[6]
Li, S.; Chen, H.; Liu, H.; Liu, L.; Yuan, Y.; Mao, C.; Zhang, W.; Zhang, X.; Guo, W.; Lee, C.S.; Liang, X.J. In vivo real-time pharmaceutical evaluations of near-infrared II fluorescent nanomedicine bound polyethylene glycol ligands for tumor photothermal ablation. ACS Nano, 2020, 14(10), 13681-13690.
[http://dx.doi.org/10.1021/acsnano.0c05885] [PMID: 32926626]
[7]
Ma, X.; Yao, M.; Shi, J.; Li, X.; Gao, Y.; Luo, Q.; Hou, R.; Liang, X.; Wang, F. High intensity Focused ultrasound-responsive and ultrastable cerasomal perfluorocarbon nanodroplets for alleviating tumor multidrug resistance and epithelial-mesenchymal transition. ACS Nano, 2020, 14(11), 15904-15918.
[http://dx.doi.org/10.1021/acsnano.0c07287] [PMID: 33175487]
[8]
Li, M.; Deng, L.; Li, J.; Yuan, W.; Gao, X.; Ni, J.; Jiang, H.; Zeng, J.; Ren, J.; Wang, P. Actively targeted magnetothermally responsive nanocarriers/doxorubicin for thermochemotherapy of hepatoma. ACS Appl. Mater. Interfaces, 2018, 10(48), 41107-41117.
[http://dx.doi.org/10.1021/acsami.8b14972] [PMID: 30403475]
[9]
Fang, Y.; Li, H.Y.; Yin, H.H.; Xu, S.H.; Ren, W.W.; Ding, S.S.; Tang, W.Z.; Xiang, L.H.; Wu, R.; Guan, X.; Zhang, K. Radiofrequency-sensitive longitudinal relaxation tuning strategy enabling the visualization of radiofrequency ablation intensified by magnetic composite. ACS Appl. Mater. Interfaces, 2019, 11(12), 11251-11261.
[http://dx.doi.org/10.1021/acsami.9b02401] [PMID: 30874421]
[10]
Zhang, F.; Liu, S.; Zhang, N.; Kuang, Y.; Li, W.; Gai, S.; He, F.; Gulzar, A.; Yang, P. X-ray-triggered NO-released Bi-SNO nanoparticles: all-in-one nano-radiosensitizer with photothermal/gas therapy for enhanced radiotherapy. Nanoscale, 2020, 12(37), 19293-19307.
[http://dx.doi.org/10.1039/D0NR04634E] [PMID: 32935695]
[11]
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C, 2019, 98, 1252-1276.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[12]
Ding, Y.X.; Xu, Y.J.; Yang, W.Z.; Niu, P.; Li, X.; Chen, Y.D.; Li, Z.Y.; Liu, Y.; An, Y.L.; Liu, Y.; Shen, W.Z.; Shi, L.Q. Investigating the EPR effect of nanomedicines in human renal tumorsvia ex vivo perfusion strategy. Nano Today, 2020, 35, 100970.
[http://dx.doi.org/10.1016/j.nantod.2020.100970]
[13]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[14]
McHale, A.P.; Callan, J.F.; Nomikou, N.; Fowley, C.; Callan, B. Sonodynamic therapy: Concept, mechanism and application to cancer treatment. Adv. Exp. Med. Biol., 2016, 880, 429-450.
[http://dx.doi.org/10.1007/978-3-319-22536-4_22] [PMID: 26486350]
[15]
Liang, H.; Zhang, X.B.; Lv, Y.; Gong, L.; Wang, R.; Zhu, X.; Yang, R.; Tan, W. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res., 2014, 47(6), 1891-1901.
[http://dx.doi.org/10.1021/ar500078f] [PMID: 24780000]
[16]
Yue, W.; Chen, L.; Yu, L.; Zhou, B.; Yin, H.; Ren, W.; Liu, C.; Guo, L.; Zhang, Y.; Sun, L.; Zhang, K.; Xu, H.; Chen, Y. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun., 2019, 10(1), 2025.
[http://dx.doi.org/10.1038/s41467-019-09760-3] [PMID: 31048681]
[17]
Rouge, J.L.; Hao, L.; Wu, X.A.; Briley, W.E.; Mirkin, C.A. Spherical nucleic acids as a divergent platform for synthesizing RNA-nanoparticle conjugates through enzymatic ligation. ACS Nano, 2014, 8(9), 8837-8843.
[http://dx.doi.org/10.1021/nn503601s] [PMID: 25144723]
[18]
Zhang, K.; Cheng, Y.; Ren, W.; Sun, L.; Liu, C.; Wang, D.; Guo, L.; Xu, H.; Zhao, Y. Coordination-responsive longitudinal relaxation tuning as a versatile MRI sensing protocol for malignancy targets. Adv. Sci. (Weinh.), 2018, 5(9), 1800021.
[http://dx.doi.org/10.1002/advs.201800021] [PMID: 30250780]
[19]
Zhang, H.; Wu, Y.; Hu, Y.; Li, X.; Zhao, M.; Lv, Z. Targeted nanoparticle drug delivery system for the enhancement of cancer immunotherapy. J. Biomed. Nanotechnol., 2019, 15(9), 1839-1866.
[http://dx.doi.org/10.1166/jbn.2019.2827] [PMID: 31387674]
[20]
Ibrahim, M.; Sabouni, R.; Husseini, G.A. Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr. Med. Chem., 2017, 24(2), 193-214.
[http://dx.doi.org/10.2174/0929867323666160926151216] [PMID: 27686655]
[21]
Varshosaz, J.; Taymouri, S. Hollow inorganic nanoparticles as efficient carriers for siRNA delivery: A comprehensive review. Curr. Pharm. Des., 2015, 21(29), 4310-4328.
[http://dx.doi.org/10.2174/1381612821666150901103937] [PMID: 26323421]
[22]
Gratton, S.E.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[23]
Lv, C.; Yang, C.; Ding, D.; Sun, Y.; Wang, R.; Han, D.; Tan, W. Endocytic pathways and intracellular transport of aptamer-drug conjugates in live cells monitored by single-particle tracking. Anal. Chem., 2019, 91(21), 13818-13823.
[http://dx.doi.org/10.1021/acs.analchem.9b03281] [PMID: 31593429]
[24]
Paillard, A.; Hindré, F.; Vignes-Colombeix, C.; Benoit, J.P.; Garcion, E. The importance of endo-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability. Biomaterials, 2010, 31(29), 7542-7554.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.024] [PMID: 20630585]
[25]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[26]
Rizk, N.; Christoforou, N.; Lee, S. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles. Nanotechnology, 2016, 27(18), 185704.
[http://dx.doi.org/10.1088/0957-4484/27/18/185704] [PMID: 27004512]
[27]
Elci, S.G.; Jiang, Y.; Yan, B.; Kim, S.T.; Saha, K.; Moyano, D.F.; Yesilbag Tonga, G.; Jackson, L.C.; Rotello, V.M.; Vachet, R.W. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano, 2016, 10(5), 5536-5542.
[http://dx.doi.org/10.1021/acsnano.6b02086] [PMID: 27164169]
[28]
Banskota, S.; Yousefpour, P.; Chilkoti, A. Cell-based biohybrid drug delivery systems: The best of the synthetic and natural worlds. Macromol. Biosci., 2017, 17(1), 1600361.
[http://dx.doi.org/10.1002/mabi.201600361] [PMID: 27925398]
[29]
Qi, F.; Hu, C.; Yu, W.; Hu, T. Conjugation with eight-arm PEG markedly improves the in vitro activity and prolongs the blood circulation of staphylokinase. Bioconjug. Chem., 2018, 29(2), 451-458.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00770] [PMID: 29298046]
[30]
Lu, J.; Wang, J.; Ling, D. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small, 2018, 14(5), 1702037.
[http://dx.doi.org/10.1002/smll.201702037] [PMID: 29251419]
[31]
Esipova, T.V.; Ye, X.; Collins, J.E.; Sakadžić, S.; Mandeville, E.T.; Murray, C.B.; Vinogradov, S.A. Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc. Natl. Acad. Sci. USA, 2012, 109(51), 20826-20831.
[http://dx.doi.org/10.1073/pnas.1213291110] [PMID: 23213211]
[32]
Tu, Y.; Chen, C.; Li, Y.; Hou, Y.; Huang, M.; Zhang, L. Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration. Biomed. Mater. Eng., 2017, 28(3), 223-233.
[http://dx.doi.org/10.3233/BME-171669] [PMID: 28527186]
[33]
Rao, L.; Meng, Q.F.; Bu, L.L.; Cai, B.; Huang, Q.; Sun, Z.J.; Zhang, W.F.; Li, A.; Guo, S.S.; Liu, W.; Wang, T.H.; Zhao, X.Z. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces, 2017, 9(3), 2159-2168.
[http://dx.doi.org/10.1021/acsami.6b14450] [PMID: 28050902]
[34]
Rossi, L.; Pierigè, F.; Antonelli, A.; Bigini, N.; Gabucci, C.; Peiretti, E.; Magnani, M. Engineering erythrocytes for the modulation of drugs' and contrasting agents' pharmacokinetics and biodistribution. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 73-87.
[http://dx.doi.org/10.1016/j.addr.2016.05.008] [PMID: 27189231]
[35]
Müller, K.; Kessel, E.; Klein, P.M.; Höhn, M.; Wagner, E. Post-PEGylation of siRNA lipo-oligoamino amide polyplexes using tetra-glutamylated folic acid as ligand for receptor-targeted delivery. Mol. Pharm., 2016, 13(7), 2332-2345.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00102] [PMID: 27177200]
[36]
Dong, W.; Huang, A.; Huang, J.; Wu, P.; Guo, S.; Liu, H.; Qin, M.; Yang, X.; Zhang, B.; Wan, M.; Zong, Y. Plasmid-loadable magnetic/ultrasound-responsive nanodroplets with a SPIO-NP dispersed perfluoropentane core and lipid shell for tumor-targeted intracellular plasmid delivery. Biomater. Sci., 2020, 8(19), 5329-5345.
[http://dx.doi.org/10.1039/D0BM00699H] [PMID: 32793943]
[37]
Zardad, A.; Mabrouk, M.; Marimuthu, T.; du Toit, L.C.; Kumar, P.; Choonara, Y.E.; Kondiah, P.P.D.; Badhe, R.V.; Chejara, D.R.; Pillay, V. Synthesis and biocompatibility of dual-responsive thermosonic injectable organogels based on crosslinked N-(isopropyl acrylamide) for tumour microenvironment targeting. Mater. Sci. Eng. C, 2018, 90, 148-158.
[http://dx.doi.org/10.1016/j.msec.2018.04.059] [PMID: 29853077]
[38]
Schroeder, A.; Honen, R.; Turjeman, K.; Gabizon, A.; Kost, J.; Barenholz, Y. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J. Control. Release, 2009, 137(1), 63-68.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.007] [PMID: 19303426]
[39]
Wang, C.H.; Kang, S.T.; Lee, Y.H.; Luo, Y.L.; Huang, Y.F.; Yeh, C.K. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials, 2012, 33(6), 1939-1947.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.036] [PMID: 22142768]
[40]
Negishi, Y.; Endo-Takahashi, Y.; Matsuki, Y.; Kato, Y.; Takagi, N.; Suzuki, R.; Maruyama, K.; Aramaki, Y. Systemic delivery systems of angiogenic gene by novel bubble liposomes containing cationic lipid and ultrasound exposure. Mol. Pharm., 2012, 9(6), 1834-1840.
[http://dx.doi.org/10.1021/mp200554c] [PMID: 22571418]
[41]
Chen, D.; Li, D.Y.; Zhang, Y.Z.; Kang, Z.T. Preparation of magnesium ferrite nanoparticles by ultrasonic wave-assisted aqueous solution ball milling. Ultrason. Sonochem., 2013, 20(6), 1337-1340.
[http://dx.doi.org/10.1016/j.ultsonch.2013.04.001] [PMID: 23622867]
[42]
Li, W.; Cai, X.; Kim, C.; Sun, G.; Zhang, Y.; Deng, R.; Yang, M.; Chen, J.; Achilefu, S.; Wang, L.V.; Xia, Y. Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale, 2011, 3(4), 1724-1730.
[http://dx.doi.org/10.1039/c0nr00932f] [PMID: 21321760]
[43]
Li, X.; Xie, C.; Xia, H.; Wang, Z. pH and ultrasound dual-responsive polydopamine-coated mesoporous silica nanoparticles for controlled drug delivery. Langmuir, 2018, 34(34), 9974-9981.
[http://dx.doi.org/10.1021/acs.langmuir.8b01091] [PMID: 30056720]
[44]
Zhang, K.; Xu, H.; Chen, H.; Jia, X.; Zheng, S.; Cai, X.; Wang, R.; Mou, J.; Zheng, Y.; Shi, J. CO2 bubbling-based ‘nanobomb’ system for targetedly suppressing panc-1 pancreatic tumor via low intensity ultrasound-activated inertial cavitation. Theranostics, 2015, 5(11), 1291-1302.
[http://dx.doi.org/10.7150/thno.12691] [PMID: 26379793]
[45]
Irajirad, R.; Ahmadi, A.; Najafabad, B.K.; Abed, Z.; Sheervalilou, R.; Khoei, S.; Shiran, M.B.; Ghaznavi, H.; Shakeri-Zadeh, A. Combined thermo-chemotherapy of cancer using 1 MHz ultrasound waves and a cisplatin-loaded sonosensitizing nanoplatform: an in vivo study. Cancer Chemother. Pharmacol., 2019, 84(6), 1315-1321.
[http://dx.doi.org/10.1007/s00280-019-03961-9] [PMID: 31559450]
[46]
Wang, D.S.; Panje, C.; Pysz, M.A.; Paulmurugan, R.; Rosenberg, J.; Gambhir, S.S.; Schneider, M.; Willmann, J.K. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology, 2012, 264(3), 721-732.
[http://dx.doi.org/10.1148/radiol.12112368] [PMID: 22723497]
[47]
Zhao, Y.Z.; Lu, C.T.; Fu, H.X.; Li, X.K.; Zhou, Z.C.; Zhao, G.T.; Tian, J.L.; Gao, H.S.; Jiang, Y.N.; Hu, S.P.; Yang, W. Phospholipid-based ultrasonic microbubbles for loading protein and ultrasound-triggered release. Drug Dev. Ind. Pharm., 2009, 35(9), 1121-1127.
[http://dx.doi.org/10.1080/03639040902783082] [PMID: 19555252]
[48]
Beik, J.; Shiran, M.B.; Abed, Z.; Shiri, I.; Ghadimi-Daresajini, A.; Farkhondeh, F.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice. Med. Phys., 2018, 45(9), 4306-4314.
[http://dx.doi.org/10.1002/mp.13100] [PMID: 30043986]
[49]
Park, D.J.; Min, K.H.; Lee, H.J.; Kim, K.; Kwon, I.C.; Jeong, S.Y.; Lee, S.C. Photosensitizer-loaded bubble-generating mineralized nanoparticles for ultrasound imaging and photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(7), 1219-1227.
[http://dx.doi.org/10.1039/C5TB02338F] [PMID: 32262977]
[50]
Zhu, B.; Liu, Q.; Wang, Y.; Wang, X.; Wang, P.; Zhang, L.; Su, S. Comparison of accumulation, subcellular location, and sonodynamic cytotoxicity between hematoporphyrin and protoporphyrin IX in L1210 cells. Chemotherapy, 2010, 56(5), 403-410.
[http://dx.doi.org/10.1159/000317743] [PMID: 20948211]
[51]
Pan, X.; Wang, H.; Wang, S.; Sun, X.; Wang, L.; Wang, W.; Shen, H.; Liu, H. Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Sci. China Life Sci., 2018, 61(4), 415-426.
[http://dx.doi.org/10.1007/s11427-017-9262-x] [PMID: 29666990]
[52]
Zhang, K.; Xu, H.; Jia, X.; Chen, Y.; Ma, M.; Sun, L.; Chen, H. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano, 2016, 10(12), 10816-10828.
[http://dx.doi.org/10.1021/acsnano.6b04921] [PMID: 28024356]
[53]
Chen, Y.; Liang, Y.; Jiang, P.; Li, F.; Yu, B.; Yan, F. Lipid/PLGA hybrid microbubbles as a versatile platform for noninvasive image-guided targeted drug delivery. ACS Appl. Mater. Interfaces, 2019, 11(45), 41842-41852.
[http://dx.doi.org/10.1021/acsami.9b10188] [PMID: 31633326]
[54]
Li, D.; Lin, L.; Fan, Y.; Liu, L.; Shen, M.; Wu, R.; Du, L.; Shi, X. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact. Mater., 2020, 6(3), 729-739.
[http://dx.doi.org/10.1016/j.bioactmat.2020.09.015] [PMID: 33024894]
[55]
Wan, Q.; Zou, C.; Hu, D.; Zhou, J.; Chen, M.; Tie, C.; Qiao, Y.; Yan, F.; Cheng, C.; Sheng, Z.; Zhang, B.; Liu, X.; Liang, D.; Zheng, H. Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy. Biomater. Sci., 2019, 7(7), 3007-3015.
[http://dx.doi.org/10.1039/C9BM00292H] [PMID: 31112151]
[56]
Yin, Y.; Jiang, X.; Sun, L.; Li, H.; Su, C.; Zhang, Y.; Xu, G.; Li, X.; Zhao, C.; Chen, Y.; Xu, H.; Zhang, K. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today, 2021, 36, 101009.
[http://dx.doi.org/10.1016/j.nantod.2020.101009]
[57]
Guan, X.; Yin, H.H.; Xu, X.H.; Xu, G.; Zhang, Y.; Zhou, B.G.; Yue, W.W.; Liu, C.; Sun, L.P.; Xu, H.X.; Zhang, K. Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron-hole pairs’ separation. Adv. Funct. Mater., 2020, 30(27), 2000326.
[http://dx.doi.org/10.1002/adfm.202000326]
[58]
Zhang, K.; Fang, Y.; He, Y.; Yin, H.; Guan, X.; Pu, Y.; Zhou, B.; Yue, W.; Ren, W.; Du, D.; Li, H.; Liu, C.; Sun, L.; Chen, Y.; Xu, H. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat. Commun., 2019, 10(1), 5380.
[http://dx.doi.org/10.1038/s41467-019-13115-3] [PMID: 31772164]
[59]
Zhang, K.; Li, H.Y.; Lang, J.Y.; Li, X.T.; Yue, W.W.; Yin, Y.F.; Du, D.; Fang, Y.; Wu, H.; Zhao, Y.X.; Xu, C. Quantum yield-engineered biocompatible probes illuminate lung tumor based on viscosity confinement-mediated antiaggregation. Adv. Funct. Mater., 2019, 29(44), 1905124.
[http://dx.doi.org/10.1002/adfm.201905124]
[60]
Zheng, L.; Liu, S.; Cheng, X.; Qin, Z.; Lu, Z.; Zhang, K.; Zhao, J. Intensified stiffness and photodynamic provocation in a collagen-based composite hydrogel drive chondrogenesis. Adv. Sci. (Weinh.), 2019, 6(16), 1900099.
[http://dx.doi.org/10.1002/advs.201900099] [PMID: 31453055]
[61]
Chen, J.; Luo, H.; Liu, Y.; Zhang, W.; Li, H.; Luo, T.; Zhang, K.; Zhao, Y.; Liu, J. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano, 2017, 11(12), 12849-12862.
[http://dx.doi.org/10.1021/acsnano.7b08225] [PMID: 29236476]
[62]
Zhang, K.; Li, P.; Chen, H.; Bo, X.; Li, X.; Xu, H. Continuous cavitation designed for enhancing radiofrequency ablation via a special radiofrequency solidoid vaporization process. ACS Nano, 2016, 10(2), 2549-2558.
[http://dx.doi.org/10.1021/acsnano.5b07486] [PMID: 26800221]
[63]
Zhang, K.; Li, P.; He, Y.; Bo, X.; Li, X.; Li, D.; Chen, H.; Xu, H. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment. Biomaterials, 2016, 99, 34-46.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.014] [PMID: 27209261]
[64]
Zhao, J.; Castranova, V. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B Crit. Rev., 2011, 14(8), 593-632.
[http://dx.doi.org/10.1080/10937404.2011.615113] [PMID: 22008094]
[65]
Nyström, A.M.; Fadeel, B. Safety assessment of nanomaterials: implications for nanomedicine. J. Control. Release, 2012, 161(2), 403-408.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.027] [PMID: 22306428]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy