Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Brefeldin A Induces Apoptosis, Inhibits BCR-ABL Activation, and Triggers BCRABL Degradation in Chronic Myeloid Leukemia K562 Cells

Author(s): Jin-Man Zhang, Cui-Fang Wang, Mei-Yan Wei, Hui Dong, Yu-Cheng Gu, Xiao-Mei Mo, Chang-Lun Shao* and Ming Liu*

Volume 22, Issue 6, 2022

Published on: 04 January, 2022

Page: [1091 - 1101] Pages: 11

DOI: 10.2174/1871520621666210608110435

Price: $65

Abstract

Background: Chronic Myeloid Leukemia (CML) is a myeloproliferative disease caused by BCR-ABL oncoprotein. Tyrosine kinase inhibitors have been developed to inhibit the activity of BCR-ABL; however, drug resistance and side effect occur in clinic application. Therefore, it is urgent to find novel drugs for CML treatment. Under the guidance of cytotoxic activity, crude extracts of 55 fungal strains from the medicinal mangrove Acanthus ilicifolius were evaluated, and one potent cytotoxic natural compound, brefeldin A (BFA), was discovered from Penicillium sp. (HS-N-29).

Objective: This study was aimed to determine the cytotoxic activity of BFA and the effect on the activation and expression of BCR-ABL in K562 cells.

Methods: We evaluated cytotoxic activity by MTT assay and soft agar clone assay; apoptosis and cell cycle distribution by Muse cell analyzer. The protein level of BCR-ABL and signaling molecules was detected by western blotting, and the mRNA level of BCR-ABL was determined by RT-PCR.

Results: BFA inhibited cell proliferation, induced G2/M cell cycle arrest, and stimulated cell apoptosis in K562 cells. Importantly, for the first time, we revealed that BFA inhibited the activation of BCR-ABL and consequently inhibited the activation of its downstream signaling molecules in K562 cells. Moreover, we found BFA degraded BCR-ABL without affecting its transcription in K562 cells, and BFA-induced BCR-ABL degradation was related to caspase activation, while not to autophagy or ubiquitinated proteasome degradation pathway.

Conclusion: Our present results indicate that BFA acts as a dual functional inhibitor and degrader of BCR-ABL, and BFA is a potential compound for chemotherapeutics to overcome CML.

Keywords: Brefeldin A, chronic myelogenous leukemia, BCR-ABL, degradation, caspase, K562 cells.

Graphical Abstract

[1]
Mitelman, F. Heterogeneity of Ph1 in chronic myeloid leukaemia. Hereditas, 1974, 76(2), 315-316.
[http://dx.doi.org/10.1111/j.1601-5223.1974.tb01347.x] [PMID: 4135826]
[2]
Rowley, J.D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973, 243(5405), 290-293.
[http://dx.doi.org/10.1038/243290a0] [PMID: 4126434]
[3]
Larson, R.A.; Golomb, H.M.; Rowley, J.D. Chromosome changes in hematologic malignancies. CA Cancer J. Clin., 1981, 31(4), 222-238.
[http://dx.doi.org/10.3322/canjclin.31.4.222] [PMID: 6796217]
[4]
Kurzrock, R.; Gutterman, J.U.; Talpaz, M. The molecular genetics of Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 1988, 319(15), 990-998.
[http://dx.doi.org/10.1056/NEJM198810133191506] [PMID: 3047582]
[5]
Kurzrock, R.; Shtalrid, M.; Talpaz, M.; Kloetzer, W.S.; Gutterman, J.U. Expression of c-abl in Philadelphia-positive acute myelogenous leukemia. Blood, 1987, 70(5), 1584-1588.
[http://dx.doi.org/10.1182/blood.V70.5.1584.1584] [PMID: 3311207]
[6]
Mizuchi, D.; Kurosu, T.; Kida, A.; Jin, Z.H.; Jin, A.; Arai, A.; Miura, O. BCR/ABL activates Rap1 and B-Raf to stimulate the MEK/Erk signaling pathway in hematopoietic cells. Biochem. Biophys. Res. Commun., 2005, 326(3), 645-651.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.086] [PMID: 15596148]
[7]
Markova, B.; Albers, C.; Breitenbuecher, F.; Melo, J.V.; Brümmendorf, T.H.; Heidel, F.; Lipka, D.; Duyster, J.; Huber, C.; Fischer, T. Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-gamma1-driven activation of mTOR/p70S6-kinase pathway. Oncogene, 2010, 29(5), 739-751.
[http://dx.doi.org/10.1038/onc.2009.374] [PMID: 19881535]
[8]
Tasian, S.K.; Teachey, D.T.; Li, Y.; Shen, F.; Harvey, R.C.; Chen, I.M.; Ryan, T.; Vincent, T.L.; Willman, C.L.; Perl, A.E.; Hunger, S.P.; Loh, M.L.; Carroll, M.; Grupp, S.A. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2017, 129(2), 177-187.
[http://dx.doi.org/10.1182/blood-2016-05-707653] [PMID: 27777238]
[9]
Cilloni, D.; Saglio, G. Molecular pathways: BCR-ABL. Clin. Cancer Res., 2012, 18(4), 930-937.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1613] [PMID: 22156549]
[10]
Nieborowska-Skorska, M.; Wasik, M.A.; Slupianek, A.; Salomoni, P.; Kitamura, T.; Calabretta, B.; Skorski, T. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J. Exp. Med., 1999, 189(8), 1229-1242.
[http://dx.doi.org/10.1084/jem.189.8.1229] [PMID: 10209040]
[11]
Hochhaus, A.; Larson, R.A.; Guilhot, F.; Radich, J.P.; Branford, S.; Hughes, T.P.; Baccarani, M.; Deininger, M.W.; Cervantes, F.; Fujihara, S.; Ortmann, C.E.; Menssen, H.D.; Kantarjian, H.; O’Brien, S.G.; Druker, B.J. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl. J. Med., 2017, 376(10), 917-927.
[http://dx.doi.org/10.1056/NEJMoa1609324] [PMID: 28273028]
[12]
Akard, L.P. Second-generation BCR-ABL kinase inhibitors in CML. N. Engl. J. Med., 2010, 363(17), 1672-1673.
[http://dx.doi.org/10.1056/NEJMc1007927] [PMID: 20973144]
[13]
Porkka, K.; Koskenvesa, P.; Lundán, T.; Rimpiläinen, J.; Mustjoki, S.; Smykla, R.; Wild, R.; Luo, R.; Arnan, M.; Brethon, B.; Eccersley, L.; Hjorth-Hansen, H.; Höglund, M.; Klamova, H.; Knutsen, H.; Parikh, S.; Raffoux, E.; Gruber, F.; Brito-Babapulle, F.; Dombret, H.; Duarte, R.F.; Elonen, E.; Paquette, R.; Zwaan, C.M.; Lee, F.Y. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood, 2008, 112(4), 1005-1012.
[http://dx.doi.org/10.1182/blood-2008-02-140665] [PMID: 18477770]
[14]
Shah, N.P.; Tran, C.; Lee, F.Y.; Chen, P.; Norris, D.; Sawyers, C.L. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science, 2004, 305(5682), 399-401.
[http://dx.doi.org/10.1126/science.1099480] [PMID: 15256671]
[15]
Goldman, J.M. Ponatinib for chronic myeloid leukemia. N. Engl. J. Med., 2012, 367(22), 2148-2149.
[http://dx.doi.org/10.1056/NEJMe1210796] [PMID: 23190226]
[16]
Cortes, J.E.; Kantarjian, H.; Shah, N.P.; Bixby, D.; Mauro, M.J.; Flinn, I.; O’Hare, T.; Hu, S.; Narasimhan, N.I.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Druker, B.J.; Deininger, M.W.; Talpaz, M. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2012, 367(22), 2075-2088.
[http://dx.doi.org/10.1056/NEJMoa1205127] [PMID: 23190221]
[17]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84-84.
[http://dx.doi.org/10.1186/s13045-018-0624-2] [PMID: 29925402]
[18]
Tan, J.; Xue, M.; Pan, J.; Cen, J.; Qi, X.; Liu, P.; Zhao, X.; Wu, P.; Wang, Q.; Liu, D.; Liu, Y.; Chen, S.; Wang, Z. Responses to dasatinib as a second- and third-line tyrosine kinase inhibitor in chronic phase chronic myeloid leukaemia patients. Acta Haematol., 2019, 142(2), 79-86.
[http://dx.doi.org/10.1159/000495335] [PMID: 31096222]
[19]
Melo, J.V.; Chuah, C. Resistance to imatinib mesylate in chronic myeloid leukaemia. Cancer Lett., 2007, 249(2), 121-132.
[http://dx.doi.org/10.1016/j.canlet.2006.07.010] [PMID: 16949736]
[20]
Hamadi, A.; Grigg, A.P.; Dobie, G.; Burbury, K.L.; Schwarer, A.P.; Kwa, F.A.; Jackson, D.E. Ponatinib tyrosine kinase inhibitor induces a thromboinflammatory response. Thromb. Haemost., 2019, 119(7), 1112-1123.
[http://dx.doi.org/10.1055/s-0039-1688787] [PMID: 31079415]
[21]
Guilhot, F. Ponatinib and platelets a conflict in CML. Blood, 2019, 133(14), 1520-1521.
[http://dx.doi.org/10.1182/blood-2019-02-900472] [PMID: 30948369]
[22]
Loren, C.P.; Aslan, J.E.; Rigg, R.A.; Nowak, M.S.; Healy, L.D.; Gruber, A.; Druker, B.J.; McCarty, O.J. The BCR-ABL inhibitor ponatinib inhibits platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling, platelet activation and aggregate formation under shear. Thromb. Res., 2015, 135(1), 155-160.
[http://dx.doi.org/10.1016/j.thromres.2014.11.009] [PMID: 25527332]
[23]
McCloud, T.G.; Burns, M.P.; Majadly, F.D.; Muschik, G.M.; Miller, D.A.; Poole, K.K.; Roach, J.M.; Ross, J.T.; Lebherz, W.B. III Production of brefeldin-A. J. Ind. Microbiol., 1995, 15(1), 5-9.
[http://dx.doi.org/10.1007/BF01570006] [PMID: 7662298]
[24]
Wood, S.A.; Park, J.E.; Brown, W.J. Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Cell, 1991, 67(3), 591-600.
[http://dx.doi.org/10.1016/0092-8674(91)90533-5] [PMID: 1657400]
[25]
Klausner, R.D.; Donaldson, J.G.; Lippincott-Schwartz, J.; Brefeldin, A.; Brefeldin, A. Insights into the control of membrane traffic and organelle structure. J. Cell Biol., 1992, 116(5), 1071-1080.
[http://dx.doi.org/10.1083/jcb.116.5.1071] [PMID: 1740466]
[26]
Misumi, Y.; Misumi, Y.; Miki, K.; Takatsuki, A.; Tamura, G.; Ikehara, Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem., 1986, 261(24), 11398-11403.
[http://dx.doi.org/10.1016/S0021-9258(18)67398-3] [PMID: 2426273]
[27]
Lippincott-Schwartz, J.; Yuan, L.; Tipper, C.; Amherdt, M.; Orci, L.; Klausner, R.D. Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell, 1991, 67(3), 601-616.
[http://dx.doi.org/10.1016/0092-8674(91)90534-6] [PMID: 1682055]
[28]
South, P.F.; Harmeyer, K.M.; Serratore, N.D.; Briggs, S.D. H3K4 methyltransferase Set1 is involved in maintenance of ergosterol homeostasis and resistance to Brefeldin A. Proc. Natl. Acad. Sci. USA, 2013, 110(11), E1016-E1025.
[http://dx.doi.org/10.1073/pnas.1215768110] [PMID: 23382196]
[29]
Tamura, G.; Ando, K.; Suzuki, S.; Takatsuki, A.; Arima, K. Antiviral activity of brefeldin A and verrucarin A. J. Antibiot. (Tokyo), 1968, 21(2), 160-161.
[http://dx.doi.org/10.7164/antibiotics.21.160] [PMID: 4299889]
[30]
Farias, K.J.S.; Machado, P.R.L.; de Almeida Júnior, R.F.; Lopes da Fonseca, B.A. Brefeldin A and Cytochalasin B reduce dengue virus replication in cell cultures but do not protect mice against viral challenge. Access Microbiol, 2019, 1(6), e000041.
[http://dx.doi.org/10.1099/acmi.0.000041] [PMID: 32974532]
[31]
Tseng, C.N.; Huang, C.F.; Cho, C.L.; Chang, H.W.; Huang, C.W.; Chiu, C.C.; Chang, Y.F. Brefeldin a effectively inhibits cancer stem cell-like properties and MMP-9 activity in human colorectal cancer Colo 205 cells. Molecules, 2013, 18(9), 10242-10253.
[http://dx.doi.org/10.3390/molecules180910242] [PMID: 23973996]
[32]
Lee, S.A.; Kim, Y.J.; Lee, C.S. Brefeldin a induces apoptosis by activating the mitochondrial and death receptor pathways and inhibits focal adhesion kinase-mediated cell invasion. Basic Clin. Pharmacol. Toxicol., 2013, 113(5), 329-338.
[http://dx.doi.org/10.1111/bcpt.12107] [PMID: 23826964]
[33]
Wallen, E.; Sellers, R.G.; Peehl, D.M. Brefeldin A induces p53-independent apoptosis in primary cultures of human prostatic cancer cells. J. Urol., 2000, 164(3 Pt 1), 836-841.
[http://dx.doi.org/10.1016/S0022-5347(05)67323-5] [PMID: 10953164]
[34]
Tseng, C.N.; Hong, Y.R.; Chang, H.W.; Yu, T.J.; Hung, T.W.; Hou, M.F.; Yuan, S.S.; Cho, C.L.; Liu, C.T.; Chiu, C.C.; Huang, C.J. Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells. Molecules, 2014, 19(11), 17464-17477.
[http://dx.doi.org/10.3390/molecules191117464] [PMID: 25356567]
[35]
Yu, R.Y.; Xing, L.; Cui, P.F.; Qiao, J.B.; He, Y.J.; Chang, X.; Zhou, T.J.; Jin, Q.R.; Jiang, H.L.; Xiao, Y. Regulating the Golgi apparatus by co-delivery of a COX-2 inhibitor and Brefeldin A for suppression of tumor metastasis. Biomater. Sci., 2018, 6(8), 2144-2155.
[http://dx.doi.org/10.1039/C8BM00381E] [PMID: 29923556]
[36]
Tian, K.; Xu, F.; Gao, X.; Han, T.; Li, J.; Pan, H.; Zang, L.; Li, D.; Li, Z.; Uchita, T.; Gao, M.; Hua, H. Nitric oxide-releasing derivatives of brefeldin A as potent and highly selective anticancer agents. Eur. J. Med. Chem., 2017, 136, 131-143.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.018] [PMID: 28494251]
[37]
Brüning, A.; Ishikawa, T.; Kneusel, R.E.; Matern, U.; Lottspeich, F.; Wieland, F.T. Brefeldin A binds to glutathione S-transferase and is secreted as glutathione and cysteine conjugates by Chinese hamster ovary cells. J. Biol. Chem., 1992, 267(11), 7726-7732.
[http://dx.doi.org/10.1016/S0021-9258(18)42575-6] [PMID: 1560007]
[38]
Phillips, L.R.; Supko, J.G.; Malspeis, L. Analysis of brefeldin A in plasma by gas chromatography with electron capture detection. Anal. Biochem., 1993, 211(1), 16-22.
[http://dx.doi.org/10.1006/abio.1993.1225] [PMID: 8323029]
[39]
Phillips, L.R.; Wolfe, T.L.; Malspeis, L.; Supko, J.G. Analysis of brefeldin A and the prodrug breflate in plasma by gas chromatography with mass selective detection. J. Pharm. Biomed. Anal., 1998, 16(8), 1301-1309.
[http://dx.doi.org/10.1016/S0731-7085(97)00142-8] [PMID: 9777604]
[40]
Crowley, L.C.; O’Donovan, T.R.; Nyhan, M.J.; McKenna, S.L. Pharmacological agents with inherent anti-autophagic activity improve the cytotoxicity of imatinib. Oncol. Rep., 2013, 29(6), 2261-2268.
[http://dx.doi.org/10.3892/or.2013.2377] [PMID: 23564048]
[41]
Nishida, Y.; Arakawa, S.; Fujitani, K.; Yamaguchi, H.; Mizuta, T.; Kanaseki, T.; Komatsu, M.; Otsu, K.; Tsujimoto, Y.; Shimizu, S. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature, 2009, 461(7264), 654-658.
[http://dx.doi.org/10.1038/nature08455] [PMID: 19794493]
[42]
Wang, J.; Fang, Y.; Yan, L.; Yuan, N.; Zhang, S.; Xu, L.; Nie, M.; Zhang, X.; Wang, J. Erythroleukemia cells acquire an alternative mitophagy capability. Sci. Rep., 2016, 6, 24641-24641.
[http://dx.doi.org/10.1038/srep24641] [PMID: 27091640]
[43]
Shao, R.G.; Shimizu, T.; Pommier, Y. Brefeldin A is a potent inducer of apoptosis in human cancer cells independently of p53. Exp. Cell Res., 1996, 227(2), 190-196.
[http://dx.doi.org/10.1006/excr.1996.0266] [PMID: 8831555]
[44]
Kao, S.H.; Wang, W.L.; Chen, C.Y.; Chang, Y.L.; Wu, Y.Y.; Wang, Y.T.; Wang, S.P.; Nesvizhskii, A.I.; Chen, Y.J.; Hong, T.M.; Yang, P.C. Analysis of protein stability by the cycloheximide chase assay. Bio Protoc., 2015, 5(1), e1374.
[http://dx.doi.org/10.21769/BioProtoc.1374] [PMID: 29082276]
[45]
Zhou, P. Determining protein half-lives. Methods Mol. Biol., 2004, 284, 67-77.
[PMID: 15173609]
[46]
Mao, J.H.; Sun, X.Y.; Liu, J.X.; Zhang, Q.Y.; Liu, P.; Huang, Q.H.; Li, K.K.; Chen, Q.; Chen, Z.; Chen, S.J. As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21683-21688.
[http://dx.doi.org/10.1073/pnas.1016311108] [PMID: 21118980]
[47]
Huang, H.; Weng, H.; Dong, B.; Zhao, P.; Zhou, H.; Qu, L. Oridonin triggers chaperon-mediated proteasomal degradation of BCR-ABL in leukemia. Sci. Rep., 2017, 7, 41525.
[http://dx.doi.org/10.1038/srep41525] [PMID: 28128329]
[48]
Zhang, Q.Y.; Mao, J.H.; Liu, P.; Huang, Q.H.; Lu, J.; Xie, Y.Y.; Weng, L.; Zhang, Y.; Chen, Q.; Chen, S.J.; Chen, Z. A systems biology understanding of the synergistic effects of arsenic sulfide and Imatinib in BCR/ABL-associated leukemia. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3378-3383.
[http://dx.doi.org/10.1073/pnas.0813142106] [PMID: 19208803]
[49]
Goussetis, D.J.; Gounaris, E.; Wu, E.J.; Vakana, E.; Sharma, B.; Bogyo, M.; Altman, J.K.; Platanias, L.C. Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood, 2012, 120(17), 3555-3562.
[http://dx.doi.org/10.1182/blood-2012-01-402578] [PMID: 22898604]
[50]
Li, S.; Bo, Z.; Jiang, Y.; Song, X.; Wang, C.; Tong, Y. Homoharringtonine promotes BCR ABL degradation through the p62 mediated autophagy pathway. Oncol. Rep., 2020, 43(1), 113-120.
[PMID: 31789418]
[51]
Yin, Z.; Huang, G.; Gu, C.; Liu, Y.; Yang, J.; Fei, J. Discovery of berberine that targetedly induces autophagic degradation of both BCR-ABL and BCR-ABL T315I through recruiting LRSAM1 for overcoming imatinib resistance. Clin. Cancer Res., 2020, 26(15), 4040-4053.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2460] [PMID: 32098768]
[52]
Bono, S.; Lulli, M.; D’Agostino, V.G.; Di Gesualdo, F.; Loffredo, R.; Cipolleschi, M.G.; Provenzani, A.; Rovida, E.; Dello Sbarba, P. Different BCR/Abl protein suppression patterns as a converging trait of chronic myeloid leukemia cell adaptation to energy restriction. Oncotarget, 2016, 7(51), 84810-84825.
[http://dx.doi.org/10.18632/oncotarget.13319] [PMID: 27852045]
[53]
Zhu, H.Q.; Gao, F.H. Regulatory molecules and corresponding processes of bcr-abl protein degradation. J. Cancer, 2019, 10(11), 2488-2500.
[http://dx.doi.org/10.7150/jca.29528] [PMID: 31258755]
[54]
Lan, X.; Zhao, C.; Chen, X.; Zhang, P.; Zang, D.; Wu, J.; Chen, J.; Long, H.; Yang, L.; Huang, H.; Wang, X.; Shi, X.; Liu, J. Platinum pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via DUB inhibition-dependent caspase activation and Bcr-Abl downregulation. Cell Death Dis., 2017, 8(7), e2913-e2913.
[http://dx.doi.org/10.1038/cddis.2017.284] [PMID: 28682311]
[55]
Shi, X.; Chen, X.; Li, X.; Lan, X.; Zhao, C.; Liu, S.; Huang, H.; Liu, N.; Liao, S.; Song, W.; Zhou, P.; Wang, S.; Xu, L.; Wang, X.; Dou, Q.P.; Liu, J. Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin. Cancer Res., 2014, 20(1), 151-163.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1063] [PMID: 24334603]
[56]
Lan, X.; Zhao, C.; Chen, X.; Zhang, P.; Zang, D.; Wu, J.; Chen, J.; Long, H.; Yang, L.; Huang, H.; Carter, B.Z.; Wang, X.; Shi, X.; Liu, J. Nickel pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via both Bcr/Abl-dependent and Bcr/Abl-independent mechanisms. J. Hematol. Oncol., 2016, 9(1), 129.
[http://dx.doi.org/10.1186/s13045-016-0359-x] [PMID: 27884201]
[57]
Di Bacco, A.M.; Cotter, T.G. p53 expression in K562 cells is associated with caspase-mediated cleavage of c-ABL and BCR-ABL protein kinases. Br. J. Haematol., 2002, 117(3), 588-597.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03468.x] [PMID: 12028026]
[58]
Wang, Z.; Sampath, J.; Fukuda, S.; Pelus, L.M. Disruption of the inhibitor of apoptosis protein survivin sensitizes Bcr-abl-positive cells to STI571-induced apoptosis. Cancer Res., 2005, 65(18), 8224-8232.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0303] [PMID: 16166298]
[59]
Citterio, C.; Vichi, A.; Pacheco-Rodriguez, G.; Aponte, A.M.; Moss, J.; Vaughan, M. Unfolded protein response and cell death after depletion of brefeldin A-inhibited guanine nucleotide-exchange protein GBF1. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 2877-2882.
[http://dx.doi.org/10.1073/pnas.0712224105] [PMID: 18287014]
[60]
Arai, K.; Lee, S.R.; van Leyen, K.; Kurose, H.; Lo, E.H. Involvement of ERK MAP kinase in endoplasmic reticulum stress in SH-SY5Y human neuroblastoma cells. J. Neurochem., 2004, 89(1), 232-239.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02317.x] [PMID: 15030407]
[61]
Hung, C.C.; Ichimura, T.; Stevens, J.L.; Bonventre, J.V. Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J. Biol. Chem., 2003, 278(31), 29317-29326.
[http://dx.doi.org/10.1074/jbc.M302368200] [PMID: 12738790]
[62]
Kao, C.; Chao, A.; Tsai, C.L.; Chuang, W.C.; Huang, W.P.; Chen, G.C.; Lin, C.Y.; Wang, T.H.; Wang, H.S.; Lai, C.H. Bortezomib enhances cancer cell death by blocking the autophagic flux through stimulating ERK phosphorylation. Cell Death Dis., 2014, 5(11), e1510-e1510.
[http://dx.doi.org/10.1038/cddis.2014.468] [PMID: 25375375]
[63]
Ji, S.; Sun, R.; Xu, K.; Man, Z.; Ji, J.; Pu, Y.; Yin, L.; Zhang, J.; Pu, Y. Prodigiosin induces apoptosis and inhibits autophagy via the extracellular signal-regulated kinase pathway in K562 cells. Toxicol. In Vitro, 2019, 60, 107-115.
[http://dx.doi.org/10.1016/j.tiv.2019.05.003] [PMID: 31077745]
[64]
Jiang, Y.Z.; Couriel, D.; Mavroudis, D.A.; Lewalle, P.; Malkovska, V.; Hensel, N.F.; Dermime, S.; Molldrem, J.; Barrett, A.J. Interaction of natural killer cells with MHC class II: Reversal of HLA-DR1-mediated protection of K562 transfectant from natural killer cell-mediated cytolysis by brefeldin-A. Immunology, 1996, 87(3), 481-486.
[http://dx.doi.org/10.1046/j.1365-2567.1996.483556.x] [PMID: 8778037]
[65]
Schonhorn, J.E.; Wessling-Resnick, M. Brefeldin A down-regulates the transferrin receptor in K562 cells. Mol. Cell. Biochem., 1994, 135(2), 159-169.
[http://dx.doi.org/10.1007/BF00926519] [PMID: 7838144]
[66]
Choi, K.S. Autophagy and cancer. Exp. Mol. Med., 2012, 44(2), 109-120.
[http://dx.doi.org/10.3858/emm.2012.44.2.033] [PMID: 22257886]
[67]
Doherty, J.; Baehrecke, E.H. Life, death and autophagy. Nat. Cell Biol., 2018, 20(10), 1110-1117.
[http://dx.doi.org/10.1038/s41556-018-0201-5] [PMID: 30224761]
[68]
Rubinsztein, D.C.; Gestwicki, J.E.; Murphy, L.O.; Klionsky, D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov., 2007, 6(4), 304-312.
[http://dx.doi.org/10.1038/nrd2272] [PMID: 17396135]
[69]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[70]
Ye, H.; Chen, M.; Cao, F.; Huang, H.; Zhan, R.; Zheng, X. Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. BMC Neurol., 2016, 16(1), 178-178.
[http://dx.doi.org/10.1186/s12883-016-0700-6] [PMID: 27644442]
[71]
Han, W.; Sun, J.; Feng, L.; Wang, K.; Li, D.; Pan, Q.; Chen, Y.; Jin, W.; Wang, X.; Pan, H.; Jin, H. Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS One, 2011, 6(12), e28491.
[http://dx.doi.org/10.1371/journal.pone.0028491] [PMID: 22164300]
[72]
Zanotto-Filho, A.; Delgado-Cañedo, A.; Schröder, R.; Becker, M.; Klamt, F.; Moreira, J.C. The pharmacological NFkappaB inhibitors BAY117082 and MG132 induce cell arrest and apoptosis in leukemia cells through ROS-mitochondria pathway activation. Cancer Lett., 2010, 288(2), 192-203.
[http://dx.doi.org/10.1016/j.canlet.2009.06.038] [PMID: 19646807]
[73]
Zhou, W.; Zhu, W.; Ma, L.; Xiao, F.; Qian, W. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein. Oncol. Lett., 2015, 10(5), 2899-2904.
[http://dx.doi.org/10.3892/ol.2015.3665] [PMID: 26722260]
[74]
Zhou, J.; Song, J.; Wu, S. Autophagic degradation of stromal interaction molecule 2 mediates disruption of neuronal dendrites by endoplasmic reticulum stress. J. Neurochem., 2019, 151(3), 351-369.
[http://dx.doi.org/10.1111/jnc.14712] [PMID: 31038732]
[75]
Wojtowicz, K.; Januchowski, R.; Sosińska, P.; Nowicki, M.; Zabel, M. Effect of brefeldin A and castanospermine on resistant cell lines as supplements in anticancer therapy. Oncol. Rep., 2016, 35(5), 2896-2906.
[http://dx.doi.org/10.3892/or.2016.4656] [PMID: 26985570]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy