Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Enhanced Solubility of Albendazole in Cyclodextrin Inclusion Complex: A Molecular Modeling Approach and Physicochemical Evaluation

Author(s): Camila Gomes de Melo*, Lucas Amadeu Gonzaga da Costa, Marcelo Montenegro Rabello, Victor de Albuquerque Wanderley Sales, Aline Silva Ferreira, Paulo César Dantas da Silva, Rodolfo Hideki Vicente Nishimura, Rosali Maria Ferreira da Silva, Larissa de Araújo Rolim and Pedro José Rolim Neto

Volume 19, Issue 1, 2022

Published on: 14 June, 2021

Page: [86 - 92] Pages: 7

DOI: 10.2174/1567201818666210614104234

Price: $65

Abstract

Background: Albendazole (ABZ) is the drug of choice for the treatment of a variety of human and veterinary parasites. However, it has low aqueous solubility and low bioavailability. Cyclodextrins (CD) are pharmaceutical excipients with the ability to modulate the solubilization property of hydrophobic molecules.

Objective: The aim of the study was to analyze through in vitro and in silico studies (Autodock Vina software and CycloMolder platform) the formation of inclusion complexes between ABZ, β-cyclodextrin (β-CD) and its derivatives Methyl-β-cyclodextrin (M-β-CD) and Hydroxypropyl-β-cyclodextrin (HP-β-CD).

Methods: The most stable inclusion complexes were produced by the kneading method and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), determination of the ABZ content and in vitro dissolution profile.

Results: Molecular modeling revealed that inclusion complexes between HP-β-CD:ABZ (in the proportion 1:1 and 2:1) presented the lowest formation energy and the highest number of intermolecular interactions, showing that the use of more cyclodextrins does not generate gains in the stability of the complex. On the characterization tests, the complexes experimentally obtained by the kneading method demonstrated highly suggestive parameters, including ABZ in HP-β-CD in both molar proportions, suppression of bands in the infrared spectrum, displacement of the drug's melting temperature in DSC, crystallinity halos instead of the characteristic peaks of ABZ crystals in the XRD and a release of more than 80% of ABZ in less than 5 minutes, dissolution efficiency of up to 92%.

Conclusion: In silico studies provided a rational selection of the appropriate complexes of cyclodextrin, enabling the elaboration of more targeted complexes, decreasing time and costs for elaboration of new formulations, thereby increasing the oral biodisponibility of ABZ.

Keywords: Cyclodextrin, in silico studies, kneading, immediate release, Albendazole, inclusion complex.

« Previous
Graphical Abstract

[1]
Pillai, K.; Akhter, J.; Morris, D.L. Super Aqueous Solubility of Albendazole in β-Cyclodextrin for Parenteral Application in Cancer therapy. J. Cancer, 2017, 8(6), 913-923.
[http://dx.doi.org/10.7150/jca.17301] [PMID: 28529602]
[2]
Santos, C.J.J.L.; Pérez-Martínez, J.I.; Gómez-Pantoja, M.E.; Moyano, J.R. Enhancement of albendazole dissolution properties using solid dispersions with Gelucire 50/13 and PEG 15000. J. Drug Deliv. Sci. Technol., 2017, 42, 261-272.
[http://dx.doi.org/10.1016/j.jddst.2017.03.030]
[3]
Koradia, K.D.; Parikh, R.H.; Koradia, H.D. Albendazole nanocrystals: Optimization, spectroscopic, thermal and anthelmintic studies. J. Drug Deliv. Sci. Technol., 2018, 43, 369-378.
[http://dx.doi.org/10.1016/j.jddst.2017.11.003]
[4]
Shaikh, J.; Pradhan, R.; Dandawate, P.; Subramaniam, D.; Ponnurangam, S.; Martis, E.F. Spectral and Molecular Modeling Studies on the Influence of β -Cyclodextrin and Its Derivatives on Albendazole and Its Anti-Proliferative Activity Against Pancreatic Cancer Cells. J. Pharm. Sci. Pharmacol., 2017, 3, 1-14.
[http://dx.doi.org/10.1166/jpsp.2017.1075]
[5]
Raval, M.K.; Vaghela, P.D.; Vachhani, A.N.; Sheth, N.R. Role of excipients in the crystallization of Albendazole. Adv. Powder Technol., 2015, 26, 1102-1115.
[http://dx.doi.org/10.1016/j.apt.2015.05.006]
[6]
Ibrahim, M.A.; Al-Anazi, F.K. Enhancement of the dissolution of albendazole from pellets using MTR technique. Saudi Pharm. J., 2013, 21(2), 215-223.
[http://dx.doi.org/10.1016/j.jsps.2012.03.001] [PMID: 23960837]
[7]
Trandafirescu, C.; Ledeţi, I.; Şoica, C.; Ledeţi, A.; Vlase, G.; Borcan, F. Albendazole-cyclodextrins binary systems: Thermal and spectral investigation on drug-excipient interaction. J. Therm. Anal. Calorim., 2019, 138, 3039-3054.
[http://dx.doi.org/10.1007/s10973-019-08326-1]
[8]
Tao, J.; Chow, S.F.; Zheng, Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm. Sin. B, 2019, 9(1), 4-18.
[http://dx.doi.org/10.1016/j.apsb.2018.11.001] [PMID: 30766774]
[9]
Loh, G.O.K.; Tan, Y.T.F.; Peh, K.K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J. Pharm. Sci., 2016, 11, 536-546.
[http://dx.doi.org/10.1016/j.ajps.2016.02.009]
[10]
Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Jafar, M.; Hassan, M.Z.; Hussain, A. Host-guest complex of β-cyclodextrin and pluronic F127 with Luteolin: Physicochemical characterization, anti-oxidant activity and molecular modeling studies. J. Drug Deliv. Sci. Technol., 2020, 55, 101356.
[http://dx.doi.org/10.1016/j.jddst.2019.101356]
[11]
Lin, Z.Y.; Liu, Y.X.; Kou, S.B.; Wang, B.L.; Shi, J.H. Characterization of the inclusion interaction of ethinyloestradiol with β-cyclodextrin and hydroxypropyl-β-cyclodextrin: Multi-spectroscopic and molecular modeling methods. J. Mol. Liq., 2020, 311, 113290.
[http://dx.doi.org/10.1016/j.molliq.2020.113290]
[12]
Joudieh, S.; Bon, P.; Martel, B.; Skiba, M.; Lahiani-Skiba, M. Cyclodextrin polymers as efficient solubilizers of albendazole: complexation and physico-chemical characterization. J. Nanosci. Nanotechnol., 2009, 9(1), 132-140.
[http://dx.doi.org/10.1166/jnn.2009.J092] [PMID: 19441287]
[13]
Morina, D.; Sessevmez, M.; Sinani, G.; Mülazımoğlu, L.; Cevher, E. Oral tablet formulations containing cyclodextrin complexes of poorly water soluble cefdinir to enhance its bioavailability. J. Drug Deliv. Sci. Technol., 2020, 57, 101742.
[http://dx.doi.org/10.1016/j.jddst.2020.101742]
[14]
Pacheco, P.A.; Rodrigues, L.N.C.; Ferreira, J.F.S.; Gomes, A.C.P.; Veríssimo, C.J.; Louvandini, H.; Costa, R.L.D.; Katiki, L.M. Inclusion complex and nanoclusters of cyclodextrin to increase the solubility and efficacy of albendazole. Parasitol. Res., 2018, 117(3), 705-712.
[http://dx.doi.org/10.1007/s00436-017-5740-3] [PMID: 29327323]
[15]
Rabello, M.M.; Rolim, L.A.; Rolim Neto, P.J.; Hernandes, M.Z. CycloMolder software: Building theoretical cyclodextrin derivatives models and evaluating their host:guest interactions. J. Incl. Phenom. Macrocycl. Chem., 2019, 93, 301-308.
[http://dx.doi.org/10.1007/s10847-019-00880-3]
[16]
Xavier-Junior, F.H.; Rabello, M.M.; Hernandes, M.Z.; Dias, M.E.S.; Andrada, O.H.M.S.; Bezerra, B.P.; Ayala, A.P.; Santos- Magalhães, N.S. Supramolecular interactions between β-lapachone with cyclodextrins studied using isothermal titration calorimetry and molecular modeling. J. Mol. Recognit., 2017, 30(11), 1-10.
[http://dx.doi.org/10.1002/jmr.2646] [PMID: 28675505]
[17]
Xavier-Júnior, F.H.; Tavares, C.T.; Rabello, M.M.; Hernandes, M.Z.; Bezerra, B.P.; Ayala, A.P. Elucidation of the mechanism of complexation between oncocalyxone A and cyclodextrins by isothermal titration calorimetry and molecular modeling. J. Mol. Liq., 2019, 274, 165-172.
[http://dx.doi.org/10.1016/j.molliq.2018.10.129]
[18]
Wenz, G. Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units. Angew. Chem. Int. Ed. Engl., 1994, 33, 803-822.
[http://dx.doi.org/10.1002/anie.199408031]
[19]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[20]
Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model., 2007, 13(12), 1173-1213.
[http://dx.doi.org/10.1007/s00894-007-0233-4] [PMID: 17828561]
[21]
Patil, J.S.; Kadam, D.V.; Marapur, S.C.; Kamalapur, M.V. Inclusion complex system; a novel technique to improve the solubility and bioavailability of poorly soluble drugs : A review. Int. J. Pharm. Sci. Rev. Res., 2010, 2, 29-34.
[22]
Chattah, A.K.; Pfund, L.Y.; Zoppi, A.; Longhi, M.R.; Garnero, C. Toward novel antiparasitic formulations: Complexes of Albendazole desmotropes and β-cyclodextrin. Carbohydr. Polym., 2017, 164, 379-385.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.098] [PMID: 28325339]
[23]
Pranzo, M.B.; Cruickshank, D.; Coruzzi, M.; Caira, M.R.; Bettini, R. Enantiotropically related albendazole polymorphs. J. Pharm. Sci., 2010, 99(9), 3731-3742.
[http://dx.doi.org/10.1002/jps.22072] [PMID: 20112428]
[24]
Paus, R.; Ji, Y.; Vahle, L.; Sadowski, G. Predicting the Solubility Advantage of Amorphous Pharmaceuticals: A Novel Thermodynamic Approach. Mol. Pharm., 2015, 12(8), 2823-2833.
[http://dx.doi.org/10.1021/mp500824d] [PMID: 26107071]
[25]
Conceição, J.; Adeoye, O.; Cabral-Marques, H.; Concheiro, A.; Alvarez-Lorenzo, C.; Lobo, J.M.S. Carbamazepine bilayer tablets combining hydrophilic and hydrophobic cyclodextrins as a quick/slow biphasic release system. J. Drug Deliv. Sci. Technol., 2020, 57, 101611.
[http://dx.doi.org/10.1016/j.jddst.2020.101611]
[26]
Song, L.X.; Bai, L.; Xu, X.M.; He, J.; Pan, S.Z. Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coord. Chem. Rev., 2009, 253, 1276-1284.
[http://dx.doi.org/10.1016/j.ccr.2008.08.011]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy