Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Gastroretentive Metformin Loaded Nanoparticles for the Effective Management of Type-2 Diabetes Mellitus

Author(s): Akhlesh K. Jain*, Richa Upadhyay, Keerti Mishra and Sunil K. Jain

Volume 19, Issue 1, 2022

Published on: 14 June, 2021

Page: [93 - 103] Pages: 11

DOI: 10.2174/1567201818666210614095159

Price: $65

Abstract

Introduction: Metformin, an anti-diabetic drug, has low bioavailability and short biological half-life. Thus, bioavailability enhancement and prolonged release of the drug are highly desirable. In this regard, we aimed to developed gastroretentive nanoparticles made of jackfruit seed starch (JFSS) loaded with metformin.

Methods: Developed nanoparticles were optimized for various process variables and were further characterized. Nanoparticles exhibited good results with respect to particle size (244.3 to 612.4 nm), particle size distribution, shape and drug entrapment efficiency (75.8 to 89.2%) with sustained drug release for 24 h and a high buoyancy (89% for F7; formulation made of highest concentration of Jackfruit seed starch prepared at 1000 RPM stirring speed).

Results: The hypoglycemic potential of these nanoparticles was tested in nicotinamide streptozocin induced diabetic model, there was a significant reduction in blood glucose level (50% reduction from 4-8 h; p < 0.01) for prolonged period of time (up to 24 h) in comparison to diabetic control and plain metformin solution.

Conclusion: The outcome of the study suggested that developed formulations are suitable for gastro- retentive delivery of Metformin in a controlled manner appropriate for a single administration per day.

Keywords: Diabetes mellitus, metformin, jackfruit seed starch, nanoparticles, floating nanoparticles, gastro-retentive drug delivery.

Graphical Abstract

[1]
Lin, Y.; Sun, Z. Current views on type 2 diabetes. J. Endocrinol., 2010, 204(1), 1-11.
[http://dx.doi.org/10.1677/JOE-09-0260] [PMID: 19770178]
[2]
Diabetes Atlas, 8th; International Diabetes Federation: Brussels, Belgium, 2017.
[3]
Pouya, S.; Inga, P.; Paraskevi, S.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. IDF Diabetes Atlas Committee Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas.Diabetes Res. Clin. Pract, 9th; , 2019, 157, p. 107843.
[4]
Block, J.H.; Beale, J.M. Wilson and Gisvold’s Text book of Organic Medicinal and Pharmaceutical Chemistry, 10th; Lippincott Williams & Wilkins: New York, 1998, p. 850.
[5]
Harvey, R.A.; Champe, P.C.; Finkel, R.; Cubeddu, L.X.; Clark, M.A. Lippincott’s Illustrated reviews Pharmacology, 4th; Lippincott Williams & Wilkins: New York, 2009. Chapter 24.
[6]
Akiyama, S.; Katsumata, S.; Suzuki, K.; Nakaya, Y.; Ishimi, Y.; Uehara, M. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci. Biotechnol. Biochem., 2009, 73(12), 2779-2782.
[http://dx.doi.org/10.1271/bbb.90576] [PMID: 19966469]
[7]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[8]
Papanas, N.; Maltezos, E. Metformin: A review of its use in the treatment type 2 diabetes. Clin. Med. Ther., 2009, 1, 1367-1381.
[http://dx.doi.org/10.4137/CMT.S1085]
[9]
Scheen, A.J. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet., 1996, 30(5), 359-371.
[http://dx.doi.org/10.2165/00003088-199630050-00003] [PMID: 8743335]
[10]
Dujic, T.; Zhou, K.; Donnelly, L.A.; Tavendale, R.; Palmer, C.N.; Pearson, E.R. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A Go DARTS study. Diabetes, 2015, 64(5), 1786-1793.
[http://dx.doi.org/10.2337/db14-1388] [PMID: 25510240]
[11]
Cetin, M.; Sahin, S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv., 2016, 23(8), 2796-2805.
[http://dx.doi.org/10.3109/10717544.2015.1089957] [PMID: 26394019]
[12]
Singh, B.N.; Kim, K.H. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J. Control. Release, 2000, 63(3), 235-259.
[http://dx.doi.org/10.1016/S0168-3659(99)00204-7] [PMID: 10601721]
[13]
Surana, A.S.; Kotecha, R.K. An overview on various approaches to oral controlled drug delivery system via gastro retention. Int. J. Pharm. Sci. Rev. Res., 2010, 2, 68-72.
[14]
Pandya, N.; Pandya, M.; Bhaskar, V.H. Preparation and in vitro Characterization of Porous Carrier-Based Glipizide Floating Microspheres for Gastric Delivery. J. Young Pharm., 2011, 3(2), 97-104.
[http://dx.doi.org/10.4103/0975-1483.80292] [PMID: 21731353]
[15]
Garg, R.; Gupta, G.D. Progress in controlled gastroretentive delivery systems. Trop. J. Pharm. Res., 2008, 7, 1055-1066.
[http://dx.doi.org/10.4314/tjpr.v7i3.14691]
[16]
Nayak, A.K.; Maji, R.; Das, B. Gastroretentive drug delivery systems: A review. Asian. J. Pharm. Clin. Res., 2010, 3(1), 2-10.
[17]
Chinnaiyan, S.K.; Karthikeyan, D.; Gadela, V.R. Development and characterization of Metformin loaded pectin nanoparticles for T2 Diabetics Mellitus. Pharm. Nanotechnol., 2018, 6(4), 253-263.
[http://dx.doi.org/10.2174/2211738507666181221142406] [PMID: 30574859]
[18]
Kumar, S.; Bhanjana, G.; Verma, R.K.; Dhingra, D.; Dilbaghi, N.; Kim, K.H. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J. Pharm. Pharmacol., 2017, 69(2), 143-150.
[http://dx.doi.org/10.1111/jphp.12672] [PMID: 28033667]
[19]
Jyotirmoy, D.; Amitava, G.; Kalyan, S.S.; Paul, P.; Choudhury, A. Formulation and Evaluation of Metformin HCl Floating Tablet using Pectin as a Natural Polymer. Int. J. Pharm. Sci., 2010, 01(01), 0023.
[20]
Choy, S.Y.; Prasad, K.M.N.; Wu, T.Y.; Raghunandan, M.E.; Yang, B.; Phang, S.M.; Ramanan, R.N. Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water. Environ. Sci. Pollut. Res. Int., 2017, 24(3), 2876-2889.
[http://dx.doi.org/10.1007/s11356-016-8024-z] [PMID: 27838910]
[21]
Kaur, J.; Kaur, G.; Sharma, S.; Jeet, K. Cereal starch nanoparticles-A prospective food additive: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(7), 1097-1107.
[http://dx.doi.org/10.1080/10408398.2016.1238339] [PMID: 27830933]
[22]
Jain, A.K.; Khar, R.K.; Ahmed, F.J.; Diwan, P.V. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur. J. Pharm. Biopharm., 2008, 69(2), 426-435.
[http://dx.doi.org/10.1016/j.ejpb.2007.12.001] [PMID: 18295464]
[23]
Zhang, X.F.; Tan, B.K. Effects of an ethanolic extract of Gynura procumbens on serum glucose, cholesterol and triglyceride levels in normal and streptozotocin-induced diabetic rats. Singapore Med. J., 2000, 41(1), 9-13.
[PMID: 10783673]
[24]
Masiello, P.; Broca, C.; Gross, R.; Roye, M.; Manteghetti, M.; Hillaire-Buys, D.; Novelli, M.; Ribes, G. Experimental NIDDM: Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes, 1998, 47(2), 224-229.
[http://dx.doi.org/10.2337/diab.47.2.224] [PMID: 9519717]
[25]
Das, S.; Das, M.K. Synthesis and characterization of thiolated jackfruit seed starch as a colonic drug delivery carrier. Int. J. App. Pharm., 2019, 11(3), 53-62.
[http://dx.doi.org/10.22159/ijap.2019v11i3.31895]
[26]
Theivasanthi, T.; Marimuthu, A. An Insight Analysis of Nano sized powder of Jackfruit Seed. Nano Biomed. Eng., 2011, 3(3), 163-168.
[http://dx.doi.org/10.5101/nbe.v3i3.p163-168]
[27]
Patel, A.S.; Kar, A.; Mohapatra, D. Development of microencapsulated anthocyanin-rich powder using soy protein isolate, jackfruit seed starch and an emulsifier (NBRE-15) as encapsulating materials. Sci. Rep., 2020, 10(1), 10198.
[http://dx.doi.org/10.1038/s41598-020-67191-3] [PMID: 32576906]
[28]
Bhatia, M.; Rohilla, S. Formulation and optimization of quinoa starch nanoparticles: Quality by design approach for solubility enhancement of piroxicam. Saudi Pharm. J., 2020, 28(8), 927-935.
[http://dx.doi.org/10.1016/j.jsps.2020.06.013] [PMID: 32792837]
[29]
Kumari, K.; Rani, U. Controlled Release of Metformin hydrochloride through crosslinked blends of chitosan-starch. Adv. Appl. Sci. Res., 2011, 2(2), 48-54.
[30]
Nath, J. Formulation and in vitro evaluation of curcumin loaded jackfruit seed starch nanoparticles. Int. J. Curr. Pharm. Res., 2020, 12(6), 32-35.
[http://dx.doi.org/10.22159/ijcpr.2020v12i6.40277]
[31]
Nayak, A.K.; Pal, D. Blends of jackfruit seed starch-pectin in the development of mucoadhesive beads containing metformin HCl. Int. J. Biol. Macromol., 2013, 62, 137-145.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.020] [PMID: 23994792]
[32]
Pandit, V.; Pai, R.S.; Yadav, V.; Devi, K.; Surekha, B.B.; Inamdar, M.N.; Suresh, S. Pharmacokinetic and pharmacodynamic evaluation of floating microspheres of metformin hydrochloride. Drug Dev. Ind. Pharm., 2013, 39(1), 117-127.
[http://dx.doi.org/10.3109/03639045.2012.662503] [PMID: 22372865]
[33]
Nayak, A.K.; Pal, D. Formulation optimization and evaluation of jackfruit seed starch-alginate mucoadhesive beads of metformin HCl. Int. J. Biol. Macromol., 2013, 59, 264-272.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.062] [PMID: 23628586]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy