Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Effects of Macroporous Resin Extract of Dendrobium officinale Leaves in Rats with Hyperuricemia Induced by Fructose and Potassium Oxonate

Author(s): Yu-Zhi Wang, Cong Zhou, Li-Jie Zhu, Xing-Li-Shang He, Lin-Zi Li, Xiang Zheng, Wan-Feng Xu, Ying-Jie Dong, Bo Li, Qiao-Xian Yu*, Gui-Yuan Lv* and Su-Hong Chen*

Volume 25, Issue 8, 2022

Published on: 28 May, 2021

Page: [1294 - 1303] Pages: 10

DOI: 10.2174/1386207324666210528114345

Price: $65

Abstract

Aims and Objectives: Fructose, as a ubiquitous monosaccharide, can promote ATP consumption and elevate circulating Uric Acid (UA) levels. Our previous studies have confirmed that the macroporous resin extract of Dendrobium officinale leaves (DoMRE) could reduce the UA level of rats with hyperuricemia induced by a high-purine diet. This study aimed to investigate whether DoMRE had a UA-lowering effect on rats with hyperuricemia caused by fructose combined with potassium oxonate, so as to further clarify the UA-lowering effect of DoMRE, and to explore the UAlowering effect of DoMRE on both UA production and excretion.

Materials and Methods: Rats with hyperuricemia induced by fructose and potassium oxonate were administered with DoMRE and vehicle control, respectively, to compare the effects of the drugs. At the end of the experiment, the Serum Uric Acid (SUA) and Creatinine (Cr) levels were measured using an automatic biochemical analyzer, the activities of xanthine oxidase (XOD) were measured using an assay kit, and the protein expressions of Urate Transporter 1 (URAT1), glucose transporter 9 (GLUT9), and ATP-Binding Cassette Superfamily G member 2 (ABCG2) were assessed using immune-histochemical and western blot analyses. Hematoxylin and eosin staining was used to assess the histological changes in the kidney, liver, and intestine.

Results: Fructose and potassium induced hyperuricemia in rats. Meanwhile, the activities of XOD were markedly augmented, the expression of URAT1 and GLUT9 was promoted, and the expression of ABCG2 was reduced, which were conducive to the elevation of UA. However, exposure to DoMRE reversed these fructose- and potassium oxonate-induced negative alternations in rats. The activities of XOD were recovered to the normal level, reducing UA formation; the expressions of URAT1, ABCG2, and GLUT9 returned to the normal level, resulting in an increase in renal urate excretion.

Conclusion: DoMRE reduces UA levels in rats with hyperuricemia induced by fructose combined with potassium oxonate by inhibiting XOD activity and regulating the expression of ABCG2, URAT1, and GLUT9. DoMRE is a potential therapeutic agent for treating hyperuricemia through inhibiting UA formation and promoting UA excretion.

Keywords: Dendrobium officinale leaves, hyperuricemia, fructose, urate transporter, xanthine oxidase, GLUT9.

Graphical Abstract

[1]
Bardin, T.; Richette, P. Definition of hyperuricemia and gouty conditions. Curr. Opin. Rheumatol., 2014, 26(2), 186-191.
[http://dx.doi.org/10.1097/BOR.0000000000000028] [PMID: 24419750]
[2]
Li, L.; Zhang, Y.; Zeng, C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am. J. Transl. Res., 2020, 12(7), 3167-3181.
[PMID: 32774692]
[3]
Liu, Z.; Chen, T.; Niu, H.; Ren, W.; Li, X.; Cui, L.; Li, C. The establishment and characteristics of rat model of atherosclerosis induced by hyperuricemia. Stem Cells Int., 2016, 2016, 1365257.
[http://dx.doi.org/10.1155/2016/1365257] [PMID: 26783398]
[4]
Wu, J.; Qiu, L.; Cheng, X.Q.; Xu, T.; Wu, W.; Zeng, X.J.; Ye, Y.C.; Guo, X.Z.; Cheng, Q.; Liu, Q.; Liu, L.; Xu, C.L.; Zhu, G.J. Hyperuricemia and clustering of cardiovascular risk factors in the Chinese adult population. Sci. Rep., 2017, 7(1), 5456.
[http://dx.doi.org/10.1038/s41598-017-05751-w] [PMID: 28710367]
[5]
García-Arroyo, F.E.; Gonzaga, G.; Muñoz-Jiménez, I.; Blas-Marron, M.G.; Silverio, O.; Tapia, E.; Soto, V.; Ranganathan, N.; Ranganathan, P.; Vyas, U.; Irvin, A.; Ir, D.; Robertson, C.E.; Frank, D.N.; Johnson, R.J.; Sánchez-Lozada, L.G. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage. PLoS One, 2018, 13(8), e0202901.
[http://dx.doi.org/10.1371/journal.pone.0202901] [PMID: 30142173]
[6]
Dong, X.; Zhang, H.; Wang, F.; Liu, X.; Yang, K.; Tu, R.; Wei, M.; Wang, L.; Mao, Z.; Zhang, G.; Wang, C. Epidemiology and prevalence of hyperuricemia among men and women in Chinese rural population: The henan rural cohort study. Mod. Rheumatol., 2020, 30(5), 910-920.
[http://dx.doi.org/10.1080/14397595.2019.1660048] [PMID: 31442098]
[7]
Huang, X.B.; Zhang, W.Q.; Tang, W.W.; Liu, Y.; Ning, Y.; Huang, C.; Liu, J.X.; Yi, Y.J.; Xu, R.H.; Wang, T.D. Prevalence and associated factors of hyperuricemia among urban adults aged 35-79 years in southwestern China: A community-based cross-sectional study. Sci. Rep., 2020, 10(1), 15683.
[http://dx.doi.org/10.1038/s41598-020-72780-3] [PMID: 32973308]
[8]
Jamnik, J.; Rehman, S.; Blanco Mejia, S.; de Souza, R.J.; Khan, T.A.; Leiter, L.A.; Wolever, T.M.; Kendall, C.W.; Jenkins, D.J.; Sievenpiper, J.L. Fructose intake and risk of gout and hyperuricemia: A systematic review and meta-analysis of prospective cohort studies. BMJ Open, 2016, 6(10), e013191.
[http://dx.doi.org/10.1136/bmjopen-2016-013191] [PMID: 27697882]
[9]
Ebrahimpour-Koujan, S.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr., 2020, 60(1), 1-10.
[http://dx.doi.org/10.1080/10408398.2018.1503155] [PMID: 30277800]
[10]
Rho, Y.H.; Zhu, Y.; Choi, H.K. The epidemiology of uric acid and fructose. Semin. Nephrol., 2011, 31(5), 410-419.
[http://dx.doi.org/10.1016/j.semnephrol.2011.08.004] [PMID: 22000647]
[11]
Meneses-León, J.; León-Maldonado, L.; Macías, N.; Torres-Ibarra, L.; Hernández-López, R.; Rivera-Paredez, B.; Flores, M.; Flores, Y.N.; Barrientos-Gutiérrez, T.; Quezada-Sánchez, A.D.; Velázquez-Cruz, R.; Salmerón, J. Sugar-sweetened beverage consumption and risk of hyperuricemia: A longitudinal analysis of the Health Workers Cohort Study participants in Mexico. Am. J. Clin. Nutr., 2020, 112(3), 652-660.
[http://dx.doi.org/10.1093/ajcn/nqaa160] [PMID: 32644154]
[12]
Zhang, T.; Bian, S.; Gu, Y.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.; Zhang, S.; Wang, Y.; Wang, X.; Cao, X.; Li, H.; Liu, Y.; Li, X.; Wang, X.; Sun, S.; Wang, X.; Zhou, M.; Jiao, H.; Jia, Q.; Song, K.; Wu, X.H.; Wu, Y.; Niu, K. Sugar-containing carbonated beverages consumption is associated with hyperuricemia in general adults: A cross-sectional study. Nutr. Metab. Cardiovasc. Dis., 2020, 30(10), 1645-1652.
[http://dx.doi.org/10.1016/j.numecd.2020.05.022] [PMID: 32669242]
[13]
Ichida, K.; Matsuo, H.; Takada, T.; Nakayama, A.; Murakami, K.; Shimizu, T.; Yamanashi, Y.; Kasuga, H.; Nakashima, H.; Nakamura, T.; Takada, Y.; Kawamura, Y.; Inoue, H.; Okada, C.; Utsumi, Y.; Ikebuchi, Y.; Ito, K.; Nakamura, M.; Shinohara, Y.; Hosoyamada, M.; Sakurai, Y.; Shinomiya, N.; Hosoya, T.; Suzuki, H. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun., 2012, 3, 764.
[http://dx.doi.org/10.1038/ncomms1756] [PMID: 22473008]
[14]
Xu, L.; Shi, Y.; Zhuang, S.; Liu, N. Recent advances on uric acid transporters. Oncotarget, 2017, 8(59), 100852-100862.
[http://dx.doi.org/10.18632/oncotarget.20135] [PMID: 29246027]
[15]
Torralba, K.D.; De Jesus, E.; Rachabattula, S. The interplay between diet, urate transporters and the risk for gout and hyperuricemia: current and future directions. Int. J. Rheum. Dis., 2012, 15(6), 499-506.
[http://dx.doi.org/10.1111/1756-185X.12010] [PMID: 23253231]
[16]
Day, R.O.; Kamel, B.; Kannangara, D.R.; Williams, K.M.; Graham, G.G. Xanthine oxidoreductase and its inhibitors: Relevance for gout. Clin. Sci. (Lond.), 2016, 130(23), 2167-2180.
[http://dx.doi.org/10.1042/CS20160010] [PMID: 27798228]
[17]
Berry, C.E.; Hare, J.M. Xanthine oxidoreductase and cardiovascular Disease: molecular mechanisms and pathophysiological implications. J. Physiol., 2004, 555(Pt 3), 589-606.
[http://dx.doi.org/10.1113/jphysiol.2003.055913] [PMID: 14694147]
[18]
Wang, H.; Mei, L.; Deng, Y.; Liu, Y.; Wei, X.; Liu, M.; Zhou, J.; Ma, H.; Zheng, P.; Yuan, J.; Li, M. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition, 2019, 62, 63-73.
[http://dx.doi.org/10.1016/j.nut.2018.11.018] [PMID: 30852460]
[19]
Mehmood, A.; Zhao, L.; Wang, C.; Hossen, I.; Nadeem, M. Stevia residue extract alone and combination with allopurinol attenuate hyperuricemia in fructose-PO-induced hyperuricemic mice. J. Food Biochem., 2020, 44(1), e13087.
[http://dx.doi.org/10.1111/jfbc.13087] [PMID: 31680279]
[20]
Tan, J.; Wan, L.; Chen, X.; Li, X.; Hao, X.; Li, X.; Li, J.; Ding, H. Conjugated linoleic acid ameliorates high fructose-induced hyperuricemia and renal inflammation in rats via NLRP3 inflammasome and TLR4 signaling pathway. Mol. Nutr. Food Res., 2019, 63(12), e1801402.
[http://dx.doi.org/10.1002/mnfr.201801402] [PMID: 30913372]
[21]
Ng, H.Y.; Lee, Y.T.; Kuo, W.H.; Huang, P.C.; Lee, W.C.; Lee, C.T. Alterations of renal epithelial glucose and uric acid transporters in fructose induced metabolic syndrome. Kidney Blood Press. Res., 2018, 43(6), 1822-1831.
[http://dx.doi.org/10.1159/000495814] [PMID: 30537749]
[22]
Le, Y.; Zhou, X.; Zheng, J.; Yu, F.; Tang, Y.; Yang, Z.; Ding, G.; Chen, Y. Anti-hyperuricemic effects of astaxanthin by regulating xanthine oxidase, adenosine deaminase and urate transporters in rats. Mar. Drugs, 2020, 18(12), 610.
[http://dx.doi.org/10.3390/md18120610] [PMID: 33271765]
[23]
Liu, C.W.; Chang, W.C.; Lee, C.C.; Shau, W.Y.; Hsu, F.S.; Wang, M.L.; Chen, T.C.; Lo, C.; Hwang, J.J. The net clinical benefits of febuxostat versus allopurinol in patients with gout or asymptomatic hyperuricemia -a systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis., 2019, 29(10), 1011-1022.
[http://dx.doi.org/10.1016/j.numecd.2019.06.016] [PMID: 31378626]
[24]
Kim, S.C.; Newcomb, C.; Margolis, D.; Roy, J.; Hennessy, S. Severe cutaneous reactions requiring hospitalization in allopurinol initiators: A population-based cohort study. Arthritis Care Res. (Hoboken), 2013, 65(4), 578-584.
[http://dx.doi.org/10.1002/acr.21817] [PMID: 22899369]
[25]
Cuenca, J.A-O.; Balda, J.; Palacio, A.; Young, L.; Pillinger, M.H.; Tamariz, L. Febuxostat and cardiovascular events: A systematic review and meta-analysis. Int. J. Rheumatol., 2019, 2019, 1076189.
[http://dx.doi.org/10.1155/2019/1076189] [PMID: 30863448]
[26]
Lee, Y.S.; Sung, Y.Y.; Yuk, H.J.; Son, E.; Lee, S.; Kim, J.S.; Kim, D.S. Anti-hyperuricemic effect of Alpinia oxyphylla seed extract by enhancing uric acid excretion in the kidney. Phytomedicine, 2019, 62, 152975.
[http://dx.doi.org/10.1016/j.phymed.2019.152975] [PMID: 31181404]
[27]
Zhang, D.; Liu, H.; Luo, P.; Li, Y. Production inhibition and excretion promotion of urate by fucoidan from laminaria japonica in adenine-induced hyperuricemic mice. Mar. Drugs, 2018, 16(12), 472.
[http://dx.doi.org/10.3390/md16120472] [PMID: 30486413]
[28]
Zhang, W.; Du, W.; Li, G.; Zhang, C.; Yang, W.; Yang, S.; Feng, Y.; Chen, H. Constituents and anti-hyperuricemia mechanism of traditional Chinese herbal formulae erding granule. Molecules, 2019, 24(18), 3248.
[http://dx.doi.org/10.3390/molecules24183248] [PMID: 31489932]
[29]
You, W.; Wang, J.; Zou, Y.; Che, K.; Hou, X.; Fei, H.; Wang, Y. Modified Chuanhu anti-gout mixture, a traditional Chinese medicine, protects against potassium oxonate-induced hyperuricemia and renal dysfunction in mice. J. Int. Med. Res., 2019, 47(5), 1927-1935.
[http://dx.doi.org/10.1177/0300060519831182] [PMID: 30832523]
[30]
Yang, K.; Lu, T.; Zhan, L.; Zhou, C.; Zhang, N.; Lei, S.; Wang, Y.; Yang, J.; Yan, M.; Lv, G.; Chen, S. Physicochemical characterization of polysaccharide from the leaf of Dendrobium officinale and effect on LPS induced damage in GES-1 cell. Int. J. Biol. Macromol., 2020, 149, 320-330.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.026] [PMID: 31945440]
[31]
Yang, K.; Zhan, L.; Lu, T.; Zhou, C.; Chen, X.; Dong, Y.; Lv, G.; Chen, S. Dendrobium officinale polysaccharides protected against ethanol-induced acute liver injury in vivo and in vitro via the TLR4/NF-&B signaling pathway. Cytokine, 2020, 130, 155058.
[http://dx.doi.org/10.1016/j.cyto.2020.155058] [PMID: 32222695]
[32]
Ke, Y.; Zhan, L.; Lu, T.; Zhou, C.; Chen, X.; Dong, Y.; Lv, G.; Chen, S. Polysaccharides of Dendrobium officinale kimura & migo leaves protect against ethanol-induced gastric mucosal injury via the AMPK/mTOR signaling pathway in vitro and vivo. Front. Pharmacol., 2020, 11, 526349.
[http://dx.doi.org/10.3389/fphar.2020.526349] [PMID: 33262700]
[33]
Lou, X.J.; Wang, Y.Z.; Lei, S.S.; He, X.; Lu, T.T.; Zhan, L.H.; Chen, X.; Chen, Y.H.; Li, B.; Zheng, X.; Lv, G.Y.; Chen, S.H. Beneficial effects of macroporous resin extract of dendrobium candidum leaves in rats with hyperuricemia induced by a high-purine diet. Evid. Based Complement. Alternat. Med., 2020, 2020(10), 3086106.
[http://dx.doi.org/10.1155/2020/3086106] [PMID: 32089717]
[34]
Pang, M.; Fang, Y.; Chen, S.; Zhu, X.; Shan, C.; Su, J.; Yu, J.; Li, B.; Yang, Y.; Chen, B.; Liang, K.; Hu, H.; Lv, G. Gypenosides inhibits xanthine oxidoreductase and ameliorates urate excretion in hyperuricemic rats induced by high cholesterol and high fat food (lipid emulsion). Med. Sci. Monit., 2017, 23, 1129-1140.
[http://dx.doi.org/10.12659/MSM.903217] [PMID: 28258276]
[35]
Liang, G.; Nie, Y.; Chang, Y.; Zeng, S.; Liang, C.; Zheng, X.; Xiao, D.; Zhan, S.; Zheng, Q. Protective effects of Rhizoma smilacis glabrae extracts on potassium oxonate- and monosodium urate-induced hyperuricemia and gout in mice. Phytomedicine, 2019, 59, 152772.
[http://dx.doi.org/10.1016/j.phymed.2018.11.032] [PMID: 31005813]
[36]
Slocum, J.L.; Heung, M.; Pennathur, S. Marking renal injury: can we move beyond serum creatinine? Transl. Res., 2012, 159(4), 277-289.
[http://dx.doi.org/10.1016/j.trsl.2012.01.014] [PMID: 22424431]
[37]
Xie, H.G.; Wang, S.K.; Cao, C.C.; Harpur, E. Qualified kidney biomarkers and their potential significance in drug safety evaluation and prediction. Pharmacol. Ther., 2013, 137(1), 100-107.
[http://dx.doi.org/10.1016/j.pharmthera.2012.09.004] [PMID: 23017937]
[38]
Wasung, M.E.; Chawla, L.S.; Madero, M. Biomarkers of renal function, which and when? Clin. Chim. Acta, 2015, 438, 350-357.
[http://dx.doi.org/10.1016/j.cca.2014.08.039] [PMID: 25195004]
[39]
Kuo, C.F.; Grainge, M.J.; Mallen, C.; Zhang, W.; Doherty, M. Rising burden of gout in the UK but continuing suboptimal management: A nationwide population study. Ann. Rheum. Dis., 2015, 74(4), 661-667.
[http://dx.doi.org/10.1136/annrheumdis-2013-204463] [PMID: 24431399]
[40]
Zhu, Y.; Pandya, B.J.; Choi, H.K. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am. J. Med., 2012, 125(7), 679-687.e1.
[http://dx.doi.org/10.1016/j.amjmed.2011.09.033] [PMID: 22626509]
[41]
Meneses-Leon, J.; Denova-Gutiérrez, E.; Castañón-Robles, S.; Granados-García, V.; Talavera, J.O.; Rivera-Paredez, B.; Huitrón-Bravo, G.G.; Cervantes-Rodríguez, M.; Quiterio-Trenado, M.; Rudolph, S.E.; Salmerón, J. Sweetened beverage consumption and the risk of hyperuricemia in Mexican adults: A cross-sectional study. BMC Public Health, 2014, 14, 445.
[http://dx.doi.org/10.1186/1471-2458-14-445] [PMID: 24884821]
[42]
Li, R.; Yu, K.; Li, C. Dietary factors and risk of gout and hyperuricemia: A meta-analysis and systematic review. Asia Pac. J. Clin. Nutr., 2018, 27(6), 1344-1356.
[http://dx.doi.org/10.6133/apjcn.201811_27(6).0022] [PMID: 30485934]
[43]
Zhang, C.; Li, L.; Zhang, Y.; Zeng, C. Recent advances in fructose intake and risk of hyperuricemia. Biomed. Pharmacother., 2020, 131, 110795.
[http://dx.doi.org/10.1016/j.biopha.2020.110795] [PMID: 33152951]
[44]
Mandal, A.K.; Mount, D.B. The molecular physiology of uric acid homeostasis. Annu. Rev. Physiol., 2015, 77, 323-345.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170343] [PMID: 25422986]
[45]
Rae, A.I. Hyperuricemia. Can. Fam. Physician, 1981, 27(2), 246-249.
[PMID: 20469337]
[46]
Xu, C.; Wan, X.; Xu, L.; Weng, H.; Yan, M.; Miao, M.; Sun, Y.; Xu, G.; Dooley, S.; Li, Y.; Yu, C. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: One stone hits two birds. J. Hepatol., 2015, 62(6), 1412-1419.
[http://dx.doi.org/10.1016/j.jhep.2015.01.019] [PMID: 25623823]
[47]
Li, F.; Liu, Y.; Xie, Y.; Liu, Z.; Zou, G. Epigallocatechin gallate reduces uric acid levels by regulating xanthine oxidase activity and uric acid excretion in vitro and in vivo. Ann. Palliat. Med., 2020, 9(2), 331-338.
[http://dx.doi.org/10.21037/apm.2019.11.28] [PMID: 32008337]
[48]
Yan, J.; Zhang, G.; Hu, Y.; Ma, Y. Effect of luteolin on xanthine oxidase: inhibition kinetics and interaction mechanism merging with docking simulation. Food Chem., 2013, 141(4), 3766-3773.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.092] [PMID: 23993547]
[49]
Yong, T.; Chen, S.; Liang, D.; Zuo, D.; Diao, X.; Deng, C.; Wu, Y.; Hu, H.; Xie, Y.; Chen, D. Actions of inonotus obliquus against hyperuricemia through XOD and bioactives screened by molecular modeling. Int. J. Mol. Sci., 2018, 19(10), 3222.
[http://dx.doi.org/10.3390/ijms19103222] [PMID: 30340390]
[50]
Tappy, L.; Lê, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev., 2010, 90(1), 23-46.
[http://dx.doi.org/10.1152/physrev.00019.2009] [PMID: 20086073]
[51]
Caliceti, C.; Calabria, D.; Roda, A.; Cicero, A.F.G. Fructose intake, serum uric acid, and cardiometabolic disorders: A critical review. Nutrients, 2017, 9(4), 395.
[http://dx.doi.org/10.3390/nu9040395] [PMID: 28420204]
[52]
Mai, B.H.; Yan, L.J. The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes Metab. Syndr. Obes., 2019, 12, 821-826.
[http://dx.doi.org/10.2147/DMSO.S198968] [PMID: 31213868]
[53]
Johnson, R.J.; Nakagawa, T.; Sanchez-Lozada, L.G.; Shafiu, M.; Sundaram, S.; Le, M.; Ishimoto, T.; Sautin, Y.Y.; Lanaspa, M.A. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 2013, 62(10), 3307-3315.
[http://dx.doi.org/10.2337/db12-1814] [PMID: 24065788]
[54]
Pavelcova, K.; Bohata, J.; Pavlikova, M.; Bubenikova, E.; Pavelka, K.; Stiburkova, B. Evaluation of the influence of genetic variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the development of hyperuricemia and gout. J. Clin. Med., 2020, 9(8), 2510.
[http://dx.doi.org/10.3390/jcm9082510] [PMID: 32759716]
[55]
Auberson, M.; Stadelmann, S.; Stoudmann, C.; Seuwen, K.; Koesters, R.; Thorens, B.; Bonny, O. SLC2A9 (GLUT9) mediates urate reabsorption in the mouse kidney. Pflugers Arch., 2018, 470(12), 1739-1751.
[http://dx.doi.org/10.1007/s00424-018-2190-4] [PMID: 30105595]
[56]
Jin, Y.N.; Lin, Z.J.; Zhang, B.; Bai, Y.F. Effects of Chicory on Serum Uric Acid, Renal Function, and GLUT9 Expression in hyperuricaemic rats with renal injury and in vitro verification with cells. Evid. Based Complement. Alternat. Med., 2018, 2018, 1764212.
[http://dx.doi.org/10.1155/2018/1764212] [PMID: 30622589]
[57]
Ruiz, A.; Gautschi, I.; Schild, L.; Bonny, O. Human mutations in SLC2A9 (Glut9) affect transport capacity for urate. Front. Physiol., 2018, 9, 476.
[http://dx.doi.org/10.3389/fphys.2018.00476] [PMID: 29967582]
[58]
Shin, H.J.; Takeda, M.; Enomoto, A.; Fujimura, M.; Miyazaki, H.; Anzai, N.; Endou, H. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology (Carlton), 2011, 16(2), 156-162.
[http://dx.doi.org/10.1111/j.1440-1797.2010.01368.x] [PMID: 21272127]
[59]
Kon, S.; Konta, T.; Ichikawa, K.; Watanabe, M.; Sato, H.; Ishizawa, K.; Ueno, Y.; Yamashita, H.; Kayama, T. The association between genotypes of urate transporter-1, Serum uric acid, and mortality in the community-based population: the Yamagata (Takahata) Study. Clin. Exp. Nephrol., 2019, 23(12), 1357-1363.
[http://dx.doi.org/10.1007/s10157-019-01781-y] [PMID: 31478104]
[60]
Takada, T.; Ichida, K.; Matsuo, H.; Nakayama, A.; Murakami, K.; Yamanashi, Y.; Kasuga, H.; Shinomiya, N.; Suzuki, H. ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion. Nucleosides Nucleotides Nucleic Acids, 2014, 33(4-6), 275-281.
[http://dx.doi.org/10.1080/15257770.2013.854902] [PMID: 24940679]
[61]
Matsuo, H.; Tsunoda, T.; Ooyama, K.; Sakiyama, M.; Sogo, T.; Takada, T.; Nakashima, A.; Nakayama, A.; Kawaguchi, M.; Higashino, T.; Wakai, K.; Ooyama, H.; Hokari, R.; Suzuki, H.; Ichida, K.; Inui, A.; Fujimori, S.; Shinomiya, N. Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2. Sci. Rep., 2016, 6, 31003.
[http://dx.doi.org/10.1038/srep31003] [PMID: 27571712]
[62]
Wang, Y.; Lin, Z.; Zhang, B.; Nie, A.; Bian, M. Cichorium intybus L. promotes intestinal uric acid excretion by modulating ABCG2 in experimental hyperuricemia. Nutr. Metab. (Lond.), 2017, 14, 38.
[http://dx.doi.org/10.1186/s12986-017-0190-6] [PMID: 28630638]
[63]
Hoque, K.M.; Dixon, E.E.; Lewis, R.M.; Allan, J.; Gamble, G.D.; Phipps-Green, A.J.; Halperin Kuhns, V.L.; Horne, A.M.; Stamp, L.K.; Merriman, T.R.; Dalbeth, N.; Woodward, O.M. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nat. Commun., 2020, 11(1), 2767.
[http://dx.doi.org/10.1038/s41467-020-16525-w] [PMID: 32488095]
[64]
Chen, M.; Lu, X.; Lu, C.; Shen, N.; Jiang, Y.; Chen, M.; Wu, H. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res. Ther., 2018, 20(1), 20.
[http://dx.doi.org/10.1186/s13075-018-1512-4] [PMID: 29415757]
[65]
Nigam, S.K.; Bhatnagar, V. The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr. Opin. Nephrol. Hypertens., 2018, 27(4), 305-313.
[http://dx.doi.org/10.1097/MNH.0000000000000427] [PMID: 29847376]
[66]
Xu, X.; Li, C.; Zhou, P.; Jiang, T. Uric acid transporters hiding in the intestine. Pharm. Biol., 2016, 54(12), 3151-3155.
[http://dx.doi.org/10.1080/13880209.2016.1195847] [PMID: 27563755]
[67]
DeBosch, B.J.; Kluth, O.; Fujiwara, H.; Schürmann, A.; Moley, K. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat. Commun., 2014, 5, 4642.
[http://dx.doi.org/10.1038/ncomms5642] [PMID: 25100214]
[68]
Hosomi, A.; Nakanishi, T.; Fujita, T.; Tamai, I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One, 2012, 7(2), e30456.
[http://dx.doi.org/10.1371/journal.pone.0030456] [PMID: 22348008]
[69]
Yun, Y.; Yin, H.; Gao, Z.; Li, Y.; Gao, T.; Duan, J.; Yang, R.; Dong, X.; Zhang, L.; Duan, W. Intestinal tract is an important organ for lowering serum uric acid in rats. PLoS One, 2017, 12(12), e0190194.
[http://dx.doi.org/10.1371/journal.pone.0190194] [PMID: 29267361]
[70]
Morimoto, C.; Tamura, Y.; Asakawa, S.; Kuribayashi-Okuma, E.; Nemoto, Y.; Li, J.; Murase, T.; Nakamura, T.; Hosoyamada, M.; Uchida, S.; Shibata, S. ABCG2 expression and uric acid metabolism of the intestine in hyperuricemia model rat. Nucleosides Nucleotides Nucleic Acids, 2020, 39(5), 744-759.
[http://dx.doi.org/10.1080/15257770.2019.1694684] [PMID: 31983315]
[71]
Kaneko, C.; Ogura, J.; Sasaki, S.; Okamoto, K.; Kobayashi, M.; Kuwayama, K.; Narumi, K.; Iseki, K. Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(3), 559-566.
[http://dx.doi.org/10.1016/j.bbagen.2016.11.042] [PMID: 27913188]
[72]
Guo, Y.; Li, H.; Liu, Z.; Li, C.; Chen, Y.; Jiang, C.; Yu, Y.; Tian, Z. Impaired intestinal barrier function in a mouse model of hyperuricemia. Mol. Med. Rep., 2019, 20(4), 3292-3300.
[http://dx.doi.org/10.3892/mmr.2019.10586] [PMID: 31432190]
[73]
Bian, M.; Wang, J.; Wang, Y.; Nie, A.; Zhu, C.; Sun, Z.; Zhou, Z.; Zhang, B. Chicory ameliorates hyperuricemia via modulating gut microbiota and alleviating LPS/TLR4 axis in quail. Biomed. Pharmacother., 2020, 131, 110719.
[http://dx.doi.org/10.1016/j.biopha.2020.110719] [PMID: 33152909]
[74]
Xu, D.; Lv, Q.; Wang, X.; Cui, X.; Zhao, P.; Yang, X.; Liu, X.; Yang, W.; Yang, G.; Wang, G.; Wang, P.; Wang, Z.; Li, Z.; Xing, S. Hyperuricemia is associated with impaired intestinal permeability in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 317(4), G484-G492.
[http://dx.doi.org/10.1152/ajpgi.00151.2019] [PMID: 31369290]
[75]
Lv, Q.; Xu, D.; Ma, J.; Wang, Y.; Yang, X.; Zhao, P.; Ma, L.; Li, Z.; Yang, W.; Liu, X.; Yang, G.; Xing, S. Uric acid drives intestinal barrier dysfunction through TSPO-mediated NLRP3 inflammasome activation. Inflamm. Res., 2021, 70(1), 127-137.
[http://dx.doi.org/10.1007/s00011-020-01409-y] [PMID: 33074353]
[76]
Lv, Q.; Xu, D.; Zhang, X.; Yang, X.; Zhao, P.; Cui, X.; Liu, X.; Yang, W.; Yang, G.; Xing, S. Association of hyperuricemia with immune disorders and intestinal barrier dysfunction. Front. Physiol., 2020, 11, 524236.
[http://dx.doi.org/10.3389/fphys.2020.524236] [PMID: 33329010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy