Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Improved Photovoltaic Properties of Nano-Flake-Based Mesoporous Dip- SILAR Prepared BiOI Electrochemical Cell By Tuning Post-Annealing Treatment Time at 100°C

Author(s): Md. Matiur Rahman*, Shinya Kato and Tetsuo Soga

Volume 7, Issue 1, 2022

Published on: 11 August, 2021

Page: [57 - 64] Pages: 8

DOI: 10.2174/2405461506666210526150014

Price: $65

Abstract

Background: This research article reports on the post-annealing treatment time effect on the dip-successive ionic layer adsorption and reaction (SILAR) prepared nano-flake-based mesoporous BiOI electrochemical cell's photovoltaic properties.

Objective: Our study clarifies that the post-annealing time has a great impact on the photovoltaic behavior and the nano-flake morphology.

Methods: At 100°C for 90 mins of post-annealing treatment conditions, the surface morphology converted into a connected uniform crystallized flaky structure, which improves the effective surface area and reduces the BiOI/electrolyte charge transfer resistance confirmed via electrochemical impedance spectroscopy (EIS) analysis. Therefore, the maximum photovoltaic properties (short-circuit current density, Jsc = 1.83mA/cm2, open-circuit voltage, Voc = 0.48V and efficiency = 0.28%) have been observed. However, without annealing and beyond 90 mins of post-annealing time, the film quality and crystallinity decreased as a consequence of photovoltaic properties degradation.

Results and Conclusion: Our investigation finding is that 90 mins is the optimal post-annealing treatment duration for the dip-SILAR prepared nano-flake-based mesoporous BiOI electrochemical photovoltaic cell at 100°C post-annealing temperature.

Keywords: Dip-SILAR, nano-flake, post-annealing treatment time, mesoporous BiOI, photovoltaic, electrochemical cell.

Graphical Abstract

[1]
Matiur RM, Abuelwafa AA, Putri AA, Kato S, Kishi N, Soga T. Annealing effects on structural and photovoltaic properties of the dip-SILAR-prepared bismuth oxyhalides (BiOI, Bi7O9I 3, Bi 5O7I) films. SN Applied Sciences 2021; 3(2): 1-1.
[http://dx.doi.org/10.1007/s42452-021-04153-y]
[2]
Putri AA, Kato S, Kishi N, Soga T. Angle dependence of synthesized BiOI prepared by dip coating and its effect on the photovoltaic performance. J Appl Phys 2018; 58(SA): SAAD09.
[3]
Su X, Yang J, Yu X, Zhu Y, Zhang Y. in situ grown hierarchical 50% BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B. Appl Surf Sci 2018; 433: 502-12.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.258]
[4]
Niu J, Dai P, Zhang Q, Yao B, Yu X. Microwave-assisted solvothermal synthesis of novel hierarchical BiOI/rGO composites for efficient photocatalytic degardation of organic pollutants. Appl Surf Sci 2018; 430: 165-75.
[http://dx.doi.org/10.1016/j.apsusc.2017.07.190]
[5]
Hao R, Xiao X, Zuo X, Nan J, Zhang W. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J Hazard Mater 2012; 209-210: 137-45.
[http://dx.doi.org/10.1016/j.jhazmat.2012.01.006] [PMID: 22277340]
[6]
Wang Y, Deng K, Zhang L. Visible light photocatalysis of BiOI and its photocatalytic activity enhancement by in situ ionic liquid modification. J Phys Chem C 2011; 115(29): 14300-8.
[http://dx.doi.org/10.1021/jp2042069]
[7]
Ye L, Chen J, Tian L, et al. BiOI thin film via chemical vapor transport: Photocatalytic activity, durability, selectivity and mechanism. Appl Catal B 2013; 130: 1-7.
[http://dx.doi.org/10.1016/j.apcatb.2012.10.011]
[8]
Cao J, Xu B, Luo B, Lin H, Chen S. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal Commun 2011; 13(1): 63-8.
[http://dx.doi.org/10.1016/j.catcom.2011.06.019]
[9]
Zhang X, Zhang L. Electronic and band structure tuning of ternary semiconductor photocatalysts by self-doping: The case of BiOI. J Phys Chem C 2010; 114(42): 18198-206.
[http://dx.doi.org/10.1021/jp105118m]
[10]
Bhachu DS, Moniz SJA, Sathasivam S, et al. Bismuth oxyhalides: Synthesis, structure and photoelectrochemical activity. Chem Sci (Camb) 2016; 7(8): 4832-41.
[http://dx.doi.org/10.1039/C6SC00389C] [PMID: 30155131]
[11]
Park Y, Na Y, Pradhan D, Min BK, Sohn Y. Adsorption and UV/Visible photocatalytic performance of BiOI for methyl orange, Rhodamine B and methylene blue: Ag and Ti-loading effects. CrystEngComm 2014; 16(15): 3155-67.
[http://dx.doi.org/10.1039/C3CE42654H]
[12]
Dai G, Yu J, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p− n junction BiOI/TiO2 nanotube arrays. J Phys Chem C 2011; 115(15): 7339-46.
[http://dx.doi.org/10.1021/jp200788n]
[13]
Cui W, An W, Liu L, Hu J, Liang Y. Synthesis of CdS/BiOBr composite and its enhanced photocatalytic degradation for Rhodamine B. Appl Surf Sci 2014; 319: 298-305.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.179]
[14]
Sfaelou S, Raptis D, Dracopoulos V, Lianos P. BiOI solar cells. RSC Advances 2015; 5(116): 95813-6.
[http://dx.doi.org/10.1039/C5RA19835F]
[15]
Zhang Y, Pei Q, Liang J, et al. Mesoporous TiO2-based photoanode sensitized by BiOI and investigation of its photovoltaic behavior. Langmuir 2015; 31(37): 10279-84.
[http://dx.doi.org/10.1021/acs.langmuir.5b02248] [PMID: 26327463]
[16]
Wang K, Jia F, Zhang L. Facile construction of low-cost flexible solar cells with p-type BiOI nanoflake arrays fabricated via oriented attachment. Mater Lett 2013; 92: 354-7.
[http://dx.doi.org/10.1016/j.matlet.2012.10.096]
[17]
Wang K, Jia F, Zheng Z, Zhang L. Crossed BiOI flake array solar cells. Electrochem Commun 2010; 12(12): 1764-7.
[http://dx.doi.org/10.1016/j.elecom.2010.10.017]
[18]
Pazoki M, Johansson MB, Zhu H, et al. Bismuth iodide perovskite materials for solar cell applications: Electronic structure, optical transitions, and directional charge transport. J Phys Chem C 2016; 120(51): 29039-46.
[http://dx.doi.org/10.1021/acs.jpcc.6b11745]
[19]
Kulkarni A, Singh T, Ikegami M, Miyasaka T. Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion. RSC Adv 2017; 7(16): 9456-60.
[http://dx.doi.org/10.1039/C6RA28190G]
[20]
Kariper İA. Producing BiI/BiOI thin films via chemical bath deposition. Mater Res 2016; 19(1): 18-23.
[http://dx.doi.org/10.1590/1980-5373-MR-2015-0282]
[21]
Putri AA, Abuelwafa AA, Kato S, Kishi N, Soga T. A simple spin-assisted SILAR of bismuth oxyiodide films preparation for photovoltaic application. SN Appl Sci 2020; 2(1): 1-8.
[http://dx.doi.org/10.1007/s42452-019-1913-2]
[22]
Shen F, Zhou L, Shi J, Xing M, Zhang J. Preparation and characterization of SiO2/BiOX (X=Cl, Br, I) films with high visible- light activity. RSC Adv 2015; 5(7): 4918-25.
[http://dx.doi.org/10.1039/C4RA10227D]
[23]
Lu J, Wu J, Xu W, et al. Room temperature synthesis of tetragonal BiOI photocatalyst with surface heterojunction between (0 0 1) facets and (1 1 0) facets. Mater Lett 2018; 219: 260-4.
[http://dx.doi.org/10.1016/j.matlet.2018.01.175]
[24]
Hoye RLZ, Lee LC, Kurchin RC, et al. Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI). Adv Mater 2017; 29(36): 1702176.
[http://dx.doi.org/10.1002/adma.201702176] [PMID: 28715091]
[25]
Wang L, Daoud WA. BiOI/TiO2-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties. Appl Surf Sci 2015; 324: 532-7.
[http://dx.doi.org/10.1016/j.apsusc.2014.10.110]
[26]
Long Y, Han Q, Yang Z, et al. A novel solvent-free strategy for the synthesis of bismuth oxyhalides. J Mater Chem A Mater Energy Sustain 2018; 6(27): 13005-11.
[http://dx.doi.org/10.1039/C8TA04529A]
[27]
Abuelwafa AA, Matiur RM, Putri AA, Soga T. Synthesis, structure, and optical properties of the nanocrystalline bismuth oxyiodide (BiOI) for optoelectronic application. Opt Mater 2020; 109: 110413.
[http://dx.doi.org/10.1016/j.optmat.2020.110413]
[28]
Matiur RM, Abuelwafa AA, Kato S, Kishi N, Soga T. A comparative study on optical properties of BiOI, Bi7O9I3 and Bi5O7I materials. Opt Mater 2021; 111: 110677.
[http://dx.doi.org/10.1016/j.optmat.2020.110677]
[29]
Putri AA, Kato S, Kishi N, Soga T. Relevance of precursor molarity in the prepared bismuth oxyiodide films by successive ionic layer adsorption and reaction for solar cell application. Journal of Science: Adv Mat Dev 2019; 4(1): 116-24.
[30]
Putri AA, Kato S, Kishi N, Soga T. Study of annealing temperature effect on the photovoltaic performance of BiOI-based materials. Appl Sci (Basel) 2019; 9(16): 3342.
[http://dx.doi.org/10.3390/app9163342]
[31]
Putri AA, Kato S, Kishi N, Soga T. TiO2/Bi5O7I Composite Films for Dye-Sensitized Solar Cells. J Electron Mater 2020; 49(3): 1827-34.
[http://dx.doi.org/10.1007/s11664-019-07868-2]
[32]
Fang M, Jia H, He W, Lei Y, Zhang L, Zheng Z. Construction of flexible photoelectrochemical solar cells based on ordered nanostructural BiOI/Bi2S3 heterojunction films. Phys Chem Chem Phys 2015; 17(20): 13531-8.
[http://dx.doi.org/10.1039/C4CP05749J] [PMID: 25941684]
[33]
Arumugam M, Choi MY. Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation. J Ind Eng Chem 2020; 81: 237-68.
[http://dx.doi.org/10.1016/j.jiec.2019.09.013]
[34]
El-Bana MS, Fouad SS. Optoelectrical properties of Ge10Se90 and Ge10 Se85Cu5 thin films illuminated by laser beams. Appl Phys, A Mater Sci Process 2018; 124(2): 1-8.
[http://dx.doi.org/10.1007/s00339-018-1570-0]
[35]
Dongol M, Elhady AF, Ebied MS, Abuelwafa AA. Impact of sulfur content on structural and optical properties of Ge20Se80−xSx chalcogenide glasses thin films. Opt Mater 2018; 78: 266-72.
[http://dx.doi.org/10.1016/j.optmat.2018.02.033]
[36]
Dongol M, Elhady AF, Ebied MS, Abuelwafa AA. Effect of thermal annealing on the optical properties of Ge20Se65S15 thin films. Indian J Phys 2020; 1-9.
[37]
Sze SM. physics of Semiconductor devices. John Wiley & sons, New York 1981.
[38]
Choudhury MS, Kishi N, Soga T. Hot-compress: A new post deposition treatment for ZnO-based flexible dye-sensitized solar cells. Mater Res Bull 2016; 80: 135-8.
[http://dx.doi.org/10.1016/j.materresbull.2016.03.037]
[39]
Wang Q, Moser JE, Grätzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 2005; 109(31): 14945-53.
[http://dx.doi.org/10.1021/jp052768h] [PMID: 16852893]
[40]
Abdulrahim SM, Ahmad Z, Bahadra J, Al-Thani NJ. Electrochemical impedance spectroscopy analysis of hole transporting material free mesoporous and planar perovskite solar cells. Nanomaterials (Basel) 2020; 10(9): 1635.
[http://dx.doi.org/10.3390/nano10091635] [PMID: 32825347]
[41]
Kim YK, Park SH, Hwang WP, et al. Impedance spectroscopy on dye-sensitized solar cells with a poly (ethylenedioxythiophene): Poly (styrenesulfonate) counter electrolyte. J Korean Phys Soc 2012; 60(12): 2049-53.
[http://dx.doi.org/10.3938/jkps.60.2049]
[42]
Han L, Koide N, Chiba Y, Islam A, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells: Improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. C R Chim 2006; 9(5-6): 645-51.
[http://dx.doi.org/10.1016/j.crci.2005.02.046]
[43]
Abuelwafa AA, Dongol M, El-Nahass MM, Soga T. Performances and impedance spectroscopy of Small-molecule bulk heterojunction solar cells based on PtOEP: PCBM. Appl Phys, A Mater Sci Process 2018; 124(3): 1-7.
[http://dx.doi.org/10.1007/s00339-018-1674-6]
[44]
Sun H, Luo Y, Zhang Y, et al. in situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J Phys Chem C 2010; 114(26): 11673-9.
[http://dx.doi.org/10.1021/jp1030015]
[45]
Yin X, Wang B, He M, He T. Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res 2012; 5(1): 1-10.
[http://dx.doi.org/10.1007/s12274-011-0178-X]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy