Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Enhanced Antibacterial Activity of Doxycycline and Rifampicin Combination Loaded in Nanoparticles against Intracellular Brucella abortus

Author(s): Shilpa Dawre*, Padma V. Devarajan and Abdul Samad

Volume 19, Issue 1, 2022

Published on: 09 June, 2021

Page: [104 - 116] Pages: 13

DOI: 10.2174/1567201818666210609164704

Price: $65

Abstract

Introduction: Brucellosis is a zoonotic disease that is prevalent in livestock animals. The bacteria reside inside the macrophage cells of the host. The WHO has endorseda combination treatment therapy for brucellosis against the conventional monotherapy to avoid relapse and resistance. Therefore, we developed nanoparticles incorporating doxycycline and rifampicin in combination.

Aim: The aim of the study is to develop polymeric nanoparticles incorporating doxycycline as well as rifampicin and investigate the antibacterial activity of nanoparticles in U937 human macrophage cells infected with B. abortus.

Methods: Polymeric nanoparticles were developed by the emulsion-solvent diffusion method, and characterization was performed.

Results: The nanoparticles with high entrapment efficiency of both the drugs were developed successfully. Scanning electron microscopy revealed a spherical morphology with a size ranging ~450nm, which can be easily engulfed by the macrophages. Zeta potential confirmed the colloidal stability. Differential scanning calorimetry and X-ray diffraction suggested amorphization of doxycycline and rifampicin in nanoparticles. Fourier transfer infrared spectroscopy could not confirm the interaction of drugs with AOT. In vitro haemolysis study confirmed the safety of nanoparticles (<10%) for IV administration. Further, nanoparticles revealed the sustained release of both drugs, which followed diffusion kinetics. Nanoparticles were found stable for 6 months as per WHO guidelines. The internalization study revealed nanoparticles could be easily uptaken by U-937 human macrophage cells. The efficacy study demonstrated significantly high antibacterial activity of nanoparticles as compared to free drug solution in U937 human macrophages cells infected with Brucella abortus.

Conclusion: It can be concluded that the developed nanoparticles entrapping doxycycline and rifampicin combination can be considered as a promising delivery system for enhancing the antibacterial activity against Brucella abortus.

Keywords: Doxycycline-rifampicin combination therapy, nanoparticles, macrophages, Brucella abortus, brucellosis, scanning electron microscopy (SEM).

Graphical Abstract

[1]
World Health Organization 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/brucellosis
[2]
de Figueiredo, P.; Ficht, T.A.; Rice-Ficht, A.; Rossetti, C.A.; Adams, L.G. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. Am. J. Pathol., 2015, 185(6), 1505-1517.
[http://dx.doi.org/10.1016/j.ajpath.2015.03.003] [PMID: 25892682]
[3]
Alavi, S.M.; Alavi, L. Treatment of brucellosis: a systematic review of studies in recent twenty years. Caspian J. Intern. Med., 2013, 4(2), 636-641.
[PMID: 24009951]
[4]
Martirosyan, A.; Gorvel, J-P. Brucella evasion of adaptive immunity. Future Microbiol., 2013, 8(2), 147-154.
[http://dx.doi.org/10.2217/fmb.12.140] [PMID: 23374122]
[5]
Ficht, T.A. Intracellular survival of Brucella: defining the link with persistence. Vet. Microbiol., 2003, 92(3), 213-223.
[http://dx.doi.org/10.1016/S0378-1135(02)00367-X] [PMID: 12523983]
[6]
Chifiriuc, M.C.; Holban, A.M.; Curutiu, C.; Ditu, L-M.; Mihaescu, G.; Oprea, A.E. Antibiotic drug delivery systems for the intracellular targeting of bacterial pathogens. Smart Drug Delivery System, 2016, 23, 245-266.
[http://dx.doi.org/10.5772/61327]
[7]
Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today, 2015, 10(4), 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]
[8]
Ghaderkhani, J.; Yousefimashouf, R.; Arabestani, M.; Roshanaei, G.; Asl, S.S.; Abbasalipourkabir, R. Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1181-1193.
[http://dx.doi.org/10.1080/21691401.2019.1593858] [PMID: 30942627]
[9]
Imbuluzqueta, E.; Gamazo, C.; Lana, H.; Campanero, M.Á.; Salas, D.; Gil, A.G.; Elizondo, E.; Ventosa, N.; Veciana, J.; Blanco-Prieto, M.J. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice. Antimicrob. Agents Chemother., 2013, 57(7), 3326-3333.
[http://dx.doi.org/10.1128/AAC.00378-13] [PMID: 23650167]
[10]
Hosseini, S.M.; Abbasalipourkabir, R.; Jalilian, F.A.; Asl, S.S.; Farmany, A.; Roshanaei, G.; Arabestani, M.R. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A.1 cell line. Antimicrob. Resist. Infect. Control, 2019, 8(1), 62.
[http://dx.doi.org/10.1186/s13756-019-0504-8] [PMID: 30988946]
[11]
Fontana, G.; Licciardi, M.; Mansueto, S.; Schillaci, D.; Giammona, G. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials, 2001, 22(21), 2857-2865.
[http://dx.doi.org/10.1016/S0142-9612(01)00030-8] [PMID: 11561891]
[12]
Zaki, N.M.; Hafez, M.M. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech, 2012, 13(2), 411-421.
[http://dx.doi.org/10.1208/s12249-012-9758-7] [PMID: 22359159]
[13]
Soni, M.P.; Shelkar, N.; Gaikwad, R.V.; Vanage, G.R.; Samad, A.; Devarajan, P.V. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis. J. Pharm. Bioallied Sci., 2014, 6(1), 22-30.
[http://dx.doi.org/10.4103/0975-7406.124309] [PMID: 24459400]
[14]
Maithania, H.V.; Mohanty, B.S.; Chaudhari, P.R.; Samad, A.; Devarajan, P.V. Shape mediated splenotropic delivery of buparvaquone loaded solid lipid nanoparticles. Drug Deliv. Transl. Res., 2020, 10(1), 159-167.
[http://dx.doi.org/10.1007/s13346-019-00670-x] [PMID: 31468307]
[15]
Karabay, O.; Sencan, I.; Kayas, D.; Sahin, I. Ofloxacin plus rifampicin versus doxycycline plus rifampicin in the treatment of brucellosis: a randomized clinical trial [ISRCTN11871179]. BMC Infect. Dis., 2004, 4, 18.
[http://dx.doi.org/10.1186/1471-2334-4-18] [PMID: 15214959]
[16]
Shasha, B.; Lang, R.; Rubinstein, E. Efficacy of combinations of doxycycline and rifampicin in the therapy of experimental mouse brucellosis. J. Antimicrob. Chemother., 1994, 33(3), 545-551.
[http://dx.doi.org/10.1093/jac/33.3.545] [PMID: 8040118]
[17]
Hashemi, S.H.; Gachkar, L.; Keramat, F.; Mamani, M.; Hajilooi, M.; Janbakhsh, A.; Majzoobi, M.M.; Mahjub, H. Comparison of doxycycline-streptomycin, doxycycline-rifampin, and ofloxacin-rifampin in the treatment of brucellosis: a randomized clinical trial. Int. J. Infect. Dis., 2012, 16(4), e247-e251.
[http://dx.doi.org/10.1016/j.ijid.2011.12.003] [PMID: 22296864]
[18]
Ariza, J.; Gudiol, F.; Pallares, R.; Viladrich, P.F.; Rufi, G.; Corredoira, J.; Miravitlles, M.R. Treatment of human brucellosis with doxycycline plus rifampin or doxycycline plus streptomycin. A randomized, double-blind study. Ann. Intern. Med., 1992, 117(1), 25-30.
[http://dx.doi.org/10.7326/0003-4819-117-1-25] [PMID: 1596044]
[19]
Ranjbar, M. Treatment of Brucellosis. Updates on Brucellosis., 2015.
[20]
Chen, W.; Gu, B.; Wang, H.; Pan, J.; Lu, W.; Hou, H. Development and evaluation of novel itraconazole-loaded intravenous nanoparticles. Int. J. Pharm., 2008, 362(1-2), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2008.05.039] [PMID: 18585448]
[21]
Brown, D.F.; Edwards, D.I.; Hawkey, P.M.; Morrison, D.; Ridgway, G.L.; Towner, K.J.; Wren, M.W. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J. Antimicrob. Chemother., 2005, 56(6), 1000-1018.
[http://dx.doi.org/10.1093/jac/dki372] [PMID: 16293678]
[22]
Date, P.V.; Samad, A.; Devarajan, P.V. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying. AAPS PharmSciTech, 2010, 11(1), 304-313.
[http://dx.doi.org/10.1208/s12249-010-9382-3] [PMID: 20182826]
[23]
Patil, R.R.; Gaikwad, R.V.; Samad, A.; Devarajan, P.V. Role of lipids in enhancing splenic uptake of polymer-lipid (LIPOMER) nanoparticles. J. Biomed. Nanotechnol., 2008, 4(3), 359-366.
[http://dx.doi.org/10.1166/jbn.2008.320]
[24]
Champion, J.A.; Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res., 2009, 26(1), 244-249.
[http://dx.doi.org/10.1007/s11095-008-9626-z] [PMID: 18548338]
[25]
Pranatharthiharan, S.; Patel, M.D.; Malshe, V.C.; Devarajan, P.V. Polyethylene sebacate doxorubicin nanoparticles: role of carbohydrate anchoring on in vitro and in vivo anticancer efficacy. Drug Deliv., 2016, 23(8), 2980-2989.
[http://dx.doi.org/10.3109/10717544.2015.1135488] [PMID: 26786706]
[26]
Piñón-Segundo, E.; Ganem-Quintanar, A.; Alonso-Pérez, V.; Quintanar-Guerrero, D. Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int. J. Pharm., 2005, 294(1-2), 217-232.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.010] [PMID: 15814246]
[27]
Conner, S.D.; Schmid, S.L. Regulated portals of entry into the cell. Nature, 2003, 422(6927), 37-44.
[http://dx.doi.org/10.1038/nature01451] [PMID: 12621426]
[28]
Seleem, M.N.; Jain, N.; Pothayee, N.; Ranjan, A.; Riffle, J.S.; Sriranganathan, N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol. Lett., 2009, 294(1), 24-31.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01530.x] [PMID: 19493005]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy