Research Article

多西环素对小鼠神经肌肉接头的原位作用

卷 22, 期 4, 2022

发表于: 21 May, 2021

页: [349 - 353] 页: 5

弟呕挨: 10.2174/1566524021666210521125553

价格: $65

摘要

背景:强力霉素的抗菌机制是已知的,但其对神经肌肉系统的作用仍不清楚。目的:本研究的目的是利用多西环素(一种半合成的第二代四环素衍生物)对小鼠神经肌肉制剂的原位神经元阻滞作用,结合神经肌肉机制的分子靶点。 方法:使用传统的肌动图技术评估强力霉素对突触前、突触间隙和突触后神经传递以及肌纤维的影响。确切地说,根据所用强力霉素的浓度,强力霉素的作用分为“全部”或“无”作用;使用 4 μM 强力霉素获得“全部”,使用 1-3 μM 强力霉素获得“无”。本研究的基本原理是应用已知的药理学工具来对抗 4 μM 强力霉素的阻断作用,例如 F55-6(Casearia sylvestris)、CaCl2(或 Ca2+)、阿托品、新斯的明、聚乙二醇(PEG 400)和 d-筒箭毒碱。对胆碱酯酶活性和膈肌组织学进行了评估,对接受间接或直接刺激的神经肌肉制剂的方案是互补的。 结果:强力霉素不影响胆碱酯酶活性,也不对骨骼肌横膈造成损伤;由于肌肉烟碱乙酰胆碱受体的可用性降低,它作用于兰尼碱受体、肌膜膜和神经元钠通道,并产生连接后的后果。 结论:总之,除了强力霉素的神经元阻滞作用外,我们还发现强力霉素作用于多个靶点。它被神经元 Na+ 通道激动剂 F55-6 和 Ca2+ 拮抗,但不被新斯的明拮抗。

关键词: 抗生素、强力霉素、分子靶点、神经肌肉接头、四环素、膈神经隔膜制剂。

[1]
Chopra I, Hawkey PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 1992; 29(3): 245-77.
[http://dx.doi.org/10.1093/jac/29.3.245] [PMID: 1592696]
[2]
Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 1996; 165(6): 359-69.
[http://dx.doi.org/10.1007/s002030050339] [PMID: 8661929]
[3]
Bortolanza M, Nascimento GC, Socias SB, et al. Tetracycline repurposing in neurodegeneration: focus on Parkinson’s disease. J Neural Transm (Vienna) 2018; 125(10): 1403-15.
[http://dx.doi.org/10.1007/s00702-018-1913-1] [PMID: 30109452]
[4]
Orsucci D, Mancuso M, Filosto M, Siciliano G. Tetracyclines and neuromuscular disorders. Curr Neuropharmacol 2012; 10(2): 134-8.
[http://dx.doi.org/10.2174/157015912800604498] [PMID: 23204983]
[5]
National Research Council of the National Academies. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington DC: National Academies Press 2012. Available from: https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-laboratory-animals.pdf
[6]
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8(6)e1000412
[http://dx.doi.org/10.1371/journal.pbio.1000412] [PMID: 20613859]
[7]
Bülbring E. Observations on the isolated phrenic nerve diaphragm preparation of the rat. 1946. Br J Pharmacol 1997; 120(4)(Suppl.): 3-26.
[http://dx.doi.org/10.1111/j.1476-5381.1997.tb06771.x] [PMID: 9142393]
[8]
Thiermann H, Eyer P, Worek F. Muscle force and acetylcholinesterase activity in mouse hemidiaphragms exposed to paraoxon and treated by oximes in vitro. Toxicology 2010; 272(1-3): 46-51.
[http://dx.doi.org/10.1016/j.tox.2010.04.002] [PMID: 20385200]
[9]
Fontana Oliveira IC, Gutiérrez JM, Lewin MR, Oshima-Franco Y. Varespladib (LY315920) inhibits neuromuscular blockade induced by Oxyuranus scutellatus venom in a nerve-muscle preparation. Toxicon 2020; 187(187): 101-4.
[http://dx.doi.org/10.1016/j.toxicon.2020.08.023] [PMID: 32889027]
[10]
Werner AC, Ferraz MC, Yoshida EH, et al. The facilitatory effect of Casearia sylvestris Sw. (guaçatonga) fractions on the contractile activity of mammalian and avian neuromuscular apparatus. Curr Pharm Biotechnol 2015; 16(5): 468-81.
[http://dx.doi.org/10.2174/1389201016666150303160625] [PMID: 25751174]
[11]
Yoshida EH, Tribuiani N, Foramiglio AL, et al. A Highly polar phytocomplex involving rutin is responsible for the neuromuscular facilitation caused by Casearia sylvestris (guaçatonga). Curr Pharm Biotechnol 2016; 17(15): 1360-8.
[http://dx.doi.org/10.2174/1389201017666161117145947] [PMID: 27855599]
[12]
Oshima M, Leite GB, Rostelato-Ferreira S, Da Cruz-Höfling MA, Rodrigues-Simioni L, Oshima-Franco Y. Insights of the effects of polyethylene glycol 400 on mammalian and avian nerve terminals. Muscle Nerve 2010; 41(4): 540-6.
[http://dx.doi.org/10.1002/mus.21531] [PMID: 19941343]
[13]
de Souza J, Deamatis BS, Ishii FM, et al. Plants from Brazil used against snake bites: oleanolic and ursolic acids as antiophidian against Bothrops jararacussu venomWild Plants - The Treasure of Natural Healers. Boca Raton: CRC Press 2020; pp. 138-67.
[http://dx.doi.org/10.1201/9781003020134-9]
[14]
de Jong RH. Neural blockade by local anesthetics. Life Sci 1977; 20(6): 915-9.
[http://dx.doi.org/10.1016/0024-3205(77)90275-2] [PMID: 15173]
[15]
Vizi ES, Chaudhry IA, Goldiner PL, Ohta Y, Nagashima H, Foldes FF. The pre- and postjunctional components of the neuromuscular effect of antibiotics. J Anesth 1991; 5(1): 1-9.
[http://dx.doi.org/10.1007/s0054010050001] [PMID: 15278661]
[16]
Kang JM. Antibiotics and muscle relaxation. Korean J Anesthesiol 2013; 64(2): 103-4.
[http://dx.doi.org/10.4097/kjae.2013.64.2.103] [PMID: 23460933]
[17]
Wright CI, Geula C, Mesulam MM. Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 1993; 34(3): 373-84.
[http://dx.doi.org/10.1002/ana.410340312] [PMID: 8363355]
[18]
Loeb MB, Molloy DW, Smieja M, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc 2004; 52(3): 381-7.
[http://dx.doi.org/10.1111/j.1532-5415.2004.52109.x] [PMID: 14962152]
[19]
Darvesh S, Reid GA, Martin E. Biochemical and histochemical comparison of cholinesterases in normal and Alzheimer brain tissues. Curr Alzheimer Res 2010; 7(5): 386-400.
[http://dx.doi.org/10.2174/156720510791383868] [PMID: 19939227]
[20]
Narita K, Akita T, Hachisuka J, Huang S, Ochi K, Kuba K. Functional coupling of Ca(2+) channels to ryanodine receptors at presynaptic terminals. Amplification of exocytosis and plasticity. J Gen Physiol 2000; 115(4): 519-32.
[http://dx.doi.org/10.1085/jgp.115.4.519] [PMID: 10736317]
[21]
Liu Q, Chen B, Yankova M, et al. Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci 2005; 25(29): 6745-54.
[http://dx.doi.org/10.1523/JNEUROSCI.1730-05.2005] [PMID: 16033884]
[22]
Laver DR, Baynes TM, Dulhunty AF. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol 1997; 156(3): 213-29.
[http://dx.doi.org/10.1007/s002329900202] [PMID: 9096063]
[23]
Farrar MA, Johnston HM, Grattan-Smith P, Turner A, Kiernan MC. Spinal muscular atrophy: molecular mechanisms. Curr Mol Med 2009; 9(7): 851-62.
[http://dx.doi.org/10.2174/156652409789105516] [PMID: 19860664]
[24]
Nagashima M, Sasakawa T, Schaller SJ, Martyn JAJ. Block of postjunctional muscle-type acetylcholine receptors in vivo causes train-of-four fade in mice. Br J Anaesth 2015; 115(1): 122-7.
[http://dx.doi.org/10.1093/bja/aev037] [PMID: 25835024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy