Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Biomarkers and Tools for Predicting Alzheimer’s Disease in the Preclinical Stage

Author(s): Tao-Ran Li, Qin Yang, Xiaochen Hu and Ying Han*

Volume 20, Issue 4, 2022

Published on: 24 February, 2022

Page: [713 - 737] Pages: 25

DOI: 10.2174/1570159X19666210524153901

Price: $65

Abstract

Alzheimer’s disease (AD) is the only leading cause of death for which no disease-modifying therapy is currently available. Over the past decade, a string of disappointing clinical trial results has forced us to shift our focus to the preclinical stage of AD, which represents the most promising therapeutic window. However, the accurate diagnosis of preclinical AD requires the presence of brain β- amyloid deposition determined by cerebrospinal fluid or amyloid-positron emission tomography, significantly limiting routine screening and diagnosis in non-tertiary hospital settings. Thus, an easily accessible marker or tool with high sensitivity and specificity is highly needed. Recently, it has been discovered that individuals in the late stage of preclinical AD may not be truly “asymptomatic” in that they may have already developed subtle or subjective cognitive decline. In addition, advances in bloodderived biomarker studies have also allowed the detection of pathologic changes in preclinical AD. Exosomes, as cell-to-cell communication messengers, can reflect the functional changes of their source cell. Methodological advances have made it possible to extract brain-derived exosomes from peripheral blood, making exosomes an emerging biomarker carrier and liquid biopsy tool for preclinical AD. The eye and its associated structures have rich sensory-motor innervation. In this regard, studies have indicated that they may also provide reliable markers. Here, our report covers the current state of knowledge of neuropsychological and eye tests as screening tools for preclinical AD and assesses the value of blood and brain-derived exosomes as carriers of biomarkers in conjunction with the current diagnostic paradigm.

Keywords: Alzheimer’s disease, preclinical AD, biomarker, neuropsychological test, eye test, blood, exosomes, brain-derived exosomes.

Graphical Abstract

[1]
Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and management of dementia.Review JAMA, 2019, 322(16), 1589-1599. [
[http://dx.doi.org/10.1001/jama.2019.4782] [PMID: 31638686]
[2]
Jia, L.; Quan, M.; Fu, Y.; Zhao, T.; Li, Y.; Wei, C.; Tang, Y.; Qin, Q.; Wang, F.; Qiao, Y.; Shi, S.; Wang, Y.J.; Du, Y.; Zhang, J.; Zhang, J.; Luo, B.; Qu, Q.; Zhou, C.; Gauthier, S.; Jia, J. Dementia in China: Epidemiology, clinical management, and research advances. Lancet Neurol., 2020, 19(1), 81-92.
[http://dx.doi.org/10.1016/S1474-4422(19)30290-X] [PMID: 31494009]
[3]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[4]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[5]
Golde, T.E.; DeKosky, S.T.; Galasko, D. Alzheimer’s disease: The right drug, the right time. Science, 2018, 362(6420), 1250-1251.
[http://dx.doi.org/10.1126/science.aau0437] [PMID: 30545877]
[6]
Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; Cappa, S.; Crutch, S.; Engelborghs, S.; Frisoni, G.B.; Fox, N.C.; Galasko, D.; Habert, M.O.; Jicha, G.A.; Nordberg, A.; Pasquier, F.; Rabinovici, G.; Robert, P.; Rowe, C.; Salloway, S.; Sarazin, M.; Epelbaum, S.; de Souza, L.C.; Vellas, B.; Visser, P.J.; Schneider, L.; Stern, Y.; Scheltens, P.; Cummings, J.L. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol., 2014, 13(6), 614-629.
[http://dx.doi.org/10.1016/S1474-4422(14)70090-0] [PMID: 24849862]
[7]
Wang, X.; Sun, Y.; Li, T.; Cai, Y.; Han, Y. Amyloid-β as a blood biomarker for Alzheimer’s disease: A review of recent literature. J. Alzheimers Dis., 2020, 73(3), 819-832.
[http://dx.doi.org/10.3233/JAD-190714] [PMID: 31868667]
[8]
d’Abramo, C.; D’Adamio, L.; Giliberto, L. Significance of blood and cerebrospinal fluid biomarkers for Alzheimer’s disease: Sensitivity, specificity and potential for clinical use. J. Pers. Med., 2020, 10(3) ,E116.
[http://dx.doi.org/10.3390/jpm10030116] [PMID: 32911755]
[9]
Mustapic, M.; Eitan, E.; Werner, J.K., Jr; Berkowitz, S.T.; Lazaropoulos, M.P.; Tran, J.; Goetzl, E.J.; Kapogiannis, D. Plasma extracellular vesicles enriched for neuronal origin: A potential window into brain pathologic processes. Front. Neurosci., 2017, 11, 278.
[http://dx.doi.org/10.3389/fnins.2017.00278] [PMID: 28588440]
[10]
Badhwar, A.; Haqqani, A.S. Biomarker potential of brain-secreted extracellular vesicles in blood in Alzheimer’s disease. Alzheimers Dement. (Amst.), 2020, 12(1) ,e12001.
[http://dx.doi.org/10.1002/dad2.12001] [PMID: 32211497]
[11]
Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; Meguro, K.; O’brien, J.; Pasquier, F.; Robert, P.; Rossor, M.; Salloway, S.; Stern, Y.; Visser, P.J.; Scheltens, P. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol., 2007, 6(8), 734-746.
[http://dx.doi.org/10.1016/S1474-4422(07)70178-3] [PMID: 17616482]
[12]
Wolfsgruber, S.; Kleineidam, L.; Guski, J.; Polcher, A.; Frommann, I.; Roeske, S.; Spruth, E.J.; Franke, C.; Priller, J.; Kilimann, I.; Teipel, S.; Buerger, K.; Janowitz, D.; Laske, C.; Buchmann, M.; Peters, O.; Menne, F.; Fuentes Casan, M.; Wiltfang, J.; Bartels, C.; Düzel, E.; Metzger, C.; Glanz, W.; Thelen, M.; Spottke, A.; Ramirez, A.; Kofler, B.; Fließbach, K.; Schneider, A.; Heneka, M.T.; Brosseron, F.; Meiberth, D.; Jessen, F.; Wagner, M. Minor neuropsychological deficits in patients with subjective cognitive decline. Neurology, 2020, 95(9), e1134-e1143.
[http://dx.doi.org/10.1212/WNL.0000000000010142] [PMID: 32636322]
[13]
Li, T.R.; Wang, X.N.; Sheng, C.; Li, Y.X.; Li, F.Z.; Sun, Y.; Han, Y. Extracellular vesicles as an emerging tool for the early detection of Alzheimer’s disease. Mech. Ageing Dev., 2019, 184 ,111175.
[http://dx.doi.org/10.1016/j.mad.2019.111175] [PMID: 31678325]
[14]
O’Bryhim, B.E.; Apte, R.S.; Kung, N.; Coble, D.; Van Stavern, G.P. Association of preclinical alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol., 2018, 136(11), 1242-1248.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.3556] [PMID: 30352114]
[15]
Wang, X.; Huang, W.; Su, L.; Xing, Y.; Jessen, F.; Sun, Y.; Shu, N.; Han, Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer’s disease. Mol. Neurodegener., 2020, 15(1), 55.
[http://dx.doi.org/10.1186/s13024-020-00395-3] [PMID: 32962744]
[16]
Li, T.R.; Wu, Y.; Jiang, J.J.; Lin, H.; Han, C.L.; Jiang, J.H.; Han, Y. Radiomics analysis of magnetic resonance imaging facilitates the identification of preclinical Alzheimer’s disease: An exploratory study. Front. Cell Dev. Biol., 2020, 8 ,605734.
[http://dx.doi.org/10.3389/fcell.2020.605734] [PMID: 33344457]
[17]
Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol., 1999, 56(3), 303-308.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[18]
Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; Arai, H.; Basun, H.; Blennow, K.; de Leon, M.; DeCarli, C.; Erkinjuntti, T.; Giacobini, E.; Graff, C.; Hardy, J.; Jack, C.; Jorm, A.; Ritchie, K.; van Duijn, C.; Visser, P.; Petersen, R.C. Mild cognitive impairment--beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med., 2004, 256(3), 240-246.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x] [PMID: 15324367]
[19]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008] [PMID: 21514249]
[20]
Bondi, M.W.; Edmonds, E.C.; Jak, A.J.; Clark, L.R.; Delano-Wood, L.; McDonald, C.R.; Nation, D.A.; Libon, D.J.; Au, R.; Galasko, D.; Salmon, D.P. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J. Alzheimers Dis., 2014, 42(1), 275-289.
[http://dx.doi.org/10.3233/JAD-140276] [PMID: 24844687]
[21]
Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr; Kaye, J.; Montine, T.J.; Park, D.C.; Reiman, E.M.; Rowe, C.C.; Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M.C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M.V.; Phelps, C.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[22]
Howieson, D.B.; Carlson, N.E.; Moore, M.M.; Wasserman, D.; Abendroth, C.D.; Payne-Murphy, J.; Kaye, J.A. Trajectory of mild cognitive impairment onset. J. Int. Neuropsychol. Soc., 2008, 14(2), 192-198.
[http://dx.doi.org/10.1017/S1355617708080375] [PMID: 18282317]
[23]
Dang, C.; Harrington, K.D.; Lim, Y.Y.; Ames, D.; Hassenstab, J.; Laws, S.M.; Yassi, N.; Hickey, M.; Rainey-Smith, S.; Robertson, J.; Sohrabi, H.R.; Salvado, O.; Weinborn, M.; Villemagne, V.L.; Rowe, C.C.; Masters, C.L.; Maruff, P. Relationship between amyloid-β positivity and progression to mild cognitive impairment or dementia over 8 years in cognitively normal older adults. J. Alzheimers Dis., 2018, 65(4), 1313-1325.
[http://dx.doi.org/10.3233/JAD-180507] [PMID: 30149452]
[24]
Gustafson, D.R.; Skoog, I.; Rosengren, L.; Zetterberg, H.; Blennow, K. Cerebrospinal fluid beta-amyloid 1-42 concentration may predict cognitive decline in older women. J. Neurol. Neurosurg. Psychiatry, 2007, 78(5), 461-464.
[http://dx.doi.org/10.1136/jnnp.2006.100529] [PMID: 17098843]
[25]
Villemagne, V.L.; Pike, K.E.; Chételat, G.; Ellis, K.A.; Mulligan, R.S.; Bourgeat, P.; Ackermann, U.; Jones, G.; Szoeke, C.; Salvado, O.; Martins, R.; O’Keefe, G.; Mathis, C.A.; Klunk, W.E.; Ames, D.; Masters, C.L.; Rowe, C.C. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol., 2011, 69(1), 181-192.
[http://dx.doi.org/10.1002/ana.22248] [PMID: 21280088]
[26]
Rowe, C.C.; Bourgeat, P.; Ellis, K.A.; Brown, B.; Lim, Y.Y.; Mulligan, R.; Jones, G.; Maruff, P.; Woodward, M.; Price, R.; Robins, P.; Tochon-Danguy, H.; O’Keefe, G.; Pike, K.E.; Yates, P.; Szoeke, C.; Salvado, O.; Macaulay, S.L.; O’Meara, T.; Head, R.; Cobiac, L.; Savage, G.; Martins, R.; Masters, C.L.; Ames, D.; Villemagne, V.L. Predicting Alzheimer disease with β-amyloid imaging: Results from the Australian imaging, biomarkers, and lifestyle study of ageing. Ann. Neurol., 2013, 74(6), 905-913.
[http://dx.doi.org/10.1002/ana.24040] [PMID: 24448836]
[27]
Lim, Y.Y.; Maruff, P.; Pietrzak, R.H.; Ames, D.; Ellis, K.A.; Harrington, K.; Lautenschlager, N.T.; Szoeke, C.; Martins, R.N.; Masters, C.L.; Villemagne, V.L.; Rowe, C.C. Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain, 2014, 137(Pt 1), 221-231.
[http://dx.doi.org/10.1093/brain/awt286] [PMID: 24176981]
[28]
Donohue, M.C.; Sperling, R.A.; Petersen, R.; Sun, C.K.; Weiner, M.W.; Aisen, P.S. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA, 2017, 317(22), 2305-2316.
[http://dx.doi.org/10.1001/jama.2017.6669] [PMID: 28609533]
[29]
Papp, K.V.; Rentz, D.M.; Mormino, E.C.; Schultz, A.P.; Amariglio, R.E.; Quiroz, Y.; Johnson, K.A.; Sperling, R.A. Cued memory decline in biomarker-defined preclinical Alzheimer disease. Neurology, 2017, 88(15), 1431-1438.
[http://dx.doi.org/10.1212/WNL.0000000000003812] [PMID: 28283594]
[30]
Petersen, R.C.; Wiste, H.J.; Weigand, S.D.; Rocca, W.A.; Roberts, R.O.; Mielke, M.M.; Lowe, V.J.; Knopman, D.S.; Pankratz, V.S.; Machulda, M.M.; Geda, Y.E.; Jack, C.R., Jr Association of elevated amyloid levels with cognition and biomarkers in cognitively normal people from the community. JAMA Neurol., 2016, 73(1), 85-92.
[http://dx.doi.org/10.1001/jamaneurol.2015.3098] [PMID: 26595683]
[31]
Nordberg, A.; Carter, S.F.; Rinne, J.; Drzezga, A.; Brooks, D.J.; Vandenberghe, R.; Perani, D.; Forsberg, A.; Långström, B.; Scheinin, N.; Karrasch, M.; Någren, K.; Grimmer, T.; Miederer, I.; Edison, P.; Okello, A.; Van Laere, K.; Nelissen, N.; Vandenbulcke, M.; Garibotto, V.; Almkvist, O.; Kalbe, E.; Hinz, R.; Herholz, K. A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(1), 104-114.
[http://dx.doi.org/10.1007/s00259-012-2237-2] [PMID: 22961445]
[32]
Skoog, I.; Davidsson, P.; Aevarsson, O.; Vanderstichele, H.; Vanmechelen, E.; Blennow, K. Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: A population-based study in 85-year-olds. Dement. Geriatr. Cogn. Disord., 2003, 15(3), 169-176.
[http://dx.doi.org/10.1159/000068478] [PMID: 12584433]
[33]
Visser, P.J.; Verhey, F.; Knol, D.L.; Scheltens, P.; Wahlund, L.O.; Freund-Levi, Y.; Tsolaki, M.; Minthon, L.; Wallin, A.K.; Hampel, H.; Bürger, K.; Pirttila, T.; Soininen, H.; Rikkert, M.O.; Verbeek, M.M.; Spiru, L.; Blennow, K. Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: A prospective cohort study. Lancet Neurol., 2009, 8(7), 619-627.
[http://dx.doi.org/10.1016/S1474-4422(09)70139-5] [PMID: 19523877]
[34]
Vos, S.J.; Xiong, C.; Visser, P.J.; Jasielec, M.S.; Hassenstab, J.; Grant, E.A.; Cairns, N.J.; Morris, J.C.; Holtzman, D.M.; Fagan, A.M. Preclinical Alzheimer’s disease and its outcome: A longitudinal cohort study. Lancet Neurol., 2013, 12(10), 957-965.
[http://dx.doi.org/10.1016/S1474-4422(13)70194-7] [PMID: 24012374]
[35]
Betthauser, T.J.; Koscik, R.L.; Jonaitis, E.M.; Allison, S.L.; Cody, K.A.; Erickson, C.M.; Rowley, H.A.; Stone, C.K.; Mueller, K.D.; Clark, L.R.; Carlsson, C.M.; Chin, N.A.; Asthana, S.; Christian, B.T.; Johnson, S.C. Amyloid and tau imaging biomarkers explain cognitive decline from late middle-age. Brain, 2020, 143(1), 320-335.
[http://dx.doi.org/10.1093/brain/awz378] [PMID: 31886494]
[36]
Hanseeuw, B.J.; Betensky, R.A.; Jacobs, H.I.L.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Cosio, D.M.O.; Farrell, M.; Quiroz, Y.T.; Mormino, E.C.; Buckley, R.F.; Papp, K.V.; Amariglio, R.A.; Dewachter, I.; Ivanoiu, A.; Huijbers, W.; Hedden, T.; Marshall, G.A.; Chhatwal, J.P.; Rentz, D.M.; Sperling, R.A.; Johnson, K. Association of amyloid and tau with cognition in preclinical alzheimer disease: A longitudinal study. JAMA Neurol., 2019, 76(8), 915-924.
[http://dx.doi.org/10.1001/jamaneurol.2019.1424] [PMID: 31157827]
[37]
Aschenbrenner, A.J.; Gordon, B.A.; Benzinger, T.L.S.; Morris, J.C.; Hassenstab, J.J. Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology, 2018, 91(9), e859-e866.
[http://dx.doi.org/10.1212/WNL.0000000000006075] [PMID: 30068637]
[38]
Wisse, L.E.M.; Butala, N.; Das, S.R.; Davatzikos, C.; Dickerson, B.C.; Vaishnavi, S.N.; Yushkevich, P.A.; Wolk, D.A. Suspected non-AD pathology in mild cognitive impairment. Neurobiol. Aging, 2015, 36(12), 3152-3162.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.08.029] [PMID: 26422359]
[39]
Toledo, J.B.; Weiner, M.W.; Wolk, D.A.; Da, X.; Chen, K.; Arnold, S.E.; Jagust, W.; Jack, C.; Reiman, E.M.; Davatzikos, C.; Shaw, L.M.; Trojanowski, J.Q. Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathol. Commun., 2014, 2, 26.
[http://dx.doi.org/10.1186/2051-5960-2-26] [PMID: 24602322]
[40]
Vos, S.J.; Verhey, F.; Frölich, L.; Kornhuber, J.; Wiltfang, J.; Maier, W.; Peters, O.; Rüther, E.; Nobili, F.; Morbelli, S.; Frisoni, G.B.; Drzezga, A.; Didic, M.; van Berckel, B.N.; Simmons, A.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Lovestone, S.; Muscio, C.; Herukka, S.K.; Salmon, E.; Bastin, C.; Wallin, A.; Nordlund, A.; de Mendonça, A.; Silva, D.; Santana, I.; Lemos, R.; Engelborghs, S.; Van der Mussele, S.; Freund-Levi, Y.; Wallin, Å.K.; Hampel, H.; van der Flier, W.; Scheltens, P.; Visser, P.J. Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain, 2015, 138(Pt 5), 1327-1338.
[http://dx.doi.org/10.1093/brain/awv029] [PMID: 25693589]
[41]
Caroli, A.; Prestia, A.; Galluzzi, S.; Ferrari, C.; van der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.; Wall, A.E.; Carter, S.F.; Schöll, M.; Choo, I.H.; Grimmer, T.; Redolfi, A.; Nordberg, A.; Scheltens, P.; Drzezga, A.; Frisoni, G.B. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): Prediction of progression. Neurology, 2015, 84(5), 508-515.
[http://dx.doi.org/10.1212/WNL.0000000000001209] [PMID: 25568301]
[42]
Mormino, E.C.; Betensky, R.A.; Hedden, T.; Schultz, A.P.; Amariglio, R.E.; Rentz, D.M.; Johnson, K.A.; Sperling, R.A. Synergistic effect of β-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. JAMA Neurol., 2014, 71(11), 1379-1385.
[http://dx.doi.org/10.1001/jamaneurol.2014.2031] [PMID: 25222039]
[43]
Prestia, A.; Caroli, A.; van der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.E.; Wall, A.E.; Carter, S.F.; Schöll, M.; Choo, I.H.; Nordberg, A.; Scheltens, P.; Frisoni, G.B. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology, 2013, 80(11), 1048-1056.
[http://dx.doi.org/10.1212/WNL.0b013e3182872830] [PMID: 23390179]
[44]
Huber, C.M.; Yee, C.; May, T.; Dhanala, A.; Mitchell, C.S. Cognitive decline in preclinical Alzheimer’s disease: Amyloid-beta versus tauopathy. J. Alzheimers Dis., 2018, 61(1), 265-281.
[http://dx.doi.org/10.3233/JAD-170490] [PMID: 29154274]
[45]
Luo, J.; Agboola, F.; Grant, E.; Masters, C.L.; Albert, M.S.; Johnson, S.C.; McDade, E.M.; Vöglein, J.; Fagan, A.M.; Benzinger, T.; Massoumzadeh, P.; Hassenstab, J.; Bateman, R.J.; Morris, J.C.; Perrin, R.J.; Chhatwal, J.; Jucker, M.; Ghetti, B.; Cruchaga, C.; Graff-Radford, N.R.; Schofield, P.R.; Mori, H.; Xiong, C. Sequence of Alzheimer disease biomarker changes in cognitively normal adults: A cross-sectional study. Neurology, 2020, 95(23), e3104-e3116.
[http://dx.doi.org/10.1212/WNL.0000000000010747] [PMID: 32873693]
[46]
Palmqvist, S.; Insel, P.S.; Stomrud, E.; Janelidze, S.; Zetterberg, H.; Brix, B.; Eichenlaub, U.; Dage, J.L.; Chai, X.; Blennow, K.; Mattsson, N.; Hansson, O. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol. Med., 2019, 11(12) ,e11170.
[http://dx.doi.org/10.15252/emmm.201911170] [PMID: 31709776]
[47]
van Harten, A.C.; Smits, L.L.; Teunissen, C.E.; Visser, P.J.; Koene, T.; Blankenstein, M.A.; Scheltens, P.; van der Flier, W.M. Preclinical AD predicts decline in memory and executive functions in subjective complaints. Neurology, 2013, 81(16), 1409-1416.
[http://dx.doi.org/10.1212/WNL.0b013e3182a8418b] [PMID: 24049134]
[48]
Burnham, S.C.; Bourgeat, P.; Doré, V.; Savage, G.; Brown, B.; Laws, S.; Maruff, P.; Salvado, O.; Ames, D.; Martins, R.N.; Masters, C.L.; Rowe, C.C.; Villemagne, V.L. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: A longitudinal study. Lancet Neurol., 2016, 15(10), 1044-1053.
[http://dx.doi.org/10.1016/S1474-4422(16)30125-9] [PMID: 27450471]
[49]
Teylan, M.; Mock, C.; Gauthreaux, K.; Chen, Y.C.; Chan, K.C.G.; Hassenstab, J.; Besser, L.M.; Kukull, W.A.; Crary, J.F. Cognitive trajectory in mild cognitive impairment due to primary age-related tauopathy. Brain, 2020, 143(2), 611-621.
[http://dx.doi.org/10.1093/brain/awz403] [PMID: 31942622]
[50]
Xiong, C.; Jasielec, M.S.; Weng, H.; Fagan, A.M.; Benzinger, T.L.; Head, D.; Hassenstab, J.; Grant, E.; Sutphen, C.L.; Buckles, V.; Moulder, K.L.; Morris, J.C. Longitudinal relationships among biomarkers for Alzheimer disease in the Adult Children Study. Neurology, 2016, 86(16), 1499-1506.
[http://dx.doi.org/10.1212/WNL.0000000000002593] [PMID: 27009258]
[51]
Papp, K.V.; Amariglio, R.E.; Mormino, E.C.; Hedden, T.; Dekhytar, M.; Johnson, K.A.; Sperling, R.A.; Rentz, D.M. Free and cued memory in relation to biomarker-defined abnormalities in clinically normal older adults and those at risk for Alzheimer’s disease. Neuropsychologia, 2015, 73, 169-175.
[http://dx.doi.org/10.1016/j.neuropsychologia.2015.04.034] [PMID: 26002757]
[52]
Papp, K.V.; Mormino, E.C.; Amariglio, R.E.; Munro, C.; Dagley, A.; Schultz, A.P.; Johnson, K.A.; Sperling, R.A.; Rentz, D.M. Biomarker validation of a decline in semantic processing in preclinical Alzheimer’s disease. Neuropsychology, 2016, 30(5), 624-630.
[http://dx.doi.org/10.1037/neu0000246] [PMID: 26595826]
[53]
Stricker, N.H.; Lundt, E.S.; Albertson, S.M.; Machulda, M.M.; Pudumjee, S.B.; Kremers, W.K.; Jack, C.R.; Knopman, D.S.; Petersen, R.C.; Mielke, M.M. Diagnostic and prognostic accuracy of the cogstate brief battery and auditory verbal learning test in preclinical alzheimer’s disease and incident mild cognitive impairment: Implications for defining subtle objective cognitive impairment. J. Alzheimers Dis., 2020, 76(1), 261-274.
[http://dx.doi.org/10.3233/JAD-200087] [PMID: 32538841]
[54]
McDonough, I.M.; Bischof, G.N.; Kennedy, K.M.; Rodrigue, K.M.; Farrell, M.E.; Park, D.C. Discrepancies between fluid and crystallized ability in healthy adults: A behavioral marker of preclinical Alzheimer’s disease. Neurobiol. Aging, 2016, 46, 68-75.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.06.011] [PMID: 27460151]
[55]
McDonough, I.M.; Popp, T.E. Linear and nonlinear relationships between cognitive subdomains of ability discrepancy and Alzheimer’s disease biomarkers. Neuropsychology, 2020, 34(2), 211-226.
[http://dx.doi.org/10.1037/neu0000606] [PMID: 31789566]
[56]
Baker, J.E.; Lim, Y.Y.; Pietrzak, R.H.; Hassenstab, J.; Snyder, P.J.; Masters, C.L.; Maruff, P. Cognitive impairment and decline in cognitively normal older adults with high amyloid-β: A meta-analysis. Alzheimers Dement. (Amst.), 2016, 6, 108-121.
[http://dx.doi.org/10.1016/j.dadm.2016.09.002] [PMID: 28239636]
[57]
Babulal, G.M.; Ghoshal, N.; Head, D.; Vernon, E.K.; Holtzman, D.M.; Benzinger, T.L.S.; Fagan, A.M.; Morris, J.C.; Roe, C.M. Mood changes in cognitively normal older adults are linked to Alzheimer disease biomarker levels. Am. J. Geriatr. Psychiatry, 2016, 24(11), 1095-1104.
[http://dx.doi.org/10.1016/j.jagp.2016.04.004] [PMID: 27426238]
[58]
Donovan, N.J.; Okereke, O.I.; Vannini, P.; Amariglio, R.E.; Rentz, D.M.; Marshall, G.A.; Johnson, K.A.; Sperling, R.A. Association of higher cortical amyloid burden with loneliness in cognitively normal older adults. JAMA Psychiatry, 2016, 73(12), 1230-1237.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.2657] [PMID: 27806159]
[59]
Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; Sikkes, S.A.M.; Smart, C.M.; Wolfsgruber, S.; Wagner, M. The characterisation of subjective cognitive decline. Lancet Neurol., 2020, 19(3), 271-278.
[http://dx.doi.org/10.1016/S1474-4422(19)30368-0] [PMID: 31958406]
[60]
Jessen, F.; Spottke, A.; Boecker, H.; Brosseron, F.; Buerger, K.; Catak, C.; Fliessbach, K.; Franke, C.; Fuentes, M.; Heneka, M.T.; Janowitz, D.; Kilimann, I.; Laske, C.; Menne, F.; Nestor, P.; Peters, O.; Priller, J.; Pross, V.; Ramirez, A.; Schneider, A.; Speck, O.; Spruth, E.J.; Teipel, S.; Vukovich, R.; Westerteicher, C.; Wiltfang, J.; Wolfsgruber, S.; Wagner, M.; Düzel, E. Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer’s disease (DELCODE). Alzheimers Res. Ther., 2018, 10(1), 15.
[http://dx.doi.org/10.1186/s13195-017-0314-2] [PMID: 29415768]
[61]
Wolfsgruber, S.; Polcher, A.; Koppara, A.; Kleineidam, L.; Frölich, L.; Peters, O.; Hüll, M.; Rüther, E.; Wiltfang, J.; Maier, W.; Kornhuber, J.; Lewczuk, P.; Jessen, F.; Wagner, M. Cerebrospinal fluid biomarkers and clinical progression in patients with subjective cognitive decline and mild cognitive impairment. J. Alzheimers Dis., 2017, 58(3), 939-950.
[http://dx.doi.org/10.3233/JAD-161252] [PMID: 28527210]
[62]
Slot, R.E.R.; Verfaillie, S.C.J.; Overbeek, J.M.; Timmers, T.; Wesselman, L.M.P.; Teunissen, C.E.; Dols, A.; Bouwman, F.H.; Prins, N.D.; Barkhof, F.; Lammertsma, A.A.; Van Berckel, B.N.M.; Scheltens, P.; Sikkes, S.A.M.; Van der Flier, W.M. Subjective cognitive impairment cohort (SCIENCe): Study design and first results. Alzheimers Res. Ther., 2018, 10(1), 76.
[http://dx.doi.org/10.1186/s13195-018-0390-y] [PMID: 30081935]
[63]
Dubois, B.; Epelbaum, S.; Nyasse, F.; Bakardjian, H.; Gagliardi, G.; Uspenskaya, O.; Houot, M.; Lista, S.; Cacciamani, F.; Potier, M.C.; Bertrand, A.; Lamari, F.; Benali, H.; Mangin, J.F.; Colliot, O.; Genthon, R.; Habert, M.O.; Hampel, H. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): A longitudinal observational study. Lancet Neurol., 2018, 17(4), 335-346.
[http://dx.doi.org/10.1016/S1474-4422(18)30029-2] [PMID: 29500152]
[64]
Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Li, Y.; Gordon, B.A.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.L.S.; Xiong, C.; Fagan, A.M.; Bateman, R.J. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology, 2019, 93(17), e1647-e1659.
[http://dx.doi.org/10.1212/WNL.0000000000008081] [PMID: 31371569]
[65]
Wolfsgruber, S.; Molinuevo, J.L.; Wagner, M.; Teunissen, C.E.; Rami, L.; Coll-Padrós, N.; Bouwman, F.H.; Slot, R.E.R.; Wesselman, L.M.P.; Peters, O.; Luther, K.; Buerger, K.; Priller, J.; Laske, C.; Teipel, S.; Spottke, A.; Heneka, M.T.; Düzel, E.; Drzezga, A.; Wiltfang, J.; Sikkes, S.A.M.; van der Flier, W.M.; Jessen, F. Prevalence of abnormal Alzheimer’s disease biomarkers in patients with subjective cognitive decline: Cross-sectional comparison of three European memory clinic samples. Alzheimers Res. Ther., 2019, 11(1), 8.
[http://dx.doi.org/10.1186/s13195-018-0463-y] [PMID: 30654834]
[66]
Cacciamani, F.; Tandetnik, C.; Gagliardi, G.; Bertin, H.; Habert, M.O.; Hampel, H.; Boukadida, L.; Révillon, M.; Epelbaum, S.; Dubois, B. Low cognitive awareness, but not complaint, is a good marker of preclinical Alzheimer’s disease. J. Alzheimers Dis., 2017, 59(2), 753-762.
[PMID: 28671134]
[67]
Miebach, L.; Wolfsgruber, S.; Polcher, A.; Peters, O.; Menne, F.; Luther, K.; Incesoy, E.; Priller, J.; Spruth, E.; Altenstein, S.; Buerger, K.; Catak, C.; Janowitz, D.; Perneczky, R.; Utecht, J.; Laske, C.; Buchmann, M.; Schneider, A.; Fliessbach, K.; Kalbhen, P.; Heneka, M.T.; Brosseron, F.; Spottke, A.; Roy, N.; Teipel, S.J.; Kilimann, I.; Wiltfang, J.; Bartels, C.; Düzel, E.; Dobisch, L.; Metzger, C.; Meiberth, D.; Ramirez, A.; Jessen, F.; Wagner, M. Which features of subjective cognitive decline are related to amyloid pathology? Findings from the DELCODE study. Alzheimers Res. Ther., 2019, 11(1), 66.
[http://dx.doi.org/10.1186/s13195-019-0515-y] [PMID: 31366409]
[68]
Papp, K.V.; Buckley, R.; Mormino, E.; Maruff, P.; Villemagne, V.L.; Masters, C.L.; Johnson, K.A.; Rentz, D.M.; Sperling, R.A.; Amariglio, R.E. Clinical meaningfulness of subtle cognitive decline on longitudinal testing in preclinical AD. Alzheimers Dement., 2020, 16(3), 552-560.
[http://dx.doi.org/10.1016/j.jalz.2019.09.074] [PMID: 31759879]
[69]
Hampel, H.; O’Bryant, S.E.; Molinuevo, J.L.; Zetterberg, H.; Masters, C.L.; Lista, S.; Kiddle, S.J.; Batrla, R.; Blennow, K. Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat. Rev. Neurol., 2018, 14(11), 639-652.
[http://dx.doi.org/10.1038/s41582-018-0079-7] [PMID: 30297701]
[70]
Park, J.C.; Han, S.H.; Cho, H.J.; Byun, M.S.; Yi, D.; Choe, Y.M.; Kang, S.; Jung, E.S.; Won, S.J.; Kim, E.H.; Kim, Y.K.; Lee, D.Y.; Mook-Jung, I. Chemically treated plasma Aβ is a potential blood-based biomarker for screening cerebral amyloid deposition. Alzheimers Res. Ther., 2017, 9(1), 20.
[http://dx.doi.org/10.1186/s13195-017-0248-8] [PMID: 28330509]
[71]
Lui, J.K.; Laws, S.M.; Li, Q.X.; Villemagne, V.L.; Ames, D.; Brown, B.; Bush, A.I.; De Ruyck, K.; Dromey, J.; Ellis, K.A.; Faux, N.G.; Foster, J.; Fowler, C.; Gupta, V.; Hudson, P.; Laughton, K.; Masters, C.L.; Pertile, K.; Rembach, A.; Rimajova, M.; Rodrigues, M.; Rowe, C.C.; Rumble, R.; Szoeke, C.; Taddei, K.; Taddei, T.; Trounson, B.; Ward, V.; Martins, R.N.; Group, A.R. Plasma amyloid-beta as a biomarker in Alzheimer’s disease: The AIBL study of aging. J. Alzheimers Dis., 2010, 20(4), 1233-1242.
[http://dx.doi.org/10.3233/JAD-2010-090249] [PMID: 20413897]
[72]
Devanand, D.P.; Schupf, N.; Stern, Y.; Parsey, R.; Pelton, G.H.; Mehta, P.; Mayeux, R. Plasma Aβ and PET PiB binding are inversely related in mild cognitive impairment. Neurology, 2011, 77(2), 125-131.
[http://dx.doi.org/10.1212/WNL.0b013e318224afb7] [PMID: 21715709]
[73]
Nam, E.; Lee, Y.B.; Moon, C.; Chang, K.A. Serum tau proteins as potential biomarkers for the assessment of Alzheimer’s disease progression. Int. J. Mol. Sci., 2020, 21(14) ,E5007.
[http://dx.doi.org/10.3390/ijms21145007] [PMID: 32679907]
[74]
Hilal, S.; Wolters, F.J.; Verbeek, M.M.; Vanderstichele, H.; Ikram, M.K.; Stoops, E.; Ikram, M.A.; Vernooij, M.W. Plasma amyloid-β levels, cerebral atrophy and risk of dementia: A population-based study. Alzheimers Res. Ther., 2018, 10(1), 63.
[http://dx.doi.org/10.1186/s13195-018-0395-6] [PMID: 29960604]
[75]
Rembach, A.; Watt, A.D.; Wilson, W.J.; Villemagne, V.L.; Burnham, S.C.; Ellis, K.A.; Maruff, P.; Ames, D.; Rowe, C.C.; Macaulay, S.L.; Bush, A.I.; Martins, R.N.; Masters, C.L.; Doecke, J.D. Plasma amyloid-β levels are significantly associated with a transition toward Alzheimer’s disease as measured by cognitive decline and change in neocortical amyloid burden. J. Alzheimers Dis., 2014, 40(1), 95-104.
[http://dx.doi.org/10.3233/JAD-131802] [PMID: 24334723]
[76]
Wang, M.J.; Yi, S.; Han, J.Y.; Park, S.Y.; Jang, J.W.; Chun, I.K.; Kim, S.E.; Lee, B.S.; Kim, G.J.; Yu, J.S.; Lim, K.; Kang, S.M.; Park, Y.H.; Youn, Y.C.; An, S.S.A.; Kim, S. Oligomeric forms of amyloid-β protein in plasma as a potential blood-based biomarker for Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 98.
[http://dx.doi.org/10.1186/s13195-017-0324-0] [PMID: 29246249]
[77]
Tzen, K.Y.; Yang, S.Y.; Chen, T.F.; Cheng, T.W.; Horng, H.E.; Wen, H.P.; Huang, Y.Y.; Shiue, C.Y.; Chiu, M.J. Plasma Aβ but not tau is related to brain PiB retention in early Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(9), 830-836.
[http://dx.doi.org/10.1021/cn500101j] [PMID: 25054847]
[78]
de Wolf, F.; Ghanbari, M.; Licher, S.; McRae-McKee, K.; Gras, L.; Weverling, G.J.; Wermeling, P.; Sedaghat, S.; Ikram, M.K.; Waziry, R.; Koudstaal, W.; Klap, J.; Kostense, S.; Hofman, A.; Anderson, R.; Goudsmit, J.; Ikram, M.A. Plasma tau, neurofilament light chain and amyloid-β levels and risk of dementia; A population-based cohort study. Brain, 2020, 143(4), 1220-1232.
[http://dx.doi.org/10.1093/brain/awaa054] [PMID: 32206776]
[79]
Hansson, O.; Stomrud, E.; Vanmechelen, E.; Östling, S.; Gustafson, D.R.; Zetterberg, H.; Blennow, K.; Skoog, I. Evaluation of plasma Aβ as predictor of Alzheimer’s disease in older individuals without dementia: A population-based study. J. Alzheimers Dis., 2012, 28(1), 231-238.
[http://dx.doi.org/10.3233/JAD-2011-111418] [PMID: 21955816]
[80]
Swaminathan, S.; Risacher, S.L.; Yoder, K.K.; West, J.D.; Shen, L.; Kim, S.; Inlow, M.; Foroud, T.; Jagust, W.J.; Koeppe, R.A.; Mathis, C.A.; Shaw, L.M.; Trojanowski, J.Q.; Soares, H.; Aisen, P.S.; Petersen, R.C.; Weiner, M.W.; Saykin, A.J. Alzheimer’s disease neuroimaging initiative association of plasma and cortical amyloid beta is modulated by APOE ε4 status. Alzheimers Dement., 2014, 10(1), e9-e18.
[81]
Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; Tomita, T.; Matsuzaki, K.; Ishii, K.; Ishii, K.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Masters, C.L.; Yanagisawa, K. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature, 2018, 554(7691), 249-254.
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[82]
Ovod, V.; Ramsey, K.N.; Mawuenyega, K.G.; Bollinger, J.G.; Hicks, T.; Schneider, T.; Sullivan, M.; Paumier, K.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.; Fagan, A.M.; Patterson, B.W.; Bateman, R.J. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement., 2017, 13(8), 841-849.
[http://dx.doi.org/10.1016/j.jalz.2017.06.2266] [PMID: 28734653]
[83]
Kaneko, N.; Nakamura, A.; Washimi, Y.; Kato, T.; Sakurai, T.; Arahata, Y.; Bundo, M.; Takeda, A.; Niida, S.; Ito, K.; Toba, K.; Tanaka, K.; Yanagisawa, K. Novel plasma biomarker surrogating cerebral amyloid deposition. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2014, 90(9), 353-364.
[http://dx.doi.org/10.2183/pjab.90.353] [PMID: 25391320]
[84]
Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S.; VandeVrede, L.; Chai, X.; Proctor, N.K.; Airey, D.C.; Shcherbinin, S.; Duggan, E.C.; Sims, J.R.; Zetterberg, H.; Blennow, K.; Karydas, A.M.; Teunissen, C.E.; Kramer, J.H.; Grinberg, L.T.; Seeley, W.W.; Rosen, H.; Boeve, B.F.; Miller, B.L.; Rabinovici, G.D.; Dage, J.L.; Rojas, J.C.; Boxer, A.L. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med., 2020, 26(3), 387-397.
[http://dx.doi.org/10.1038/s41591-020-0762-2] [PMID: 32123386]
[85]
Fagan, A.M.; Mintun, M.A.; Shah, A.R.; Aldea, P.; Roe, C.M.; Mach, R.H.; Marcus, D.; Morris, J.C.; Holtzman, D.M. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of Alzheimer’s disease. EMBO Mol. Med., 2009, 1(8-9), 371-380.
[http://dx.doi.org/10.1002/emmm.200900048] [PMID: 20049742]
[86]
Lövheim, H.; Elgh, F.; Johansson, A.; Zetterberg, H.; Blennow, K.; Hallmans, G.; Eriksson, S. Plasma concentrations of free amyloid β cannot predict the development of Alzheimer’s disease. Alzheimers Dement., 2017, 13(7), 778-782.
[http://dx.doi.org/10.1016/j.jalz.2016.12.004] [PMID: 28073031]
[87]
Figurski, M.J.; Waligórska, T.; Toledo, J.; Vanderstichele, H.; Korecka, M.; Lee, V.M.; Trojanowski, J.Q.; Shaw, L.M. Improved protocol for measurement of plasma β-amyloid in longitudinal evaluation of Alzheimer’s Disease Neuroimaging Initiative study patients. Alzheimers Dement., 2012, 8(4), 250-260.
[http://dx.doi.org/10.1016/j.jalz.2012.01.001] [PMID: 22748936]
[88]
Fandos, N.; Pérez-Grijalba, V.; Pesini, P.; Olmos, S.; Bossa, M.; Villemagne, V.L.; Doecke, J.; Fowler, C.; Masters, C.L.; Sarasa, M. AIBL Research Group Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimers Dement. (Amst.), 2017, 8, 8179-8187.
[89]
Verberk, I.M.W.; Teunissen, C.E.; Van der Flier, W.M. Reply to “Usefulness of plasma amyloid as prescreener of the earliest alzheimer pathological changes depends on the study population”. Ann. Neurol., 2020, 87(1), 155.
[http://dx.doi.org/10.1002/ana.25633] [PMID: 31675120]
[90]
Verberk, I.M.W.; Slot, R.E.; Verfaillie, S.C.J.; Heijst, H.; Prins, N.D.; van Berckel, B.N.M.; Scheltens, P.; Teunissen, C.E.; van der Flier, W.M. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes. Ann. Neurol., 2018, 84(5), 648-658.
[http://dx.doi.org/10.1002/ana.25334] [PMID: 30196548]
[91]
Vergallo, A.; Mégret, L.; Lista, S.; Cavedo, E.; Zetterberg, H.; Blennow, K.; Vanmechelen, E.; De Vos, A.; Habert, M.O.; Potier, M.C.; Dubois, B.; Neri, C.; Hampel, H. Plasma amyloid β 40/42 ratio predicts cerebral amyloidosis in cognitively normal individuals at risk for Alzheimer’s disease. Alzheimers Dement., 2019, 15(6), 764-775.
[http://dx.doi.org/10.1016/j.jalz.2019.03.009] [PMID: 31113759]
[92]
Chatterjee, P.; Elmi, M.; Goozee, K.; Shah, T.; Sohrabi, H.R.; Dias, C.B.; Pedrini, S.; Shen, K.; Asih, P.R.; Dave, P.; Taddei, K.; Vanderstichele, H.; Zetterberg, H.; Blennow, K.; Martins, R.N. Ultrasensitive detection of plasma Amyloid-β as a biomarker for cognitively normal elderly individuals at risk of alzheimer’s disease. J. Alzheimers Dis., 2019, 71(3), 775-783.
[http://dx.doi.org/10.3233/JAD-190533] [PMID: 31424403]
[93]
Lim, Y.Y.; Maruff, P.; Kaneko, N.; Doecke, J.; Fowler, C.; Villemagne, V.L.; Kato, T.; Rowe, C.C.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Yanagisawa, K.; Masters, C.L.; Nakamura, A. Plasma amyloid-β biomarker associated with cognitive decline in preclinical Alzheimer’s disease. J. Alzheimers Dis., 2020, 77(3), 1057-1065.
[http://dx.doi.org/10.3233/JAD-200475] [PMID: 32925048]
[94]
Teunissen, C.E.; Chiu, M.J.; Yang, C.C.; Yang, S.Y.; Scheltens, P.; Zetterberg, H.; Blennow, K. Plasma amyloid-β (Aβ42) correlates with cerebrospinal fluid Aβ42 in Alzheimer’s disease. J. Alzheimers Dis., 2018, 62(4), 1857-1863.
[http://dx.doi.org/10.3233/JAD-170784] [PMID: 29614646]
[95]
Janelidze, S.; Stomrud, E.; Palmqvist, S.; Zetterberg, H.; van Westen, D.; Jeromin, A.; Song, L.; Hanlon, D.; Tan Hehir, C.A.; Baker, D.; Blennow, K.; Hansson, O. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci. Rep., 2016, 6, 26801.
[http://dx.doi.org/10.1038/srep26801] [PMID: 27241045]
[96]
Palmqvist, S.; Janelidze, S.; Stomrud, E.; Zetterberg, H.; Karl, J.; Zink, K.; Bittner, T.; Mattsson, N.; Eichenlaub, U.; Blennow, K.; Hansson, O. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol., 2019, 76(9), 1060-1069.
[http://dx.doi.org/10.1001/jamaneurol.2019.1632] [PMID: 31233127]
[97]
de Rojas, I.; Romero, J.; Rodríguez-Gomez, O.; Pesini, P.; Sanabria, A.; Pérez-Cordon, A.; Abdelnour, C.; Hernández, I.; Rosende-Roca, M.; Mauleón, A.; Vargas, L.; Alegret, M.; Espinosa, A.; Ortega, G.; Gil, S.; Guitart, M.; Gailhajanet, A.; Santos-Santos, M.A.; Moreno-Grau, S.; Sotolongo-Grau, O.; Ruiz, S.; Montrreal, L.; Martín, E.; Pelejà, E.; Lomeña, F.; Campos, F.; Vivas, A.; Gómez-Chiari, M.; Tejero, M.A.; Giménez, J.; Pérez-Grijalba, V.; Marquié, G.M.; Monté-Rubio, G.; Valero, S.; Orellana, A.; Tárraga, L.; Sarasa, M.; Ruiz, A.; Boada, M. Correlations between plasma and PET beta-amyloid levels in individuals with subjective cognitive decline: The Fundació ACE Healthy Brain Initiative (FACEHBI). Alzheimers Res. Ther., 2018, 10(1), 119.
[http://dx.doi.org/10.1186/s13195-018-0444-1] [PMID: 30497535]
[98]
Risacher, S.L.; Fandos, N.; Romero, J.; Sherriff, I.; Pesini, P.; Saykin, A.J.; Apostolova, L.G. Plasma amyloid beta levels are associated with cerebral amyloid and tau deposition. Alzheimers Dement. (Amst.), 2019, 11, 510-519.
[http://dx.doi.org/10.1016/j.dadm.2019.05.007] [PMID: 31384662]
[99]
Prins, S.; Zhuparris, A.; Groeneveld, G.J. Usefulness of plasma amyloid as a prescreener for the earliest Alzheimer pathological changes depends on the study Population. Ann. Neurol., 2020, 87(1), 154-155.
[http://dx.doi.org/10.1002/ana.25634] [PMID: 31675127]
[100]
Tateno, A.; Sakayori, T.; Kim, W.C.; Koeda, M.; Kumita, S.; Suzuki, H.; Okubo, Y. Effect of apolipoprotein E phenotype on the association of plasma amyloid β and amyloid positron emission tomography imaging in Japan. Alzheimers Dement. (Amst.), 2017, 9, 51-56.
[http://dx.doi.org/10.1016/j.dadm.2017.08.002] [PMID: 28975146]
[101]
Chen, M.; Inestrosa, N.C.; Ross, G.S.; Fernandez, H.L. Platelets are the primary source of amyloid beta-peptide in human blood. Biochem. Biophys. Res. Commun., 1995, 213(1), 96-103.
[http://dx.doi.org/10.1006/bbrc.1995.2103] [PMID: 7639768]
[102]
Citron, M.; Vigo-Pelfrey, C.; Teplow, D.B.; Miller, C.; Schenk, D.; Johnston, J.; Winblad, B.; Venizelos, N.; Lannfelt, L.; Selkoe, D.J. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc. Natl. Acad. Sci. USA, 1994, 91(25), 11993-11997.
[http://dx.doi.org/10.1073/pnas.91.25.11993] [PMID: 7991571]
[103]
Lurain, N.S.; Hanson, B.A.; Martinson, J.; Leurgans, S.E.; Landay, A.L.; Bennett, D.A.; Schneider, J.A. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J. Infect. Dis., 2013, 208(4), 564-572.
[http://dx.doi.org/10.1093/infdis/jit210] [PMID: 23661800]
[104]
Yang, C.C.; Chiu, M.J.; Chen, T.F.; Chang, H.L.; Liu, B.H.; Yang, S.Y. Assay of plasma phosphorylated tau protein (Threonine 181) and total tau protein in early-stage Alzheimer’s Disease. J. Alzheimers Dis., 2018, 61(4), 1323-1332.
[http://dx.doi.org/10.3233/JAD-170810] [PMID: 29376870]
[105]
Chen, Z.; Mengel, D.; Keshavan, A.; Rissman, R.A.; Billinton, A.; Perkinton, M.; Percival-Alwyn, J.; Schultz, A.; Properzi, M.; Johnson, K.; Selkoe, D.J.; Sperling, R.A.; Patel, P.; Zetterberg, H.; Galasko, D.; Schott, J.M.; Walsh, D.M. Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer’s disease. Alzheimers Dement., 2019, 15(3), 487-496.
[http://dx.doi.org/10.1016/j.jalz.2018.09.010] [PMID: 30419228]
[106]
Mattsson, N.; Zetterberg, H.; Janelidze, S.; Insel, P.S.; Andreasson, U.; Stomrud, E.; Palmqvist, S.; Baker, D.; Tan Hehir, C.A.; Jeromin, A.; Hanlon, D.; Song, L.; Shaw, L.M.; Trojanowski, J.Q.; Weiner, M.W.; Hansson, O.; Blennow, K. Plasma tau in Alzheimer disease. Neurology, 2016, 87(17), 1827-1835.
[http://dx.doi.org/10.1212/WNL.0000000000003246] [PMID: 27694257]
[107]
Mielke, M.M.; Hagen, C.E.; Xu, J.; Chai, X.; Vemuri, P.; Lowe, V.J.; Airey, D.C.; Knopman, D.S.; Roberts, R.O.; Machulda, M.M.; Jack, C.R. Jr.; Petersen, R.C.; Dage, J.L. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement., 2018, 14(8), 989-997.
[http://dx.doi.org/10.1016/j.jalz.2018.02.013] [PMID: 29626426]
[108]
Park, J.C.; Han, S.H.; Yi, D.; Byun, M.S.; Lee, J.H.; Jang, S.; Ko, K.; Jeon, S.Y.; Lee, Y.S.; Kim, Y.K.; Lee, D.Y.; Mook-Jung, I. Plasma tau/amyloid-β1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain, 2019, 142(3), 771-786.
[http://dx.doi.org/10.1093/brain/awy347] [PMID: 30668647]
[109]
Barthélemy, N.R.; Horie, K.; Sato, C.; Bateman, R.J. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J. Exp. Med., 2020, 217(11) ,e20200861.
[http://dx.doi.org/10.1084/jem.20200861] [PMID: 32725127]
[110]
Mielke, M.M.; Hagen, C.E.; Wennberg, A.M.V.; Airey, D.C.; Savica, R.; Knopman, D.S.; Machulda, M.M.; Roberts, R.O.; Jack, C.R., Jr; Petersen, R.C.; Dage, J.L. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurol., 2017, 74(9), 1073-1080.
[http://dx.doi.org/10.1001/jamaneurol.2017.1359] [PMID: 28692710]
[111]
Tatebe, H.; Kasai, T.; Ohmichi, T.; Kishi, Y.; Kakeya, T.; Waragai, M.; Kondo, M.; Allsop, D.; Tokuda, T. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: Pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol. Neurodegener., 2017, 12(1), 63.
[http://dx.doi.org/10.1186/s13024-017-0206-8] [PMID: 28866979]
[112]
Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; Schöll, M.; Massarweh, G.; Soucy, J.P.; Höglund, K.; Brinkmalm, G.; Mattsson, N.; Palmqvist, S.; Gauthier, S.; Stomrud, E.; Zetterberg, H.; Hansson, O.; Rosa-Neto, P.; Blennow, K. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol., 2020, 19(5), 422-433.
[http://dx.doi.org/10.1016/S1474-4422(20)30071-5] [PMID: 32333900]
[113]
Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; Blennow, K.; Reiman, E.M.; Stomrud, E.; Dage, J.L.; Hansson, O. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med., 2020, 26(3), 379-386.
[http://dx.doi.org/10.1038/s41591-020-0755-1] [PMID: 32123385]
[114]
Lantero, R.J.; Karikari, T.K.; Suárez-Calvet, M.; Troakes, C.; King, A.; Emersic, A.; Aarsland, D.; Hye, A.; Zetterberg, H.; Blennow, K.; Ashton, N.J. Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol., 2020, 140(3), 267-278.
[http://dx.doi.org/10.1007/s00401-020-02195-x] [PMID: 32720099]
[115]
Janelidze, S.; Stomrud, E.; Smith, R.; Palmqvist, S.; Mattsson, N.; Airey, D.C.; Proctor, N.K.; Chai, X.; Shcherbinin, S.; Sims, J.R.; Triana-Baltzer, G.; Theunis, C.; Slemmon, R.; Mercken, M.; Kolb, H.; Dage, J.L.; Hansson, O. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 1683.
[http://dx.doi.org/10.1038/s41467-020-15436-0] [PMID: 32246036]
[116]
Barthélemy, N.R.; Bateman, R.J.; Hirtz, C.; Marin, P.; Becher, F.; Sato, C.; Gabelle, A.; Lehmann, S. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res. Ther., 2020, 12(1), 26.
[http://dx.doi.org/10.1186/s13195-020-00596-4] [PMID: 32183883]
[117]
Janelidze, S.; Berron, D.; Smith, R.; Strandberg, O.; Proctor, N.K.; Dage, J.L.; Stomrud, E.; Palmqvist, S.; Mattsson-Carlgren, N.; Hansson, O. Associations of plasma phospho-Tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurol., 2021, 78(2), 149-156.
[http://dx.doi.org/10.1001/jamaneurol.2020.4201] [PMID: 33165506]
[118]
Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; Mattsson-Carlgren, N.; Strandberg, O.; Smith, R.; Villegas, A.; Sepulveda-Falla, D.; Chai, X.; Proctor, N.K.; Beach, T.G.; Blennow, K.; Dage, J.L.; Reiman, E.M.; Hansson, O. Discriminative accuracy of plasma phospho-tau217 for alzheimer disease vs other neurodegenerative disorders. JAMA, 2020, 324(8), 772-781.
[http://dx.doi.org/10.1001/jama.2020.12134] [PMID: 32722745]
[119]
Lista, S.; Hampel, H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev. Neurother., 2017, 17(1), 47-57.
[http://dx.doi.org/10.1080/14737175.2016.1204234] [PMID: 27332958]
[120]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[121]
Zecca, L.; Youdim, M.B.; Riederer, P.; Connor, J.R.; Crichton, R.R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci., 2004, 5(11), 863-873.
[http://dx.doi.org/10.1038/nrn1537] [PMID: 15496864]
[122]
Ihara, Y.; Morishima-Kawashima, M.; Nixon, R. The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(8) ,a006361.
[http://dx.doi.org/10.1101/cshperspect.a006361] [PMID: 22908190]
[123]
Talbot, K.; Wang, H.Y.; Kazi, H.; Han, L.Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; Arvanitakis, Z.; Schneider, J.A.; Wolf, B.A.; Bennett, D.A.; Trojanowski, J.Q.; Arnold, S.E. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest., 2012, 122(4), 1316-1338.
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[124]
Yuan, A.; Rao, M.V. Veeranna; Nixon, R.A. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb. Perspect. Biol., 2017, 9(4) ,a018309.
[http://dx.doi.org/10.1101/cshperspect.a018309] [PMID: 28373358]
[125]
Bacioglu, M.; Maia, L.F.; Preische, O.; Schelle, J.; Apel, A.; Kaeser, S.A.; Schweighauser, M.; Eninger, T.; Lambert, M.; Pilotto, A.; Shimshek, D.R.; Neumann, U.; Kahle, P.J.; Staufenbiel, M.; Neumann, M.; Maetzler, W.; Kuhle, J.; Jucker, M. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron, 2016, 91(1), 56-66.
[http://dx.doi.org/10.1016/j.neuron.2016.05.018] [PMID: 27292537]
[126]
Hu, H.; Chen, K.L.; Ou, Y.N.; Cao, X.P.; Chen, S.D.; Cui, M.; Dong, Q.; Tan, L.; Yu, J.T. Neurofilament light chain plasma concentration predicts neurodegeneration and clinical progression in nondemented elderly adults. Aging (Albany NY), 2019, 11(17), 6904-6914.
[http://dx.doi.org/10.18632/aging.102220] [PMID: 31514172]
[127]
Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association of plasma neurofilament light with neurodegeneration in patients with alzheimer disease. JAMA Neurol., 2017, 74(5), 557-566.
[http://dx.doi.org/10.1001/jamaneurol.2016.6117] [PMID: 28346578]
[128]
Forgrave, L.M.; Ma, M.; Best, J.R.; DeMarco, M.L. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: A systematic review and meta-analysis. Alzheimers Dement. (Amst.), 2019, 11, 730-743.
[http://dx.doi.org/10.1016/j.dadm.2019.08.009] [PMID: 31909174]
[129]
Jin, M.; Cao, L.; Dai, Y.P. Role of neurofilament light chain as a potential biomarker for Alzheimer’s disease: A correlative meta-analysis. Front. Aging Neurosci., 2019, 11, 254.
[http://dx.doi.org/10.3389/fnagi.2019.00254] [PMID: 31572170]
[130]
Weston, P.S.J.; Poole, T.; Ryan, N.S.; Nair, A.; Liang, Y.; Macpherson, K.; Druyeh, R.; Malone, I.B.; Ahsan, R.L.; Pemberton, H.; Klimova, J.; Mead, S.; Blennow, K.; Rossor, M.N.; Schott, J.M.; Zetterberg, H.; Fox, N.C. Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration. Neurology, 2017, 89(21), 2167-2175.
[http://dx.doi.org/10.1212/WNL.0000000000004667] [PMID: 29070659]
[131]
Weston, P.S.J.; Poole, T.; O’Connor, A.; Heslegrave, A.; Ryan, N.S.; Liang, Y.; Druyeh, R.; Mead, S.; Blennow, K.; Schott, J.M.; Frost, C.; Zetterberg, H.; Fox, N.C. Longitudinal measurement of serum neurofilament light in presymptomatic familial Alzheimer’s disease. Alzheimers Res. Ther., 2019, 11(1), 19.
[http://dx.doi.org/10.1186/s13195-019-0472-5] [PMID: 30786919]
[132]
Preische, O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Gräber, S.; Kuder-Buletta, E.; LaFougere, C.; Laske, C.; Vöglein, J.; Levin, J.; Masters, C.L.; Martins, R.; Schofield, P.R.; Rossor, M.N.; Graff-Radford, N.R.; Salloway, S.; Ghetti, B.; Ringman, J.M.; Noble, J.M.; Chhatwal, J.; Goate, A.M.; Benzinger, T.L.S.; Morris, J.C.; Bateman, R.J.; Wang, G.; Fagan, A.M.; McDade, E.M.; Gordon, B.A.; Jucker, M. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med., 2019, 25(2), 277-283.
[http://dx.doi.org/10.1038/s41591-018-0304-3] [PMID: 30664784]
[133]
Sánchez-Valle, R.; Heslegrave, A.; Foiani, M.S.; Bosch, B.; Antonell, A.; Balasa, M.; Lladó, A.; Zetterberg, H.; Fox, N.C. Serum neurofilament light levels correlate with severity measures and neurodegeneration markers in autosomal dominant Alzheimer’s disease. Alzheimers Res. Ther., 2018, 10(1), 113.
[http://dx.doi.org/10.1186/s13195-018-0439-y] [PMID: 30390718]
[134]
Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol., 2019, 76(7), 791-799.
[http://dx.doi.org/10.1001/jamaneurol.2019.0765] [PMID: 31009028]
[135]
Nyberg, L.; Lundquist, A.; Nordin, A.A.; Andersson, M.; Zetterberg, H.; Blennow, K.; Adolfsson, R. Elevated plasma neurofilament light in aging reflects brain white-matter alterations but does not predict cognitive decline or Alzheimer’s disease. Alzheimers Dement. (Amst.), 2020, 12(1) ,e12050.
[http://dx.doi.org/10.1002/dad2.12050] [PMID: 32587884]
[136]
Xie, L.; Wisse, L.E.M.; Das, S.R.; Vergnet, N.; Dong, M.; Ittyerah, R.; de Flores, R.; Yushkevich, P.A.; Wolk, D.A. Longitudinal atrophy in early Braak regions in preclinical Alzheimer’s disease. Hum. Brain Mapp., 2020, 41(16), 4704-4717.
[http://dx.doi.org/10.1002/hbm.25151] [PMID: 32845545]
[137]
Chatterjee, P.; Goozee, K.; Sohrabi, H.R.; Shen, K.; Shah, T.; Asih, P.R.; Dave, P.; ManYan, C.; Taddei, K.; Chung, R.; Zetterberg, H.; Blennow, K.; Martins, R.N. Association of plasma neurofilament light chain with neocortical amyloid-β load and cognitive performance in cognitively normal elderly participants. J. Alzheimers Dis., 2018, 63(2), 479-487.
[http://dx.doi.org/10.3233/JAD-180025] [PMID: 29630554]
[138]
Höglund, K.; Kern, S.; Zettergren, A.; Börjesson-Hansson, A.; Zetterberg, H.; Skoog, I.; Blennow, K. Preclinical amyloid pathology biomarker positivity: Effects on tau pathology and neurodegeneration. Transl. Psychiatry, 2017, 7(1) ,e995.
[http://dx.doi.org/10.1038/tp.2016.252] [PMID: 28072416]
[139]
Benedet, A.L.; Ashton, N.J.; Pascoal, T.A.; Leuzy, A.; Mathotaarachchi, S.; Kang, M.S.; Therriault, J.; Savard, M.; Chamoun, M.; Schöll, M.; Zimmer, E.R.; Gauthier, S.; Labbe, A.; Zetterberg, H.; Blennow, K.; Neto, P.R. Plasma neurofilament light associates with Alzheimer’s disease metabolic decline in amyloid-positive individuals. Alzheimers Dement. (Amst.), 2019, 11, 679-689.
[http://dx.doi.org/10.1016/j.dadm.2019.08.002] [PMID: 31673598]
[140]
Dhiman, K.; Gupta, V.B.; Villemagne, V.L.; Eratne, D.; Graham, P.L.; Fowler, C.; Bourgeat, P.; Li, Q.X.; Collins, S.; Bush, A.I.; Rowe, C.C.; Masters, C.L.; Ames, D.; Hone, E.; Blennow, K.; Zetterberg, H.; Martins, R.N. Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer’s disease. Alzheimers Dement. (Amst.), 2020, 12(1) ,e12005.
[http://dx.doi.org/10.1002/dad2.12005] [PMID: 32211500]
[141]
Lewczuk, P.; Ermann, N.; Andreasson, U.; Schultheis, C.; Podhorna, J.; Spitzer, P.; Maler, J.M.; Kornhuber, J.; Blennow, K.; Zetterberg, H. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease. Alzheimers Res. Ther., 2018, 10(1), 71.
[http://dx.doi.org/10.1186/s13195-018-0404-9] [PMID: 30055655]
[142]
Braunewell, K.H. The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer’s disease-old wine in new bottles. Front. Mol. Neurosci., 2012, 5, 20.
[http://dx.doi.org/10.3389/fnmol.2012.00020] [PMID: 22375104]
[143]
Tarawneh, R.; D’Angelo, G.; Macy, E.; Xiong, C.; Carter, D.; Cairns, N.J.; Fagan, A.M.; Head, D.; Mintun, M.A.; Ladenson, J.H.; Lee, J.M.; Morris, J.C.; Holtzman, D.M. Visinin-like protein-1: Diagnostic and prognostic biomarker in Alzheimer disease. Ann. Neurol., 2011, 70(2), 274-285.
[http://dx.doi.org/10.1002/ana.22448] [PMID: 21823155]
[144]
Mavroudis, I.A.; Petridis, F.; Chatzikonstantinou, S.; Karantali, E.; Kazis, D. A meta-analysis on the levels of VILIP-1 in the CSF of Alzheimer’s disease compared to normal controls and other neurodegenerative conditions. Aging Clin. Exp. Res., 2021, 33(2), 265-272.
[http://dx.doi.org/10.1007/s40520-019-01458-2] [PMID: 31939203]
[145]
Wunderlich, P.; Glebov, K.; Kemmerling, N.; Tien, N.T.; Neumann, H.; Walter, J. Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and γ-secretase-dependent intramembranous cleavage. J. Biol. Chem., 2013, 288(46), 33027-33036.
[http://dx.doi.org/10.1074/jbc.M113.517540] [PMID: 24078628]
[146]
Liu, D.; Cao, B.; Zhao, Y.; Huang, H.; McIntyre, R.S.; Rosenblat, J.D.; Zhou, H. Soluble TREM2 changes during the clinical course of Alzheimer’s disease: A meta-analysis. Neurosci. Lett., 2018, 686, 10-16.
[http://dx.doi.org/10.1016/j.neulet.2018.08.038] [PMID: 30171911]
[147]
Gispert, J.D.; Suárez-Calvet, M.; Monté, G.C.; Tucholka, A.; Falcon, C.; Rojas, S.; Rami, L.; Sánchez-Valle, R.; Lladó, A.; Kleinberger, G.; Haass, C.; Molinuevo, J.L. Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer’s disease. Alzheimers Dement., 2016, 12(12), 1259-1272.
[http://dx.doi.org/10.1016/j.jalz.2016.06.005] [PMID: 27423963]
[148]
Rauchmann, B.S.; Schneider-Axmann, T.; Alexopoulos, P.; Perneczky, R. CSF soluble TREM2 as a measure of immune response along the Alzheimer’s disease continuum. Neurobiol. Aging, 2019, 74, 182-190.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.10.022] [PMID: 30458365]
[149]
Suárez-Calvet, M.; Morenas-Rodríguez, E.; Kleinberger, G.; Schlepckow, K.; Araque Caballero, M.Á.; Franzmeier, N.; Capell, A.; Fellerer, K.; Nuscher, B.; Eren, E.; Levin, J.; Deming, Y.; Piccio, L.; Karch, C.M.; Cruchaga, C.; Shaw, L.M.; Trojanowski, J.Q.; Weiner, M.; Ewers, M.; Haass, C. Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol. Neurodegener., 2019, 14(1), 1.
[http://dx.doi.org/10.1186/s13024-018-0301-5] [PMID: 30630532]
[150]
Ashton, N.J.; Suárez-Calvet, M.; Heslegrave, A.; Hye, A.; Razquin, C.; Pastor, P.; Sanchez-Valle, R.; Molinuevo, J.L.; Visser, P.J.; Blennow, K.; Hodges, A.K.; Zetterberg, H. Plasma levels of soluble TREM2 and neurofilament light chain in TREM2 rare variant carriers. Alzheimers Res. Ther., 2019, 11(1), 94.
[http://dx.doi.org/10.1186/s13195-019-0545-5] [PMID: 31779670]
[151]
Wilson, E.N.; Swarovski, M.S.; Linortner, P.; Shahid, M.; Zuckerman, A.J.; Wang, Q.; Channappa, D.; Minhas, P.S.; Mhatre, S.D.; Plowey, E.D.; Quinn, J.F.; Zabetian, C.P.; Tian, L.; Longo, F.M.; Cholerton, B.; Montine, T.J.; Poston, K.L.; Andreasson, K.I. Soluble TREM2 is elevated in Parkinson’s disease subgroups with increased CSF tau. Brain, 2020, 143(3), 932-943.
[http://dx.doi.org/10.1093/brain/awaa021] [PMID: 32065223]
[152]
Bekris, L.M.; Khrestian, M.; Dyne, E.; Shao, Y.; Pillai, J.A.; Rao, S.M.; Bemiller, S.M.; Lamb, B.; Fernandez, H.H.; Leverenz, J.B. Soluble TREM2 and biomarkers of central and peripheral inflammation in neurodegenerative disease. J. Neuroimmunol., 2018, 319, 19-27.
[http://dx.doi.org/10.1016/j.jneuroim.2018.03.003] [PMID: 29685286]
[153]
Hu, N.; Tan, M.S.; Yu, J.T.; Sun, L.; Tan, L.; Wang, Y.L.; Jiang, T.; Tan, L. Increased expression of TREM2 in peripheral blood of Alzheimer’s disease patients. J. Alzheimers Dis., 2014, 38(3), 497-501.
[http://dx.doi.org/10.3233/JAD-130854] [PMID: 24002183]
[154]
Casati, M.; Ferri, E.; Gussago, C.; Mazzola, P.; Abbate, C.; Bellelli, G.; Mari, D.; Cesari, M.; Arosio, B. Increased expression of TREM2 in peripheral cells from mild cognitive impairment patients who progress into Alzheimer’s disease. Eur. J. Neurol., 2018, 25(6), 805-810.
[http://dx.doi.org/10.1111/ene.13583] [PMID: 29377401]
[155]
Tan, Y.J.; Ng, A.S.L.; Vipin, A.; Lim, J.K.W.; Chander, R.J.; Ji, F.; Qiu, Y.; Ting, S.K.S.; Hameed, S.; Lee, T.S.; Zeng, L.; Kandiah, N.; Zhou, J. Higher peripheral TREM2 mRNA levels relate to cognitive deficits and hippocampal atrophy in Alzheimer’s disease and amnestic mild cognitive impairment. J. Alzheimers Dis., 2017, 58(2), 413-423.
[http://dx.doi.org/10.3233/JAD-161277] [PMID: 28453482]
[156]
Guven, G.; Bilgic, B.; Samanci, B.; Gurvit, H.; Hanagasi, H.; Donmez, C.; Aslan, R.; Lohmann, E.; Erginel-Unaltuna, N. Peripheral TREM2 mRNA levels in early and late-onset Alzheimer disease’s patients. Mol. Biol. Rep., 2020, 47(8), 5903-5909.
[http://dx.doi.org/10.1007/s11033-020-05661-7] [PMID: 32681391]
[157]
Baldacci, F.; Lista, S.; Palermo, G.; Giorgi, F.S.; Vergallo, A.; Hampel, H. The neuroinflammatory biomarker YKL-40 for neurodegenerative diseases: Advances in development. Expert Rev. Proteomics, 2019, 16(7), 593-600.
[http://dx.doi.org/10.1080/14789450.2019.1628643] [PMID: 31195846]
[158]
Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; Wu, E.; Dakin, K.; Petzold, M.; Blennow, K.; Zetterberg, H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol., 2016, 15(7), 673-684.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[159]
Craig-Schapiro, R.; Perrin, R.J.; Roe, C.M.; Xiong, C.; Carter, D.; Cairns, N.J.; Mintun, M.A.; Peskind, E.R.; Li, G.; Galasko, D.R.; Clark, C.M.; Quinn, J.F.; D’Angelo, G.; Malone, J.P.; Townsend, R.R.; Morris, J.C.; Fagan, A.M.; Holtzman, D.M. YKL-40: A novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol. Psychiatry, 2010, 68(10), 903-912.
[http://dx.doi.org/10.1016/j.biopsych.2010.08.025] [PMID: 21035623]
[160]
Antonell, A.; Mansilla, A.; Rami, L.; Lladó, A.; Iranzo, A.; Olives, J.; Balasa, M.; Sánchez-Valle, R.; Molinuevo, J.L. Cerebrospinal fluid level of YKL-40 protein in preclinical and prodromal Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(3), 901-908.
[http://dx.doi.org/10.3233/JAD-140624] [PMID: 25024322]
[161]
Gispert, J.D.; Monté, G.C.; Falcon, C.; Tucholka, A.; Rojas, S.; Sánchez-Valle, R.; Antonell, A.; Lladó, A.; Rami, L.; Molinuevo, J.L. CSF YKL-40 and pTau181 are related to different cerebral morphometric patterns in early AD. Neurobiol. Aging, 2016, 38, 47-55.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.10.022] [PMID: 26827642]
[162]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[163]
Han, S.H.; Park, J.C.; Byun, M.S.; Yi, D.; Lee, J.H.; Lee, D.Y.; Mook-Jung, I. Blood acetylcholinesterase level is a potential biomarker for the early detection of cerebral amyloid deposition in cognitively normal individuals. Neurobiol. Aging, 2019, 73, 21-29.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.09.001] [PMID: 30316049]
[164]
Ferreira, A.C.; Dá Mesquita, S.; Sousa, J.C.; Correia-Neves, M.; Sousa, N.; Palha, J.A.; Marques, F. From the periphery to the brain: Lipocalin-2, a friend or foe? Prog. Neurobiol., 2015, 131, 120-136.
[http://dx.doi.org/10.1016/j.pneurobio.2015.06.005] [PMID: 26159707]
[165]
Eruysal, E.; Ravdin, L.; Kamel, H.; Iadecola, C.; Ishii, M. Plasma lipocalin-2 levels in the preclinical stage of Alzheimer’s disease. Alzheimers Dement. (Amst.), 2019, 11, 646-653.
[http://dx.doi.org/10.1016/j.dadm.2019.07.004] [PMID: 31517027]
[166]
Giambattistelli, F.; Bucossi, S.; Salustri, C.; Panetta, V.; Mariani, S.; Siotto, M.; Ventriglia, M.; Vernieri, F.; Dell’acqua, M.L.; Cassetta, E.; Rossini, P.M.; Squitti, R. Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer’s disease. Neurobiol. Aging, 2012, 33(8), 1633-1641.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.005] [PMID: 21514009]
[167]
Goozee, K.; Chatterjee, P.; James, I.; Shen, K.; Sohrabi, H.R.; Asih, P.R.; Dave, P.; ManYan, C.; Taddei, K.; Ayton, S.J.; Garg, M.L.; Kwok, J.B.; Bush, A.I.; Chung, R.; Magnussen, J.S.; Martins, R.N. Elevated plasma ferritin in elderly individuals with high neocortical amyloid-β load. Mol. Psychiatry, 2018, 23(8), 1807-1812.
[http://dx.doi.org/10.1038/mp.2017.146] [PMID: 28696433]
[168]
Hu, H.; Tan, L.; Bi, Y.L.; Xu, W.; Tan, L.; Shen, X.N.; Hou, X.H.; Ma, Y.H.; Dong, Q.; Yu, J.T. Association of serum apolipoprotein B with cerebrospinal fluid biomarkers of Alzheimer’s pathology. Ann. Clin. Transl. Neurol., 2020, 7(10), 1766-1778.
[http://dx.doi.org/10.1002/acn3.51153] [PMID: 32910550]
[169]
Gupta, V.B.; Doecke, J.D.; Hone, E.; Pedrini, S.; Laws, S.M.; Thambisetty, M.; Bush, A.I.; Rowe, C.C.; Villemagne, V.L.; Ames, D.; Masters, C.L.; Macaulay, S.L.; Rembach, A.; Rainey-Smith, S.R.; Martins, R.N. Plasma apolipoprotein J as a potential biomarker for Alzheimer’s disease: Australian Imaging, Biomarkers and Lifestyle study of aging. Alzheimers Dement. (Amst.), 2015, 3, 18-26.
[http://dx.doi.org/10.1016/j.dadm.2015.12.001] [PMID: 27239546]
[170]
Goozee, K.; Chatterjee, P.; James, I.; Shen, K.; Sohrabi, H.R.; Asih, P.R.; Dave, P.; Ball, B.; ManYan, C.; Taddei, K.; Chung, R.; Garg, M.L.; Martins, R.N. Alterations in erythrocyte fatty acid composition in preclinical Alzheimer’s disease. Sci. Rep., 2017, 7(1), 676.
[http://dx.doi.org/10.1038/s41598-017-00751-2] [PMID: 28386119]
[171]
Antonell, A.; Lladó, A.; Sánchez-Valle, R.; Sanfeliu, C.; Casserras, T.; Rami, L.; Muñoz-García, C.; Dangla-Valls, A.; Balasa, M.; Boya, P.; Kalko, S.G.; Molinuevo, J.L. Altered blood gene expression of tumor-related genes (PRKCB, BECN1, and CDKN2A) in Alzheimer’s disease. Mol. Neurobiol., 2016, 53(9), 5902-5911.
[http://dx.doi.org/10.1007/s12035-015-9483-9] [PMID: 26510741]
[172]
Park, S.A.; Han, S.M.; Kim, C.E. New fluid biomarkers tracking non-amyloid-β and non-tau pathology in Alzheimer’s disease. Exp. Mol. Med., 2020, 52(4), 556-568.
[http://dx.doi.org/10.1038/s12276-020-0418-9] [PMID: 32284537]
[173]
Ishii, M.; Kamel, H.; Iadecola, C. Retinol binding protein 4 levels are not altered in preclinical Alzheimer’s disease and not associated with cognitive decline or incident dementia. J. Alzheimers Dis., 2019, 67(1), 257-263.
[http://dx.doi.org/10.3233/JAD-180682] [PMID: 30562901]
[174]
Lin, Y.S.; Lee, W.J.; Wang, S.J.; Fuh, J.L. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci. Rep., 2018, 8(1), 17368.
[http://dx.doi.org/10.1038/s41598-018-35766-w] [PMID: 30478269]
[175]
Urbanelli, L.; Buratta, S.; Sagini, K.; Tancini, B.; Emiliani, C. Extracellular vesicles as new players in cellular senescence. Int. J. Mol. Sci., 2016, 17(9) ,E1408.
[http://dx.doi.org/10.3390/ijms17091408] [PMID: 27571072]
[176]
Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol., 2013, 200(4), 373-383.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[177]
Jain, K.K. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond.), 2012, 7(8), 1225-1233.
[http://dx.doi.org/10.2217/nnm.12.86] [PMID: 22931448]
[178]
Chiasserini, D.; van Weering, J.R.; Piersma, S.R.; Pham, T.V.; Malekzadeh, A.; Teunissen, C.E.; de Wit, H.; Jiménez, C.R. Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. J. Proteomics, 2014, 106, 191-204.
[http://dx.doi.org/10.1016/j.jprot.2014.04.028] [PMID: 24769233]
[179]
Kapogiannis, D.; Mustapic, M.; Shardell, M.D.; Berkowitz, S.T.; Diehl, T.C.; Spangler, R.D.; Tran, J.; Lazaropoulos, M.P.; Chawla, S.; Gulyani, S.; Eitan, E.; An, Y.; Huang, C.W.; Oh, E.S.; Lyketsos, C.G.; Resnick, S.M.; Goetzl, E.J.; Ferrucci, L. Association of extracellular vesicle biomarkers with alzheimer disease in the baltimore longitudinal study of aging. JAMA Neurol., 2019, 76(11), 1340-1351.
[http://dx.doi.org/10.1001/jamaneurol.2019.2462] [PMID: 31305918]
[180]
Fiandaca, M.S.; Kapogiannis, D.; Mapstone, M.; Boxer, A.; Eitan, E.; Schwartz, J.B.; Abner, E.L.; Petersen, R.C.; Federoff, H.J.; Miller, B.L.; Goetzl, E.J. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement., 2015, 11(6), 600-7.e1.
[http://dx.doi.org/10.1016/j.jalz.2014.06.008] [PMID: 25130657]
[181]
Winston, C.N.; Goetzl, E.J.; Akers, J.C.; Carter, B.S.; Rockenstein, E.M.; Galasko, D.; Masliah, E.; Rissman, R.A. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement. (Amst.), 2016, 3, 63-72.
[http://dx.doi.org/10.1016/j.dadm.2016.04.001] [PMID: 27408937]
[182]
Jia, L.; Qiu, Q.; Zhang, H.; Chu, L.; Du, Y.; Zhang, J.; Zhou, C.; Liang, F.; Shi, S.; Wang, S.; Qin, W.; Wang, Q.; Li, F.; Wang, Q.; Li, Y.; Shen, L.; Wei, Y.; Jia, J. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement., 2019, 15(8), 1071-1080.
[http://dx.doi.org/10.1016/j.jalz.2019.05.002] [PMID: 31422798]
[183]
Goetzl, E.J.; Mustapic, M.; Kapogiannis, D.; Eitan, E.; Lobach, I.V.; Goetzl, L.; Schwartz, J.B.; Miller, B.L. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J., 2016, 30(11), 3853-3859.
[http://dx.doi.org/10.1096/fj.201600756R] [PMID: 27511944]
[184]
Guix, F.X.; Corbett, G.T.; Cha, D.J.; Mustapic, M.; Liu, W.; Mengel, D.; Chen, Z.; Aikawa, E.; Young-Pearse, T.; Kapogiannis, D.; Selkoe, D.J.; Walsh, D.M. Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int. J. Mol. Sci., 2018, 19(3) ,E663.
[http://dx.doi.org/10.3390/ijms19030663] [PMID: 29495441]
[185]
Shi, M.; Kovac, A.; Korff, A.; Cook, T.J.; Ginghina, C.; Bullock, K.M.; Yang, L.; Stewart, T.; Zheng, D.; Aro, P.; Atik, A.; Kerr, K.F.; Zabetian, C.P.; Peskind, E.R.; Hu, S.C.; Quinn, J.F.; Galasko, D.R.; Montine, T.J.; Banks, W.A.; Zhang, J. CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimers Dement., 2016, 12(11), 1125-1131.
[http://dx.doi.org/10.1016/j.jalz.2016.04.003] [PMID: 27234211]
[186]
Cicognola, C.; Brinkmalm, G.; Wahlgren, J.; Portelius, E.; Gobom, J.; Cullen, N.C.; Hansson, O.; Parnetti, L.; Constantinescu, R.; Wildsmith, K.; Chen, H.H.; Beach, T.G.; Lashley, T.; Zetterberg, H.; Blennow, K.; Höglund, K. Novel tau fragments in cerebrospinal fluid: Relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol., 2019, 137(2), 279-296.
[http://dx.doi.org/10.1007/s00401-018-1948-2] [PMID: 30547227]
[187]
Winston, C.N.; Goetzl, E.J.; Baker, L.D.; Vitiello, M.V.; Rissman, R.A. Growth hormone-releasing hormone modulation of neuronal exosome biomarkers in mild cognitive impairment. J. Alzheimers Dis., 2018, 66(3), 971-981.
[http://dx.doi.org/10.3233/JAD-180302] [PMID: 30372675]
[188]
Zhao, A.; Li, Y.; Yan, Y.; Qiu, Y.; Li, B.; Xu, W.; Wang, Y.; Liu, J.; Deng, Y. Increased prediction value of biomarker combinations for the conversion of mild cognitive impairment to Alzheimer’s dementia. Transl. Neurodegener., 2020, 9(1), 30.
[http://dx.doi.org/10.1186/s40035-020-00210-5] [PMID: 32741361]
[189]
Goetzl, E.J.; Kapogiannis, D.; Schwartz, J.B.; Lobach, I.V.; Goetzl, L.; Abner, E.L.; Jicha, G.A.; Karydas, A.M.; Boxer, A.; Miller, B.L. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J., 2016, 30(12), 4141-4148.
[http://dx.doi.org/10.1096/fj.201600816R] [PMID: 27601437]
[190]
Goetzl, E.J.; Abner, E.L.; Jicha, G.A.; Kapogiannis, D.; Schwartz, J.B. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer’s disease. FASEB J., 2018, 32(2), 888-893.
[http://dx.doi.org/10.1096/fj.201700731R] [PMID: 29025866]
[191]
Jia, L.; Zhu, M.; Kong, C.; Pang, Y.; Zhang, H.; Qiu, Q.; Wei, C.; Tang, Y.; Wang, Q.; Li, Y.; Li, T.; Li, F.; Wang, Q.; Li, Y.; Wei, Y.; Jia, J. Blood neuro-exosomal synaptic proteins predict Alzheimer’s disease at the asymptomatic stage. Alzheimers Dement., 2020.
[http://dx.doi.org/10.1002/alz.12166] [PMID: 32776690]
[192]
Agliardi, C.; Guerini, F.R.; Zanzottera, M.; Bianchi, A.; Nemni, R.; Clerici, M. SNAP-25 in serum is carried by exosomes of neuronal origin and is a potential biomarker of Alzheimer’s disease. Mol. Neurobiol., 2019, 56(8), 5792-5798.
[http://dx.doi.org/10.1007/s12035-019-1501-x] [PMID: 30680692]
[193]
Kapogiannis, D.; Boxer, A.; Schwartz, J.B.; Abner, E.L.; Biragyn, A.; Masharani, U.; Frassetto, L.; Petersen, R.C.; Miller, B.L.; Goetzl, E.J. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease. FASEB J., 2015, 29(2), 589-596.
[http://dx.doi.org/10.1096/fj.14-262048] [PMID: 25342129]
[194]
Goetzl, E.J.; Boxer, A.; Schwartz, J.B.; Abner, E.L.; Petersen, R.C.; Miller, B.L.; Kapogiannis, D. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology, 2015, 85(1), 40-47.
[http://dx.doi.org/10.1212/WNL.0000000000001702] [PMID: 26062630]
[195]
Goetzl, E.J.; Boxer, A.; Schwartz, J.B.; Abner, E.L.; Petersen, R.C.; Miller, B.L.; Carlson, O.D.; Mustapic, M.; Kapogiannis, D. Low neural exosomal levels of cellular survival factors in Alzheimer’s disease. Ann. Clin. Transl. Neurol., 2015, 2(7), 769-773.
[http://dx.doi.org/10.1002/acn3.211] [PMID: 26273689]
[196]
Goetzl, E.J.; Schwartz, J.B.; Abner, E.L.; Jicha, G.A.; Kapogiannis, D. High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann. Neurol., 2018, 83(3), 544-552.
[http://dx.doi.org/10.1002/ana.25172] [PMID: 29406582]
[197]
Goetzl, E.J.; Nogueras-Ortiz, C.; Mustapic, M.; Mullins, R.J.; Abner, E.L.; Schwartz, J.B.; Kapogiannis, D. Deficient neurotrophic factors of CSPG4-type neural cell exosomes in Alzheimer disease. FASEB J., 2019, 33(1), 231-238.
[http://dx.doi.org/10.1096/fj.201801001] [PMID: 29924942]
[198]
Koronyo, Y.; Salumbides, B.C.; Black, K.L.; Koronyo-Hamaoui, M. Alzheimer’s disease in the retina: Imaging retinal aβ plaques for early diagnosis and therapy assessment. Neurodegener. Dis., 2012, 10(1-4), 285-293.
[http://dx.doi.org/10.1159/000335154] [PMID: 22343730]
[199]
Koronyo-Hamaoui, M.; Koronyo, Y.; Ljubimov, A.V.; Miller, C.A.; Ko, M.K.; Black, K.L.; Schwartz, M.; Farkas, D.L. Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model.Neuroimage,, 2011, 54(Suppl), 1S204-1S217.
[http://dx.doi.org/10.1016/j.neuroimage.2010.06.020]
[200]
Koronyo, Y.; Biggs, D.; Barron, E.; Boyer, D.S.; Pearlman, J.A.; Au, W.J.; Kile, S.J.; Blanco, A.; Fuchs, D.T.; Ashfaq, A.; Frautschy, S.; Cole, G.M.; Miller, C.A.; Hinton, D.R.; Verdooner, S.R.; Black, K.L.; Koronyo-Hamaoui, M. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight, 2017, 2(16), 93621.
[http://dx.doi.org/10.1172/jci.insight.93621] [PMID: 28814675]
[201]
Liao, H.; Zhu, Z.; Peng, Y. Potential utility of retinal imaging for Alzheimer’s disease: A review. Front. Aging Neurosci., 2018, 10, 188.
[http://dx.doi.org/10.3389/fnagi.2018.00188] [PMID: 29988470]
[202]
Ong, S.S.; Proia, A.D.; Whitson, H.E.; Farsiu, S.; Doraiswamy, P.M.; Lad, E.M. Ocular amyloid imaging at the crossroad of Alzheimer’s disease and age-related macular degeneration: Implications for diagnosis and therapy. J. Neurol., 2019, 266(7), 1566-1577.
[http://dx.doi.org/10.1007/s00415-018-9028-z] [PMID: 30155741]
[203]
Santos, C.Y.; Johnson, L.N.; Sinoff, S.E.; Festa, E.K.; Heindel, W.C.; Snyder, P.J. Change in retinal structural anatomy during the preclinical stage of Alzheimer’s disease. Alzheimers Dement. (Amst.), 2018, 10, 196-209.
[http://dx.doi.org/10.1016/j.dadm.2018.01.003] [PMID: 29780864]
[204]
van de Kreeke, J.A.; Nguyen, H.T.; den Haan, J.; Konijnenberg, E.; Tomassen, J.; den Braber, A.; Ten Kate, M.; Collij, L.; Yaqub, M.; van Berckel, B.; Lammertsma, A.A.; Boomsma, D.I.; Tan, H.S.; Verbraak, F.D.; Visser, P.J. Retinal layer thickness in preclinical Alzheimer’s disease. Acta Ophthalmol., 2019, 97(8), 798-804.
[http://dx.doi.org/10.1111/aos.14121] [PMID: 31058465]
[205]
Snyder, P.J.; Johnson, L.N.; Lim, Y.Y.; Santos, C.Y.; Alber, J.; Maruff, P.; Fernández, B. Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimers Dement. (Amst.), 2016, 4, 169-178.
[http://dx.doi.org/10.1016/j.dadm.2016.09.001] [PMID: 27830174]
[206]
Golzan, S.M.; Goozee, K.; Georgevsky, D.; Avolio, A.; Chatterjee, P.; Shen, K.; Gupta, V.; Chung, R.; Savage, G.; Orr, C.F.; Martins, R.N.; Graham, S.L. Retinal vascular and structural changes are associated with amyloid burden in the elderly: Ophthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 13.
[http://dx.doi.org/10.1186/s13195-017-0239-9] [PMID: 28253913]
[207]
Van Stavern, G.P.; Bei, L.; Shui, Y.B.; Huecker, J.; Gordon, M. Pupillary light reaction in preclinical Alzheimer’s disease subjects compared with normal ageing controls. Br. J. Ophthalmol., 2019, 103(7), 971-975.
[http://dx.doi.org/10.1136/bjophthalmol-2018-312425] [PMID: 30206156]
[208]
Bei, L.; Shui, Y.B.; Bai, F.; Nelson, S.K.; Van Stavern, G.P.; Beebe, D.C. A test of lens opacity as an indicator of preclinical Alzheimer Disease. Exp. Eye Res., 2015, 140, 117-123.
[http://dx.doi.org/10.1016/j.exer.2015.03.010] [PMID: 25773986]
[209]
Dehghani, C.; Frost, S.; Jayasena, R.; Masters, C.L.; Kanagasingam, Y. Ocular biomarkers of Alzheimer’s disease: The role of anterior eye and potential future directions. Invest. Ophthalmol. Vis. Sci., 2018, 59(8), 3554-3563.
[http://dx.doi.org/10.1167/iovs.18-24694] [PMID: 30025102]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy