Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Quantitative Determination of Quercitrin Levels in Rat Plasma Using UHPLC-MS/MS and its Application in a Pharmacokinetic Study after the Oral Administration of Polygoni cuspidati Folium Capsules

Author(s): Shi-tang Ma , Xin-yuan Zhang , Ning Zhang , Xiao-lin Bi * and Cheng-Tao Feng *

Volume 23, Issue 3, 2022

Published on: 15 June, 2021

Page: [457 - 465] Pages: 9

DOI: 10.2174/1389201022666210519114647

Price: $65

Abstract

Background: Quercitrin is widely found in herbal medicines, and it is particularly important in the design of new therapeutic agents. Because of its wide range of biological activities, methods for detecting quercitrin and its pharmacokinetics in biological samples must be investigated.

Objectives: To develop and validate a sensitive and reliable ultra-high-performance liquid chromatography- tandem mass spectrometry (UHPLC-MS/MS) method for the quantitative determination of quercitrin levels in rat plasma, and test its application in a pharmacokinetic investigation after the oral administration of Polygoni cuspidati folium capsules (HC).

Methods: First, a rapid analytical method implementing UHPLC-MS/MS for the quantification of quercitrin levels in rat plasma was developed and validated. The analyte and internal standard (IS) tinidazole were extracted from rat plasma via protein precipitation with 800 μL of methanol and 50 μL of 1% formic acid solution. Chromatographic separation was performed using an Agilent ZORBAX C18 column within 4 min. Mass spectrometry was performed for quantification using a triple-quadrupole mass spectrometer employing electrospray ionization in the negative ion mode. The MRM transitions for quercitrin and IS were m/z 447.2→229.9 and m/z 246.0→125.8, respectively. The UHPLC-MS/MS method for the quantitative determination of quercitrin levels in rat plasma was then applied to investigate its pharmacokinetics after the oral administration of HC in rats.

Results: The developed UHPLC-MS/MS method for detecting quercitrin in rat plasma was linear over the range of 0.1–160 ng/mL. The linear regression equation was Y = (0.7373 ± 0.0023)X − (0.0087 ± 0.0021) (r2 = 0.9978). The intra- and interday precision values were within 7.8%, and the recoveries of quercitrin and IS exceeding 67.3%. The UHPLC-MS/MS method was successfully applied to characterize the pharmacokinetic profile of quercitrin in eight rats after the oral administration of HC. The experimentally obtained values were fit to a one-compartment, first-order pharmacokinetic model, and they appeared to fit the concentration–time curve.

Conclusion: Quercitrin was proven to be stable during sample storage, preparation, and the analytical procedures. The pharmacokinetic parameters suggested that quercitrin may be present in the peripheral tissues of rats.

Keywords: Polygoni cuspidati folium capsules, quercitrin, UHPLC-MS/MS, pharmacokinetics, plasma, spectrometry.

Graphical Abstract

[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[2]
Tang, J.; Diao, P.; Shu, X.; Li, L.; Xiong, L. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in lps-induced raw264.7 cells: in vitro assessment and a theoretical model. BioMed Res. Int., 2019.20197039802
[http://dx.doi.org/10.1155/2019/7039802] [PMID: 31781635]
[3]
Beber, A.P.; de Souza, P.; Boeing, T.; Somensi, L.B.; Mariano, L.N.B.; Cury, B.J.; Burci, L.M.; da Silva, C.B.; Simionatto, E.; de Andrade, S.F.; da Silva, L.M. Constituents of leaves from Bauhinia curvula Benth. exert gastroprotective activity in rodents: role of quercitrin and kaempferol. Inflammopharmacology, 2018, 26(2), 539-550.
[http://dx.doi.org/10.1007/s10787-017-0313-8] [PMID: 28176198]
[4]
Gómez-Florit, M.; Monjo, M.; Ramis, J.M. Identification of quercitrin as a potential therapeutic agent for periodontal applications. J. Periodontol., 2014, 85(7), 966-974.
[http://dx.doi.org/10.1902/jop.2014.130438] [PMID: 24548116]
[5]
da Silva, E.R. Maquiaveli, Cdo.C.; Magalhães, P.P. The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp. Parasitol., 2012, 130(3), 183-188.
[http://dx.doi.org/10.1016/j.exppara.2012.01.015] [PMID: 22327179]
[6]
Muzitano, M.F.; Cruz, E.A.; de Almeida, A.P.; Da Silva, S.A.; Kaiser, C.R.; Guette, C.; Rossi-Bergmann, B.; Costa, S.S. Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Med., 2006, 72(1), 81-83.
[http://dx.doi.org/10.1055/s-2005-873183] [PMID: 16450304]
[7]
Romero, M.; Vera, B.; Galisteo, M.; Toral, M.; Gálvez, J.; Perez-Vizcaino, F.; Duarte, J. Protective vascular effects of quercitrin in acute TNBS-colitis in rats: the role of nitric oxide. Food Funct., 2017, 8(8), 2702-2711.
[http://dx.doi.org/10.1039/C7FO00755H] [PMID: 28703832]
[8]
Dai, X.; Ding, Y.; Zhang, Z.; Cai, X.; Bao, L.; Li, Y. Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells. Biol. Pharm. Bull., 2013, 36(5), 788-795.
[http://dx.doi.org/10.1248/bpb.b12-00947] [PMID: 23439570]
[9]
Cincin, Z.B.; Unlu, M.; Kiran, B.; Bireller, E.S.; Baran, Y.; Cakmakoglu, B. Apoptotic effects of quercitrin on dld-1 colon cancer cell line. Pathol. Oncol. Res., 2015, 21(2), 333-338.
[http://dx.doi.org/10.1007/s12253-014-9825-3] [PMID: 25096395]
[10]
Kim, D.H.; Kim, S.Y.; Park, S.Y.; Han, M.J. Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol. Pharm. Bull., 1999, 22(7), 749-751.
[http://dx.doi.org/10.1248/bpb.22.749] [PMID: 10443478]
[11]
Córdoba, A.; Monjo, M.; Hierro-Oliva, M.; González-Martín, M.L.; Ramis, J.M. Bioinspired Quercitrin Nanocoatings: A fluorescence-based method for their surface quantification, and their effect on stem cell adhesion and differentiation to the osteoblastic lineage. ACS Appl. Mater. Interfaces, 2015, 7(30), 16857-16864.
[http://dx.doi.org/10.1021/acsami.5b05044] [PMID: 26167954]
[12]
Xing, L.Z.; Ni, H.J.; Wang, Y.L. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways. Biomed. Pharmacother., 2017, 89, 1136-1141.
[http://dx.doi.org/10.1016/j.biopha.2017.02.073] [PMID: 28314242]
[13]
Peng, W.; Qin, R.; Li, X.; Zhou, H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review. J. Ethnopharmacol., 2013, 148(3), 729-745.
[http://dx.doi.org/10.1016/j.jep.2013.05.007] [PMID: 23707210]
[14]
Park, B.; Jo, K.; Lee, T.G.; Hyun, S.W.; Kim, J.S.; Kim, C.S. Polydatin Inhibits NLRP3 Inflammasome in Dry Eye Disease by Attenuating Oxidative Stress and Inhibiting the NF-κB Pathway. Nutrients, 2019, 11(11)E2792
[http://dx.doi.org/10.3390/nu11112792] [PMID: 31731792]
[15]
Wang, X.; Zhao, S.; Wang, C.; Sun, W.; Jin, Y.; Gong, X.; Tong, S. Off-line comprehensive two-dimensional reversed-phase countercurrent chromatography with high-performance liquid chromatography: Orthogonality in separation of Polygonum cuspidatum Sieb. et Zucc. J. Sep. Sci., 2020, 43(3), 561-568.
[http://dx.doi.org/10.1002/jssc.201900877] [PMID: 31675760]
[16]
Wang, X.; Qin, Y.; Li, G.Q.; Chen, S.; Ma, J.Q.; Guo, Y.L.; Luo, W.Z. Study on Chemical Constituents in Polygoni Cuspidati Folium and its Preparation by UPLC-ESI-Q-TOF-MS/MS. J. Chromatogr. Sci., 2018, 56(5), 425-435.
[http://dx.doi.org/10.1093/chromsci/bmy017] [PMID: 29554228]
[17]
Li, H.; Min, J.; Chen, Y.; Li, H.; Zhang, Y. Polydatin attenuates orbital oxidative stress in Graves’ orbitopathy through the NRF2 pathway. Chem. Biol. Interact., 2020, 315108894
[http://dx.doi.org/10.1016/j.cbi.2019.108894] [PMID: 31705858]
[18]
Ferreira, A.S.; Lopes, A.J. Chinese medicine pattern differentiation and its implications for clinical practice. Chin. J. Integr. Med., 2011, 17(11), 818-823.
[http://dx.doi.org/10.1007/s11655-011-0892-y] [PMID: 22057410]
[19]
Li, H.; Cheng, X.; Zhang, D.; Wang, M.; Dong, W.; Feng, W.A. UPLC-MS/MS Assay for Simultaneous Determination of Two Antipsychotics and Two Antidepressants in Human Plasma and Its Application in Clinic. Curr. Pharm. Biotechnol., 2020, 21(1), 60-69.
[http://dx.doi.org/10.2174/1389201020666190830150549] [PMID: 31470784]
[20]
Hutter, M.; Broecker, S.; Kneisel, S.; Franz, F.; Brandt, S.D.; Auwarter, V. Metabolism of nine synthetic cannabinoid receptor agonists encountered in clinical casework: Major in vivo phase I metabolites of AM-694, AM-2201, JWH-007, JWH-019, JWH-203, JWH-307, MAM-2201, UR-144 and XLR-11 in human urine using LC-MS/MS. Curr. Pharm. Biotechnol., 2018, 19(2), 144-162.
[http://dx.doi.org/10.2174/1389201019666180509163114] [PMID: 29745330]
[21]
Kaisar, M.A.; Kallem, R.R.; Sajja, R.K.; Sifat, A.E.; Cucullo, L. A convenient UHPLC-MS/MS method for routine monitoring of plasma and brain levels of nicotine and cotinine as a tool to validate newly developed preclinical smoking model in mouse. BMC Neurosci., 2017, 18(1), 71.
[http://dx.doi.org/10.1186/s12868-017-0389-5] [PMID: 29020944]
[22]
Zhang, J.; Fu, Y.; Li, L.; Liu, Y.; Zhang, C.; Yu, D.; Ma, Y.; Xiao, Y. Pharmacokinetic comparisons of major bioactive components after oral administration of raw and steamed rhubarb by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2019, 171, 43-51.
[http://dx.doi.org/10.1016/j.jpba.2019.04.002] [PMID: 30965220]
[23]
Ou, F.; Zhou, Y.; Lei, J.; Zeng, S.; Wu, F.; Zhang, N.; Yu, L. Development of a UHPLC-MS/MS method for the quantification of ilaprazole enantiomers in rat plasma and its pharmacokinetic application. J. Pharm. Anal., 2020, 10(6), 617-623.
[http://dx.doi.org/10.1016/j.jpha.2019.09.002] [PMID: 33425456]
[24]
Chen, L.; Weng, Q.; Ma, J. A New UPLC-MS/MS method validated for quantification of jervine in rat plasma and the study of its pharmacokinetics in rats. J. Anal. Methods Chem., 2019, 20195163625
[http://dx.doi.org/10.1155/2019/5163625] [PMID: 30956840]
[25]
Zhao, X.; Xu, B.; Wu, P.; Zhao, P.; Guo, C.; Cui, Y.; Zhang, Y.; Zhang, X.; Li, H. UHPLC-MS/MS method for pharmacokinetic and bioavailability determination of five bioactive components in raw and various processed products of Polygala tenuifolia in rat plasma. Pharm. Biol., 2020, 58(1), 969-978.
[http://dx.doi.org/10.1080/13880209.2020.1818790] [PMID: 32956609]
[26]
He, L.; You, W.; Wang, S.; Jiang, T.; Chen, C. A rapid and sensitive UPLC-MS/MS method for the determination of flibanserin in rat plasma: application to a pharmacokinetic study. BMC Chem, 2019, 13(1), 111.
[http://dx.doi.org/10.1186/s13065-019-0620-9] [PMID: 31463480]
[27]
Jeong, S.H.; Jang, J.H.; Lee, Y.B. A novel and sensitive UPLC-MS/MS method to determine mequitazine in rat plasma and urine: Validation and its application to pharmacokinetic studies. Biomed. Chromatogr., 2019, 33(10)e4627
[http://dx.doi.org/10.1002/bmc.4627] [PMID: 31222787]
[28]
Ren, G.; Chen, H.; Zhang, M.; Yang, N.; Yang, H.; Xu, C.; Li, J.; Ning, C.; Song, Z.; Zhou, S.; Zhang, S.; Wang, X.; Lu, Y.; Li, N.; Zhang, Y.; Chen, X.; Zhao, D. Determination of oroxylin A, oroxylin A 7-O-glucuronide, and oroxylin A sodium sulfonate in beagle dogs by using UHPLC MS/MS Application in a pharmacokinetic study. J. Sep. Sci., 2020, 43(12), 2290-2300.
[http://dx.doi.org/10.1002/jssc.201901259] [PMID: 32187438]
[29]
Qiu, X.; Lin, Q.; Ning, Z.; Qian, X.; Li, P.; Ye, L.; Xie, S. Quantitative bioanalytical assay for the human epidermal growth factor receptor (HER) inhibitor dacomitinib in rat plasma by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2019, 166, 66-70.
[http://dx.doi.org/10.1016/j.jpba.2018.12.041] [PMID: 30612075]
[30]
Liu, X.; Tang, M.; Liu, T.; Wang, C.; Tang, Q.; Xiao, Y.; Yang, R.; Chao, R. The in vivo pharmacokinetics, tissue distribution and excretion investigation of mesaconine in rats and its in vitro intestinal absorption study using UPLC-MS/MS. Xenobiotica, 2019, 49(1), 71-79.
[http://dx.doi.org/10.1080/00498254.2017.1416206] [PMID: 29228872]
[31]
Li, J.; Wang, Z.W.; Zhang, L.; Liu, X.; Chen, X.H.; Bi, K.S. HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract. Biomed. Chromatogr., 2008, 22(4), 374-378.
[http://dx.doi.org/10.1002/bmc.942] [PMID: 18059045]
[32]
Jeong, S.H.; Jang, J.H.; Cho, H.Y.; Lee, Y.B. Simultaneous determination of three iridoid glycosides of Rehmannia glutinosa in rat biological samples using a validated hydrophilic interaction-UHPLC-MS/MS method in pharmacokinetic and in vitro studies. J. Sep. Sci., 2020, 43(22), 4148-4161.
[http://dx.doi.org/10.1002/jssc.202000809] [PMID: 32914932]
[33]
Xie, S.; Ye, L.; Ye, X.; Lin, G.; Xu, R. A. Inhibitory effects of voriconazole, itraconazole and fluconazole on the pharmacokinetic profiles of ivosidenib in rats by UHPLC-MS/MS. J. Pharmaceut. Biomed., 2020, 187113353.,
[http://dx.doi.org/10.1016/j.jpba.2020.113353] [PMID: 32417565]
[34]
Huang, Y.; Lin, H.; Chen, Y.; Huang, X. Pharmacokinetic and bioavailability study of kurarinone in dog plasma by UHPLC-MS/MS. Biomed. Chromatogr., 2020, 34(11)e4945
[http://dx.doi.org/10.1002/bmc.4945] [PMID: 32656774]
[35]
Wang, T.; Wang, H.; Chen, R.; Jiang, J.; Zhao, Q.; Hu, P.A. UHPLC-MS/MS method to determine FLZ major active metabolites in human plasma: application to a pharmacokinetic study. Bioanalysis, 2020, 12(9), 583-596.
[http://dx.doi.org/10.4155/bio-2020-0033] [PMID: 32469612]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy