Review Article

聚合物基材料及其在图像引导癌症治疗中的应用

卷 29, 期 8, 2022

发表于: 16 June, 2021

页: [1352 - 1368] 页: 17

弟呕挨: 10.2174/0929867328666210616160717

价格: $65

摘要

背景:纳米技术的进步使疾病诊断和治疗成为一个单一的纳米包装,这对于开发新的治疗诊断策略具有巨大的潜力。 在过去的几十年中,基于聚合物的材料的种类呈指数级增长。 这种材料在疾病检测成像和图像监测以及将药物精确输送到特定目标部位的系统中具有巨大的潜力。 目的:在本文中,我们回顾了用于各种医学应用的聚合物基材料合成及其临床试验的最新关键进展。 结论:具有各种功能的多面聚合物基材料的种类越来越多。 这些功能包括图像造影剂载体、药物输送系统和用于癌症治疗的无创或微创治疗程序的实时图像引导系统。

关键词: 聚合物、纳米载体、治疗诊断学、分子成像、靶向治疗、癌症

[1]
Luque-Michel, E.; Imbuluzqueta, E.; Sebastián, V.; Blanco-Prieto, M.J. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin. Drug Deliv., 2017, 14(1), 75-92.
[http://dx.doi.org/10.1080/17425247.2016.1205585] [PMID: 27339650]
[2]
Rizzolio, F. Nanomedicine in cancer pathology. Curr. Med. Chem., 2018, 25(34), 4190-4191.
[http://dx.doi.org/10.2174/092986732534181026111151] [PMID: 30563443]
[3]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[4]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 2019, 25(1), E112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[5]
Wang, X.; Wang, Y.; Chen, Z.G.; Shin, D.M. Advances of cancer therapy by nanotechnology.Cancer research and treatment : Official journal of korean cancer association, 2009, 41(1), 1-11.
[6]
Li, B.; Aid-Launais, R.; Labour, M.N.; Zenych, A.; Juenet, M.; Choqueux, C.; Ollivier, V.; Couture, O.; Letourneur, D.; Chauvierre, C. Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials, 2019, 194, 139-150.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.023] [PMID: 30593939]
[7]
Pu, K.; Shuhendler, A.J.; Jokerst, J.V.; Mei, J.; Gambhir, S.S.; Bao, Z.; Rao, J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol., 2014, 9(3), 233-239.
[http://dx.doi.org/10.1038/nnano.2013.302] [PMID: 24463363]
[8]
Yan, G.; Li, A.; Zhang, A.; Sun, Y.; Liu, J. Polymer-based nanocarriers for co-delivery and combination of diverse therapies against cancers. Nanomaterials (Basel), 2018, 8(2), E85.
[http://dx.doi.org/10.3390/nano8020085] [PMID: 29401694]
[9]
Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel), 2018, 10(1), E31.
[http://dx.doi.org/10.3390/polym10010031] [PMID: 30966075]
[10]
Hu, X.; Tang, Y.; Hu, Y.; Lu, F.; Lu, X.; Wang, Y.; Li, J.; Li, Y.; Ji, Y.; Wang, W.; Ye, D.; Fan, Q.; Huang, W. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/nir-ii fluorescence imaging-guided cancer photothermal therapy. Theranostics, 2019, 9(14), 4168-4181.
[http://dx.doi.org/10.7150/thno.34390] [PMID: 31281539]
[11]
Luk, B.T.; Zhang, L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mater. Interfaces, 2014, 6(24), 21859-21873.
[http://dx.doi.org/10.1021/am5036225] [PMID: 25014486]
[12]
Methachan, B.; Thanapprapasr, K. Polymer-based materials in cancer treatment: From therapeutic carrier and ultrasound contrast agent to theranostic applications. Ultrasound Med. Biol., 2017, 43(1), 69-82.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.09.009] [PMID: 27751594]
[13]
Sadat Tabatabaei Mirakabad, F.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; Joo, S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev., 2014, 15(2), 517-535.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[14]
Mir, M.; Ahmed, N.; Rehman, A.U. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[15]
Gunatillake, P.A.; Adhikari, R. Biodegradable synthetic polymers for tissue engineering. Eur. Cell. Mater., 2003, 5, 1-16.
[http://dx.doi.org/10.22203/eCM.v005a01] [PMID: 14562275]
[16]
Huang, J.; Liu, F.; Han, X.; Zhang, L.; Hu, Z.; Jiang, Q.; Wang, Z.; Ran, H.; Wang, D.; Li, P. Nanosonosensitizers for highly efficient sonodynamic cancer theranostics. Theranostics, 2018, 8(22), 6178-6194.
[http://dx.doi.org/10.7150/thno.29569] [PMID: 30613291]
[17]
Kefayat, A.; Vaezifar, S. Biodegradable PLGA implants containing doxorubicin-loaded chitosan nanoparticles for treatment of breast tumor-bearing mice. Int. J. Biol. Macromol., 2019, 136, 48-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.055] [PMID: 31195043]
[18]
Xu, J.S.; Huang, J.; Qin, R.; Hinkle, G.H.; Povoski, S.P.; Martin, E.W.; Xu, R.X. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials, 2010, 31(7), 1716-1722.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.052] [PMID: 20006382]
[19]
Perlman, O.; Weitz, I.S.; Sivan, S.S.; Abu-Khalla, H.; Benguigui, M.; Shaked, Y.; Azhari, H. Copper oxide loaded PLGA nanospheres: Towards a multifunctional nanoscale platform for ultrasound-based imaging and therapy. Nanotechnology, 2018, 29(18), 185102.
[http://dx.doi.org/10.1088/1361-6528/aab00c] [PMID: 29451124]
[20]
Li, Q.; Li, C.; Tong, W. Nile red loaded plga nanoparticles surface modified with gd-dtpa for potential dual-modal imaging. J. Nanosci. Nanotechnol., 2016, 16(6), 5569-5576.
[http://dx.doi.org/10.1166/jnn.2016.11735] [PMID: 27427598]
[21]
Zhang, Y.; García-Gabilondo, M.; Grayston, A.; Feiner, I.V.J.; Anton-Sales, I.; Loiola, R.A.; Llop, J.; Ramos-Cabrer, P.; Barba, I.; Garcia-Dorado, D.; Gosselet, F.; Rosell, A.; Roig, A. PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities. Nanoscale, 2020, 12(8), 4988-5002.
[http://dx.doi.org/10.1039/C9NR10620K] [PMID: 32057060]
[22]
Liu, Q.; Qian, Y.; Li, P.; Zhang, S.; Liu, J.; Sun, X.; Fulham, M.; Feng, D.; Huang, G.; Lu, W.; Song, S. 131I-labeled copper sulfide-loaded microspheres to treat hepatic tumors via hepatic artery embolization. Theranostics, 2018, 8(3), 785-799.
[http://dx.doi.org/10.7150/thno.21491] [PMID: 29344306]
[23]
You, Y.; Wang, Z.; Ran, H.; Zheng, Y.; Wang, D.; Xu, J.; Wang, Z.; Chen, Y.; Li, P. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale, 2016, 8(7), 4324-4339.
[http://dx.doi.org/10.1039/C5NR08292G] [PMID: 26837265]
[24]
Liu, F.; Chen, Y.; Li, Y.; Guo, Y.; Cao, Y.; Li, P.; Wang, Z.; Gong, Y.; Ran, H. Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy. Int. J. Nanomedicine, 2018, 13, 5139-5158.
[http://dx.doi.org/10.2147/IJN.S167043] [PMID: 30233177]
[25]
Valcourt, D.M.; Dang, M.N.; Day, E.S. IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer. J. Biomed. Mater. Res. A, 2019, 107(8), 1702-1712.
[http://dx.doi.org/10.1002/jbm.a.36685] [PMID: 30920169]
[26]
Xi, J.; Qian, X.; Qian, K.; Zhang, W.; He, W.; Chen, Y.; Han, J.; Zhang, Y.; Yang, X.; Fan, L. Au nanoparticle-coated, PLGA-based hybrid capsules for combined ultrasound imaging and HIFU therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(20), 4213-4220.
[http://dx.doi.org/10.1039/C5TB00200A] [PMID: 32262298]
[27]
Chuang, C.C.; Cheng, C.C.; Chen, P.Y.; Lo, C.; Chen, Y.N.; Shih, M.H.; Chang, C.W. Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int. J. Nanomedicine, 2018, 14, 181-193.
[http://dx.doi.org/10.2147/IJN.S177851] [PMID: 30613145]
[28]
Xie, J.; Huang, J.; Li, X.; Sun, S.; Chen, X. Iron oxide nanoparticle platform for biomedical applications. Curr. Med. Chem., 2009, 16(10), 1278-1294.
[http://dx.doi.org/10.2174/092986709787846604] [PMID: 19355885]
[29]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[30]
Gao, P.; Mei, C.; He, L.; Xiao, Z.; Chan, L.; Zhang, D.; Shi, C.; Chen, T.; Luo, L. Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung cancer. Drug Deliv., 2018, 25(1), 1811-1825.
[http://dx.doi.org/10.1080/10717544.2018.1494224] [PMID: 30465437]
[31]
Luo, B.; Zhang, H.; Liu, X.; Rao, R.; Wu, Y.; Liu, W. Novel DiR and SPIO nanoparticles embedded PEG-PLGA nanobubbles as a multimodalimaging contrast agent. Biomed. Mater. Eng., 2015, 26(Suppl. 1), S911-S916.
[http://dx.doi.org/10.3233/BME-151384] [PMID: 26406092]
[32]
Kohl, Y.; Kaiser, C.; Bost, W.; Stracke, F.; Thielecke, H.; Wischke, C.; Lendlein, A.; Kratz, K.; Lemor, R. Near-infrared dye-loaded PLGA nanoparticles prepared by spray drying for photoacoustic applications. Int. J. Artif. Organs, 2011, 34(2), 249-252.
[http://dx.doi.org/10.5301/IJAO.2011.6405] [PMID: 21374564]
[33]
Huang, H.C.; Barua, S.; Sharma, G.; Dey, S.K.; Rege, K. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release, 2011, 155(3), 344-357.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.004] [PMID: 21723891]
[34]
de Toledo, M.C.M.C.; Abreu, A.D.S.; Carvalho, J.A.; Ambrósio, J.A.R.; Godoy, D.D.S.; Dos Santos Pinto, B.C.; Beltrame, M., Junior; Simioni, A.R. Zinc phthalocyanine tetrasulfonate-loaded polyelectrolytic PLGA nanoparticles for photodynamic therapy applications. Photodiagn. Photodyn. Ther., 2020, 32, 101966.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101966] [PMID: 32835878]
[35]
McCall, R.L.; Sirianni, R.W. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J. Vis. Exp., 2013, (82), 51015.
[http://dx.doi.org/10.3791/51015] [PMID: 24429733]
[36]
Sun, Y.; Zheng, Y.; Ran, H.; Zhou, Y.; Shen, H.; Chen, Y.; Chen, H.; Krupka, T.M.; Li, A.; Li, P.; Wang, Z.; Wang, Z. Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials, 2012, 33(24), 5854-5864.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.062] [PMID: 22617321]
[37]
Sun, Y.; Wang, Y.J.; Niu, C.C.; Strohm, E.M.; Zheng, Y.Y.; Ran, H.T.; Huang, R.Z.; Zhou, D.; Gong, Y.P.; Wang, Z.G.; Wang, D.; Kolios, M.C. Laser-activatible plga microparticles for image-guided cancer therapy in vivo. Adv. Funct. Mater., 2014, 24(48), 7674-7680.
[http://dx.doi.org/10.1002/adfm.201402631]
[38]
Zhou, J.; Li, T.; Zhang, C.; Xiao, J.; Cui, D.; Cheng, Y. Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging. Nanoscale, 2018, 10(20), 9707-9719.
[http://dx.doi.org/10.1039/C8NR00994E] [PMID: 29762622]
[39]
Khaledian, M.; Nourbakhsh, M.S.; Saber, R.; Hashemzadeh, H.; Darvishi, M.H. Preparation and evaluation of doxorubicin-loaded pla-peg-fa copolymer containing superparamagnetic iron oxide nanoparticles (spions) for cancer treatment: Combination therapy with hyperthermia and chemotherapy. Int. J. Nanomedicine, 2020, 15, 6167-6182.
[http://dx.doi.org/10.2147/IJN.S261638] [PMID: 32922000]
[40]
Ahmed, N.; Ahmad, N.M.; Fessi, H.; Elaissari, A. in vitro MRI of biodegradable hybrid (iron oxide/polycaprolactone) magnetic nanoparticles prepared via modified double emulsion evaporation mechanism. Colloids Surf. B Biointerfaces, 2015, 130, 264-271.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.022] [PMID: 25960142]
[41]
Iqbal, M.; Robin, S.; Humbert, P.; Viennet, C.; Agusti, G.; Fessi, H.; Elaissari, A. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications. Colloids Surf. B Biointerfaces, 2015, 136, 488-495.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.045] [PMID: 26454055]
[42]
Song, Weixiang Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: An in vitro study. 2017.
[43]
Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol., 2020, 8, 127.
[http://dx.doi.org/10.3389/fbioe.2020.00127] [PMID: 32158749]
[44]
Guo, H.; Jiang, Z.; Song, S.; Dai, T.; Wang, X.; Sun, K.; Zhou, G.; Dou, H. Structural regulation of self-assembled iron oxide/polymer microbubbles towards performance-tunable magnetic resonance/ultrasonic dual imaging agents. J. Colloid Interface Sci., 2016, 482, 95-104.
[http://dx.doi.org/10.1016/j.jcis.2016.07.042] [PMID: 27497230]
[45]
Amali, A.J.; Rana, R.K. Trapping Pd(0) in nanoparticle-assembled microcapsules: An efficient and reusable catalyst. Chem. Commun. (Camb.), 2008, (35), 4165-4167.
[http://dx.doi.org/10.1039/b807736c] [PMID: 18802517]
[46]
Song, S.; Guo, H.; Jiang, Z.; Jin, Y.; Zhang, Z.; Sun, K.; Dou, H. Self-assembled Fe3O4/polymer hybrid microbubble with MRI/ultrasound dual-imaging enhancement. Langmuir, 2014, 30(35), 10557-10561.
[http://dx.doi.org/10.1021/la5021115] [PMID: 25136957]
[47]
Sun, M.; Zhang, H.Y.; Zhao, Q.; Hu, X.Y.; Wang, L.H.; Liu, B.W.; Liu, Y. A supramolecular brush polymer via the self-assembly of bridged tris(β-cyclodextrin) with a porphyrin derivative and its magnetic resonance imaging. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(41), 8170-8179.
[http://dx.doi.org/10.1039/C5TB01537E] [PMID: 32262874]
[48]
Yang, H.Y.; Jang, M-S.; Li, Y.; Fu, Y.; Wu, T.P.; Lee, J.H.; Lee, D.S. Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. J. Control. Release, 2019, 301, 157-165.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.019] [PMID: 30905667]
[49]
Gao, N.; Yang, W.; Nie, H.; Gong, Y.; Jing, J.; Gao, L.; Zhang, X. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens. Bioelectron., 2017, 96, 300-307.
[http://dx.doi.org/10.1016/j.bios.2017.05.019] [PMID: 28511113]
[50]
Song, J.; Lin, L.; Yang, Z.; Zhu, R.; Zhou, Z.; Li, Z.W.; Wang, F.; Chen, J.; Yang, H.; Chen, X. Self-assembled responsive bilayered vesicles with adjustable oxidative stress for enhanced cancer imaging and therapy. J. Am. Chem. Soc., 2019, 141(20), 8158-8170.
[http://dx.doi.org/10.1021/jacs.8b13902] [PMID: 31053030]
[51]
Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E.; Morgan, J.; Chin, Y.; Sun, S.J.A.C. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. 2008, 47(1), 173-176.
[52]
Wischke, C.; Schwendeman, S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm., 2008, 364(2), 298-327.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.042] [PMID: 18621492]
[53]
Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release, 2008, 125(3), 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[54]
Zhou, D.; Sun, Y.; Zheng, Y.; Ran, H.; Li, P.; Wang, Z.; Wang, Z. Superparamagnetic PLGA-iron oxide microspheres as contrast agents for dual-imaging and the enhancement of the effects of high-intensity focused ultrasound ablation on liver tissue. RSC Advances, 2015, 5(45), 35693-35703.
[http://dx.doi.org/10.1039/C5RA00880H]
[55]
Haburcak, R.; Shi, J.; Du, X.; Yuan, D.; Xu, B.J.J.A.C.S. Ligand-receptor interaction modulates the energy landscape of enzyme-instructed self-assembly of small molecules., 2016, 138(47), 15397-15404.
[56]
Köse, G.; Darguzyte, M.; Kiessling, F.J.N. Molecular ultrasound imaging., 2020, 10(10)
[57]
Chong, W.; Papadopoulou, V.; Dayton, P.J.A.r. Imaging with ultrasound contrast agents: Current status and future. 2018, 43(4), 762-772.
[http://dx.doi.org/10.1007/s00261-018-1516-1]
[58]
Kang, S.; Yeh, C.J.C.G.m.j. Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: Current status and future design., 2012, 35(2), 125-139.
[59]
Zhang, M.; Fabiilli, M.; Haworth, K.; Fowlkes, J.; Kripfgans, O.; Roberts, W.; Ives, K.; Carson, P.J.U.i.m. .Biology, Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. 2010, 36(10), 1691-1703.
[60]
Rapoport, N. Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(5), 492-510.
[http://dx.doi.org/10.1002/wnan.1176] [PMID: 22730185]
[61]
Huang, J.; Xu, J.S.; Xu, R.X. Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials, 2010, 31(6), 1278-1286.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.008] [PMID: 19942283]
[62]
Lü, J.M.; Wang, X.; Marin-Muller, C.; Wang, H.; Lin, P.H.; Yao, Q.; Chen, C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn., 2009, 9(4), 325-341.
[http://dx.doi.org/10.1586/erm.09.15] [PMID: 19435455]
[63]
Kripfgans, O.D.; Fowlkes, J.B.; Miller, D.L.; Eldevik, O.P.; Carson, P.L. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol., 2000, 26(7), 1177-1189.
[http://dx.doi.org/10.1016/S0301-5629(00)00262-3] [PMID: 11053753]
[64]
Mercado-Shekhar, K.P.; Su, H.; Kalaikadal, D.S.; Lorenz, J.N.; Manglik, R.M.; Holland, C.K.; Redington, A.N.; Haworth, K.J. Acoustic droplet vaporization-mediated dissolved oxygen scavenging in blood-mimicking fluids, plasma, and blood. Ultrason. Sonochem., 2019, 56, 114-124.
[http://dx.doi.org/10.1016/j.ultsonch.2019.03.029] [PMID: 31101245]
[65]
Zhou, Y.; Wang, Z.; Chen, Y.; Shen, H.; Luo, Z.; Li, A.; Wang, Q.; Ran, H.; Li, P.; Song, W.; Yang, Z.; Chen, H.; Wang, Z.; Lu, G.; Zheng, Y. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv. Mater., 2013, 25(30), 4123-4130.
[http://dx.doi.org/10.1002/adma.201301655] [PMID: 23788403]
[66]
Loskutova, K.; Grishenkov, D.; Ghorbani, M. Review on acoustic droplet vaporization in ultrasound diagnostics and therapeutics. BioMed Res. Int., 2019, 2019, 9480193.
[http://dx.doi.org/10.1155/2019/9480193] [PMID: 31392217]
[67]
Zhu, Z.; Wu, Q.; Li, G.; Han, S.; Si, T.; Xu, R.X. Microfluidic fabrication of stimuli-responsive microdroplets for acoustic and optical droplet vaporization. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(15), 2723-2730.
[http://dx.doi.org/10.1039/C5TB02402A] [PMID: 32263297]
[68]
Strohm, E.; Rui, M.; Gorelikov, I.; Matsuura, N.; Kolios, M. Vaporization of perfluorocarbon droplets using optical irradiation. Biomed. Opt. Express, 2011, 2(6), 1432-1442.
[http://dx.doi.org/10.1364/BOE.2.001432] [PMID: 21698007]
[69]
Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun., 2012, 3, 618.
[http://dx.doi.org/10.1038/ncomms1627] [PMID: 22233628]
[70]
Wang, C.H.; Kang, S.T.; Lee, Y.H.; Luo, Y.L.; Huang, Y.F.; Yeh, C.K. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials, 2012, 33(6), 1939-1947.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.036] [PMID: 22142768]
[71]
Fabiilli, M.L.; Lee, J.A.; Kripfgans, O.D.; Carson, P.L.; Fowlkes, J.B. Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm. Res., 2010, 27(12), 2753-2765.
[http://dx.doi.org/10.1007/s11095-010-0277-5] [PMID: 20872050]
[72]
Rapoport, N.Y.; Kennedy, A.M.; Shea, J.E.; Scaife, C.L.; Nam, K.H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release, 2009, 138(3), 268-276.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.026] [PMID: 19477208]
[73]
Williams, R.; Wright, C.; Cherin, E.; Reznik, N.; Lee, M.; Gorelikov, I.; Foster, F.S.; Matsuura, N.; Burns, P.N. Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer. Ultrasound Med. Biol., 2013, 39(3), 475-489.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.10.004] [PMID: 23312960]
[74]
Sheeran, P.S.; Wong, V.P.; Luois, S.; McFarland, R.J.; Ross, W.D.; Feingold, S.; Matsunaga, T.O.; Dayton, P.A. Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging. Ultrasound Med. Biol., 2011, 37(9), 1518-1530.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2011.05.021] [PMID: 21775049]
[75]
Kang, S.T.; Yeh, C.K. Intracellular acoustic droplet vaporization in a single peritoneal macrophage for drug delivery applications. Langmuir, 2011, 27(21), 13183-13188.
[http://dx.doi.org/10.1021/la203212p] [PMID: 21936541]
[76]
Deng, L.; Cai, X.; Sheng, D.; Yang, Y.; Strohm, E.; Wang, Z.; Ran, H.; Wang, D.; Zheng, Y.; Li, P.; Shang, T.; Ling, Y.; Wang, F.; Sun, Y.J.T. A laser-activated biocompatible theranostic nanoagent for targeted multimodal imaging and photothermal therapy., 2017, 7(18), 4410-4423.
[77]
Wu, M.; Shu, J.J.C.m. imaging, m. Multimodal molecular imaging: Current status and future directions.2018 2018, 1382183.
[78]
Visscher, M.; Lajoinie, G.; Blazejewski, E.; Veldhuis, G.; Versluis, M. Laser-activated microparticles for multimodal imaging: Ultrasound and photoacoustics. Phys. Med. Biol., 2019, 64(3), 034001.
[http://dx.doi.org/10.1088/1361-6560/aaf4a2] [PMID: 30523821]
[79]
Niu, C.; Wang, Z.; Lu, G.; Krupka, T.M.; Sun, Y.; You, Y.; Song, W.; Ran, H.; Li, P.; Zheng, Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials, 2013, 34(9), 2307-2317.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.003] [PMID: 23276658]
[80]
Sun, Y.; Zhu, Y.; Huang, C.; Li, R.; Chen, Y.; Duan, Y. Magnetite loaded Polypeptide-PLGA multifunctional microbubbles for dual-mode US/MR imaging. Contrast Media Mol. Imaging, 2016, 11(2), 146-153.
[http://dx.doi.org/10.1002/cmmi.1675] [PMID: 26647349]
[81]
Fan, C.H.; Ting, C.Y.; Lin, H.J.; Wang, C.H.; Liu, H.L.; Yen, T.C.; Yeh, C.K. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials, 2013, 34(14), 3706-3715.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.099] [PMID: 23433776]
[82]
Li, X.; Xia, S.; Zhou, W.; Ji, R.; Zhan, W. Targeted Fe-doped silica nanoparticles as a novel ultrasound-magnetic resonance dual-mode imaging contrast agent for HER2-positive breast cancer. Int. J. Nanomedicine, 2019, 14, 2397-2413.
[http://dx.doi.org/10.2147/IJN.S189252] [PMID: 31040664]
[83]
Huang, H.Y.; Hu, S.H.; Hung, S.Y.; Chiang, C.S.; Liu, H.L.; Chiu, T.L.; Lai, H.Y.; Chen, Y.Y.; Chen, S.Y. SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J. Control. Release, 2013, 172(1), 118-127.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.029] [PMID: 23933522]
[84]
Nie, Z.; Luo, N.; Liu, J.; Zhang, Y.; Zeng, X.; Su, D. Dual-mode contrast agents with rgd-modified polymer for tumour-targeted us/nirf imaging. OncoTargets Ther., 2020, 13, 8919-8929.
[http://dx.doi.org/10.2147/OTT.S256044] [PMID: 32982284]
[85]
Liu, Y.; Chen, S.; Sun, J.; Zhu, S.; Chen, C.; Xie, W.; Zheng, J.; Zhu, Y.; Xiao, L.; Hao, L.; Wang, Z.; Chang, S. Folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles for dual-mode imaging and photo-sonodynamic/photothermal therapy of ovarian cancer in vitro and in vivo. Mol. Pharm., 2019, 16(10), 4104-4120.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00339] [PMID: 31517495]
[86]
Yousaf, T.; Dervenoulas, G.; Politis, M. Advances in mri methodology. Int. Rev. Neurobiol., 2018, 141, 31-76.
[http://dx.doi.org/10.1016/bs.irn.2018.08.008] [PMID: 30314602]
[87]
Li, Z.; Ke, H.; Wang, J.; Miao, Z.; Yue, X.J.J.o.n. Nanotechnology, graphene oxide and gadolinium-chelate functionalized poly(lactic acid) nanocapsules encapsulating perfluorooctylbromide for ultrasound/magnetic resonance bimodal imaging guided photothermal ablation of cancer. 2016, 16(3), 2201-2209.
[88]
Duan, L.; Yang, F.; Song, L.; Fang, K.; Tian, J.; Liang, Y.; Li, M.; Xu, N.; Chen, Z.; Zhang, Y.; Gu, N. Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging. Soft Matter, 2015, 11(27), 5492-5500.
[http://dx.doi.org/10.1039/C5SM00864F] [PMID: 26061750]
[89]
Laurent, S.; Boutry, S.; Mahieu, I.; Vander Elst, L.; Muller, R.N. Iron oxide based MR contrast agents: From chemistry to cell labeling. Curr. Med. Chem., 2009, 16(35), 4712-4727.
[http://dx.doi.org/10.2174/092986709789878256] [PMID: 19903138]
[90]
Ma, X.; Wang, S.; Hu, L.; Feng, S.; Wu, Z.; Liu, S.; Duan, S.; Chen, Z.; Zhou, C.; Zhao, X. Imaging characteristics of uspio nanoparticles (<5 nm) as mr contrast agent in vitro and in the liver of rats. Contrast Media Mol. Imaging, 2019, 2019, 3687537.
[http://dx.doi.org/10.1155/2019/3687537] [PMID: 31427909]
[91]
Lorenzato, C.; Cernicanu, A.; Meyre, M.E.; Germain, M.; Pottier, A.; Levy, L.; de Senneville, B.D.; Bos, C.; Moonen, C.; Smirnov, P. MRI contrast variation of thermosensitive magnetoliposomes triggered by focused ultrasound: A tool for image-guided local drug delivery. Contrast Media Mol. Imaging, 2013, 8(2), 185-192.
[http://dx.doi.org/10.1002/cmmi.1515] [PMID: 23281291]
[92]
Suzuki, M.; Bachelet-Violette, L.; Rouzet, F.; Beilvert, A.; Autret, G.; Maire, M.; Menager, C.; Louedec, L.; Choqueux, C.; Saboural, P.; Haddad, O.; Chauvierre, C.; Chaubet, F.; Michel, J.B.; Serfaty, J.M.; Letourneur, D. Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine (Lond.), 2015, 10(1), 73-87.
[http://dx.doi.org/10.2217/nnm.14.51] [PMID: 24960075]
[93]
Thorek, D.L.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34(1), 23-38.
[http://dx.doi.org/10.1007/s10439-005-9002-7] [PMID: 16496086]
[94]
Rad, A.M.; Arbab, A.S.; Iskander, A.S.; Jiang, Q.; Soltanian-Zadeh, H. Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J. Magn. Reson. Imaging, 2007, 26(2), 366-374.
[http://dx.doi.org/10.1002/jmri.20978] [PMID: 17623892]
[95]
Jung, H.; Park, B.; Lee, C.; Cho, J.; Suh, J.; Park, J.; Kim, Y.; Kim, J.; Cho, G.; Cho, H.; Dual, M.R.I. Dual MRI T1 and T2(*) contrast with size-controlled iron oxide nanoparticles. Nanomedicine (Lond.), 2014, 10(8), 1679-1689.
[http://dx.doi.org/10.1016/j.nano.2014.05.003] [PMID: 24842765]
[96]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[97]
Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
[98]
Song, W.; Luo, Y.; Zhao, Y.; Liu, X.; Zhao, J.; Luo, J.; Zhang, Q.; Ran, H.; Wang, Z.; Guo, D. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: An in vitro study. Nanomedicine (Lond.), 2017, 12(9), 991-1009.
[http://dx.doi.org/10.2217/nnm-2017-0027] [PMID: 28327075]
[99]
Skouras, A.; Papadia, K.; Mourtas, S.; Klepetsanis, P.; Antimisiaris, S.G. Multifunctional doxorubicin-loaded magnetoliposomes with active and magnetic targeting properties. Eur. J. Pharm. Sci., 2018, 123, 162-172.
[http://dx.doi.org/10.1016/j.ejps.2018.07.044] [PMID: 30041027]
[100]
Geilich, B.M.; Gelfat, I.; Sridhar, S.; van de Ven, A.L.; Webster, T.J. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials, 2017, 119, 78-85.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.011] [PMID: 28011336]
[101]
Men, X.; Chen, H.; Sun, C.; Liu, Y.; Wang, R.; Zhang, X.; Wu, C.; Yuan, Z.J.A.a.m. Interfaces, thermosensitive polymer dot nanocomposites for trimodal computed tomography/ photoacoustic/fluorescence imaging-guided synergistic chemo-photothermal therapy. 2020, 12(46), 51174-51184.
[102]
Elvira, C.; Gallardo, A.; Roman, J.; Cifuentes, A.J.M. Covalent polymer-drug conjugates., 2005, 10(1), 114-125.
[http://dx.doi.org/10.3390/10010114]
[103]
Mørch, Ý.; Hansen, R.; Berg, S.; Åslund, A.; Glomm, W.; Eggen, S.; Schmid, R.; Johnsen, H.; Kubowicz, S.; Snipstad, S.; Sulheim, E.; Hak, S.; Singh, G.; McDonagh, B.; Blom, H.; de Lange Davies, C.; Stenstad, P.J.C.m. .Imaging, m., nanoparticle-stabilized microbubbles for multimodal imaging and drug delivery. 2015, 10(5), 356-366.
[104]
Zhen, X.; Jiang, X.J.W.i.r.N. Nanobiotechnology, polymer-based activatable optical probes for tumor fluorescence and photoacoustic imaging., 2020, 12(2), ,e1593.
[105]
Huang, X.; Liao, W.; Zhang, G.; Kang, S.; Zhang, C.J.I.j.o.n. .GpH-sensitive micelles self-assembled from polymer brush (PAE-cholesterol)-PEG-(PAE-cholesterol) for anticancer drug delivery and controlled release. 2017, 12, 2215-2226.
[106]
Chaussy, C.G.; Thüroff, S. High-intensity focused ultrasound for the treatment of prostate cancer: A review. J. Endourol., 2017, 31(S1), S30-S37.
[http://dx.doi.org/10.1089/end.2016.0548] [PMID: 28355119]
[107]
Wu, F.; Wang, Z.B.; Chen, W.Z.; Wang, W.; Gui, Y.; Zhang, M.; Zheng, G.; Zhou, Y.; Xu, G.; Li, M.; Zhang, C.; Ye, H.; Feng, R. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: An overview. Ultrason. Sonochem., 2004, 11(3-4), 149-154.
[http://dx.doi.org/10.1016/j.ultsonch.2004.01.011] [PMID: 15081972]
[108]
Ter Haar, G. HIFU tissue ablation: Concept and devices. Adv. Exp. Med. Biol., 2016, 880, 3-20.
[http://dx.doi.org/10.1007/978-3-319-22536-4_1] [PMID: 26486329]
[109]
de Senneville, B.D.; Moonen, C.; Ries, M. MRI-guided hifu methods for the ablation of liver and renal cancers. Adv. Exp. Med. Biol., 2016, 880, 43-63.
[http://dx.doi.org/10.1007/978-3-319-22536-4_3] [PMID: 26486331]
[110]
Ji, Y.; Hu, K.; Zhang, Y.; Gu, L.; Zhu, J.; Zhu, L.; Zhu, Y.; Zhao, H. High-intensity focused ultrasound (HIFU) treatment for uterine fibroids: A meta-analysis. Arch. Gynecol. Obstet., 2017, 296(6), 1181-1188.
[http://dx.doi.org/10.1007/s00404-017-4548-9] [PMID: 28975434]
[111]
van den Bijgaart, R.J.; Eikelenboom, D.C.; Hoogenboom, M.; Fütterer, J.J.; den Brok, M.H.; Adema, G.J. Thermal and mechanical high-intensity focused ultrasound: Perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol. Immunother., 2017, 66(2), 247-258.
[http://dx.doi.org/10.1007/s00262-016-1891-9] [PMID: 27585790]
[112]
Kennedy, J.E. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer, 2005, 5(4), 321-327.
[http://dx.doi.org/10.1038/nrc1591] [PMID: 15776004]
[113]
ter Haar, G. Ultrasound focal beam surgery. Ultrasound Med. Biol., 1995, 21(9), 1089-1100.
[http://dx.doi.org/10.1016/0301-5629(95)02010-1] [PMID: 8849823]
[114]
Stewart, E.A.; Gedroyc, W.M.; Tempany, C.M.; Quade, B.J.; Inbar, Y.; Ehrenstein, T.; Shushan, A.; Hindley, J.T.; Goldin, R.D.; David, M.; Sklair, M.; Rabinovici, J. Focused ultrasound treatment of uterine fibroid tumors: Safety and feasibility of a noninvasive thermoablative technique. Am. J. Obstet. Gynecol., 2003, 189(1), 48-54.
[http://dx.doi.org/10.1067/mob.2003.345] [PMID: 12861137]
[115]
Li, Y.Y.; Sha, W.H.; Zhou, Y.J.; Nie, Y.Q. Short and long term efficacy of high intensity focused ultrasound therapy for advanced hepatocellular carcinoma. J. Gastroenterol. Hepatol., 2007, 22(12), 2148-2154.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04719.x] [PMID: 18031373]
[116]
Li, J.J.; Xu, G.L.; Gu, M.F.; Luo, G.Y.; Rong, Z.; Wu, P.H.; Xia, J.C. Complications of high intensity focused ultrasound in patients with recurrent and metastatic abdominal tumors. World J. Gastroenterol., 2007, 13(19), 2747-2751.
[http://dx.doi.org/10.3748/wjg.v13.i19.2747] [PMID: 17569147]
[117]
Wu, F.; Wang, Z.B.; Chen, W.Z.; Zhu, H.; Bai, J.; Zou, J.Z.; Li, K.Q.; Jin, C.B.; Xie, F.L.; Su, H.B. Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Ann. Surg. Oncol., 2004, 11(12), 1061-1069.
[http://dx.doi.org/10.1245/ASO.2004.02.026] [PMID: 15545506]
[118]
Devarakonda, S.B.; Myers, M.R.; Giridhar, D.; Dibaji, S.A.; Banerjee, R.K. Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound. PLoS One, 2017, 12(4), e0175093.
[http://dx.doi.org/10.1371/journal.pone.0175093] [PMID: 28384646]
[119]
Bera, C.; Devarakonda, S.B.; Kumar, V.; Ganguli, A.K.; Banerjee, R.K. The mechanism of nanoparticle-mediated enhanced energy transfer during high-intensity focused ultrasound sonication. Phys. Chem. Chem. Phys., 2017, 19(29), 19075-19082.
[http://dx.doi.org/10.1039/C7CP03542J] [PMID: 28702635]
[120]
Devarakonda, S.B.; Myers, M.R.; Banerjee, R.K. Comparison of heat transfer enhancement between magnetic and gold nanoparticles during hifu sonication. J. Biomech. Eng., 2018, 140(8)
[http://dx.doi.org/10.1115/1.4040120] [PMID: 30003252]
[121]
Huang, X.; El-Sayed, I.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 2006, 128(6), 2115-2120.
[http://dx.doi.org/10.1021/ja057254a] [PMID: 16464114]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy