Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Mapping Biomolecular Sequences: Graphical Representations - Their Origins, Applications and Future Prospects

Author(s): Ashesh Nandy*

Volume 25, Issue 3, 2022

Published on: 10 May, 2021

Page: [354 - 364] Pages: 11

DOI: 10.2174/1386207324666210510164743

Price: $65

Abstract

The exponential growth in the depositories of biological sequence data has generated an urgent need to store, retrieve and analyse the data efficiently and effectively for which the standard practice of using alignment procedures are not adequate due to high demand on computing resources and time. Graphical representation of sequences has become one of the most popular alignment-free strategies to analyse the biological sequences where each basic unit of the sequences – the bases adenine, cytosine, guanine and thymine for DNA/RNA, and the 20 amino acids for proteins – are plotted on a multi-dimensional grid. The resulting curve in 2D and 3D space and the implied graph in higher dimensions provide a perception of the underlying information of the sequences through visual inspection; numerical analyses, in geometrical or matrix terms, of the plots provide a measure of comparison between sequences and thus enable study of sequence hierarchies. The new approach has also enabled studies of comparisons of DNA sequences over many thousands of bases and provided new insights into the structure of the base compositions of DNA sequences. In this article we review in brief the origins and applications of graphical representations and highlight the future perspectives in this field.

Keywords: Graphical representation, DNA mapping, sequence descriptors, sequence visualization, sequence comparisons, base distribution, peptide vaccines, GRANCH techniques

Graphical Abstract

[1]
Abdurakhmonov, I.Y., Ed.; Bioinformatics in the era of post genomics and big data; Intech Open: London, 2018.
[http://dx.doi.org/10.5772/intechopen.71349]
[2]
Roy, A.; Raychaudhury, C.; Nandy, A. Novel techniques of graphical representation and analysis of DNA sequences—A review. J. Biosci., 1998, 23(1), 55-71.
[http://dx.doi.org/10.1007/BF02728525]
[3]
Jeffrey, H.J. Chaos game representation of gene structure. Nucleic Acids Res., 1990, 18(8), 2163-2170.
[http://dx.doi.org/10.1093/nar/18.8.2163] [PMID: 2336393]
[4]
Peng, C-K.; Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H.E. Long-range correlations in nucleotide sequences. Nature, 1992, 356(6365), 168-170.
[http://dx.doi.org/10.1038/356168a0] [PMID: 1301010]
[5]
Hamori, E.; Ruskin, J. H curves, a novel method of representation of nucleotide series especially suited for long DNA sequences. J. Biol. Chem., 1983, 258(2), 1318-1327.
[http://dx.doi.org/10.1016/S0021-9258(18)33196-X] [PMID: 6822501]
[6]
Gates, M.A. A simple way to look at DNA. J. Theor. Biol., 1986, 119(3), 319-328.
[http://dx.doi.org/10.1016/S0022-5193(86)80144-8] [PMID: 3016414]
[7]
Nandy, A. A new graphical representation and analysis of DNA sequence structure: I. Methodology and application to globin genes. Curr. Sci., 1994, 66, 309-314.
[8]
Leong, P.M.; Morgenthaler, S. Random walk and gap plots of DNA sequences. Comput. Appl. Biosci., 1995, 11(5), 503-507.
[http://dx.doi.org/10.1093/bioinformatics/11.5.503] [PMID: 8590173]
[9]
Raychaudhury, C.; Nandy, A. Indexing scheme and similarity measures for macromolecular sequences. J. Chem. Inf. Comput. Sci., 1999, 39(2), 243-247.
[http://dx.doi.org/10.1021/ci980077v] [PMID: 10192941]
[10]
Nandy, A.; Nandy, P. On the uniqueness of quantitative DNA difference descriptors in 2D graphical representation models. Chem. Phys. Lett., 2003, 368, 102-107.
[http://dx.doi.org/10.1016/S0009-2614(02)01830-4]
[11]
Randić, M.; Vracko, M.; Nandy, A.; Basak, S.C. On 3-D graphical representation of DNA primary sequences and their numerical characterization. J. Chem. Inf. Comput. Sci., 2000, 40(5), 1235-1244.
[http://dx.doi.org/10.1021/ci000034q] [PMID: 11045819]
[12]
Randić, M.; Vračko, M.; Lerš, N.; Plavšić, D. Analysis of similarity/dissimilarity of DNA sequences based on novel 2-D graphical representation. Chem. Phys. Lett., 2003, 371, 202-207.
[http://dx.doi.org/10.1016/S0009-2614(03)00244-6]
[13]
Wąż, P.; Bielińska-Wąż, D. 3D-dynamic representation of DNA sequences. J. Mol. Model., 2014, 20(3), 2141.
[http://dx.doi.org/10.1007/s00894-014-2141-8] [PMID: 24567158]
[14]
Jeong, B.S.; Golam Bari, A.T.; Rokeya Reaz, M.; Jeon, S.; Lim, C.G.; Choi, H.J. Codon-based encoding for DNA sequence analysis. Methods, 2014, 67(3), 373-379.
[http://dx.doi.org/10.1016/j.ymeth.2014.01.016] [PMID: 24530970]
[15]
Bari, A.T.; Reaz, M.R.; Islam, A.K.; Choi, H.J.; Jeong, B.S. Effective encoding for DNA sequence visualization based on nucleotide’s ring structure. Evol. Bioinform. Online, 2013, 9, 251-261.
[http://dx.doi.org/10.4137/EBO.S12160] [PMID: 23908584]
[16]
Xie, X.; Guan, J.; Zhou, S. Similarity evaluation of DNA sequences based on frequent patterns and entropy. BMC Genomics, 2015, 16(Suppl. 3), S5.
[http://dx.doi.org/10.1186/1471-2164-16-S3-S5] [PMID: 25707937]
[17]
Yu, H.J.; Huang, D.S. Graphical representation for DNA sequences via joint diagonalization of matrix pencil. IEEE J. Biomed. Health Inform., 2013, 17(3), 503-511.
[http://dx.doi.org/10.1109/TITB.2012.2227146] [PMID: 24592449]
[18]
Hou, W.; Pan, Q.; He, M. A novel representation of DNA sequence based on CMI coding. Physica A, 2014, 409, 87-96.
[http://dx.doi.org/10.1016/j.physa.2014.04.030]
[19]
Li, Y.; Liu, Q.; Zheng, X. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment. Physica A, 2016, 456, 256-270.
[http://dx.doi.org/10.1016/j.physa.2016.03.061]
[20]
Yin, C. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction. J. Bioinform. Comput. Biol., 2015, 13(2)1550004
[http://dx.doi.org/10.1142/S0219720015500043] [PMID: 25491390]
[21]
Peng, Y.; Liu, Y. A novel numerical characterization for graphical representations of DNA sequences. Mini Rev. Org. Chem., 2015, 12, 534-539.
[http://dx.doi.org/10.2174/1570193X13666151218191218]
[22]
Cheng, J.; Shan, S.; Ping, S. 4D graphical representation research of DNA sequences. Int. J. Biomath., 2015, 08, 47-58.
[23]
Manoj, K.G.; Rajdeep, N.; Manoj, M. A new adjacent pair 2D graphical representation of DNA sequences. J. Biol. Syst., 2013, 21, 196-244.
[24]
Mahapatra, A.; Mukherjee, J. Graphical footprint based alignmentfree method (GRAFree) for classifying the species in large-scale genomics. PReMI 2019, LNCS 11942; Deka, B., Ed.; Springer Nature Switzerland AG,; , 2019, pp. 105-112.
[http://dx.doi.org/10.1007/978-3-030-34872-4_12]
[25]
Zhang, Z.; Duan, T.; Zheng, J. 3D visualizations of multiple coronaviruses on whole genomes; Yunnan University, 2020.
[26]
Zhang, Z.; Song, T.; Zeng, X.; Niu, Y.; Jiang, Y.; Pan, L.; Ye, Y. ColorSquare: A colorful square visualization of DNA sequences. MATCH Commun. Math. Comput. Chem., 2012, 68, 621-637.
[27]
Jafarzadeh, N.; Iranmanesh, A. A novel graphical and numerical representation for analyzing DNA sequences based on codons. Match (Mulh.), 2012, 68, 611-620.
[28]
Aram, V.; Iranmanesh, A.; Majid, Z.A. Spider representation of DNA sequences. Computat. Theor. Nanosci., 2014, 11(2), 418-420.
[http://dx.doi.org/10.1166/jctn.2014.3371]
[29]
Yau, S.S.T.; Wang, J.; Niknejad, A.; Lu, C.; Jin, N.; Ho, Y.K. DNA sequence representation without degeneracy. Nucleic Acids Res., 2003, 31(12), 3078-3080.
[http://dx.doi.org/10.1093/nar/gkg432] [PMID: 12799435]
[30]
Bielinska-Waz, D. Four-component spectral representation of DNA sequences. J. Math. Chem., 2010, 47, 41-51.
[http://dx.doi.org/10.1007/s10910-009-9535-3]
[31]
Bielinska-Waz, D.; Clark, T.; Waz, P.; Nowak, W.; Nandy, A. 2D-dynamic representation of DNA sequences. Chem. Phys. Lett., 2007, 442, 140-144.
[http://dx.doi.org/10.1016/j.cplett.2007.05.050]
[32]
Bielinska-Waz, D.; Nowak, W.; Waz, P.; Nandy, A.; Clark, T. Distribution moments of 2D-graphs as descriptors of DNA sequences. Chem. Phys. Lett., 2007, 443, 408-413.
[http://dx.doi.org/10.1016/j.cplett.2007.06.088]
[33]
Panas, D.; Waz, P.; Bielinska-Waz, D.; Nandy, A.; Basak, S.C. 2D dynamic representation of DNA/RNA sequences as a characterization tool of the zika virus genome. MATCH Commun. Math. Comput. Chem., 2017, 77, 321-332.
[34]
Nandy, A.; Dey, S.; Basak, S.C.; Bielinska-Waz, D.; Waz, P. Characterizing the zika virus genome -a bioinformatics study. Curr. Comput. Aided Drug Des., 2016, 12(2), 87-97.
[http://dx.doi.org/10.2174/1573409912666160401115812] [PMID: 27032927]
[35]
Sen, D.; Dasgupta, S.; Pal, I.; Manna, S.; Basak, S.C.; Nandy, A.; Grunwald, G.D. Intercorrelation of major DNA/RNA sequence descriptors –a preliminary study. Curr. Comput. Aided Drug Des., 2016, 12(3), 216-228.
[http://dx.doi.org/10.2174/1573409912666160525111918] [PMID: 27222032]
[36]
Sen, D.; Roy, P.; Nandy, A.; Basak, S.C.; Das, S. Graphical representation methods: How well do they discriminate between homologous gene sequences? Chem. Phys., 2018, 513, 156-164.
[http://dx.doi.org/10.1016/j.chemphys.2018.07.031] [PMID: 32287864]
[37]
González-Díaz, H.; Agüero-Chapin, G.; Varona, J.; Molina, R.; Delogu, G.; Santana, L.; Uriarte, E.; Podda, G. 2D-RNA-coupling numbers: A new computational chemistry approach to link secondary structure topology with biological function. J. Comput. Chem., 2007, 28(6), 1049-1056.
[http://dx.doi.org/10.1002/jcc.20576] [PMID: 17279496]
[38]
Agüero-Chapin, G.; González-Díaz, H.; Molina, R.; Varona-Santos, J.; Uriarte, E.; González-Díaz, Y. Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L. FEBS Lett., 2006, 580(3), 723-730.
[http://dx.doi.org/10.1016/j.febslet.2005.12.072] [PMID: 16413021]
[39]
Nandy, A.; Harle, M.; Basak, S.C. Mathematical descriptors of DNA sequences: Development and applications. ARKIVOC, 2006, ix, 211-238.
[http://dx.doi.org/10.3998/ark.5550190.0007.907]
[40]
Mizuta, S. Graphical representation of biological sequences.Bioinformatics in the era of post genomics and big data; Abdurakhmonov, I.Y., Ed.; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.74795]
[41]
Randić, M.; Novič, M.; Plavšić, D. Milestones in graphical bioinformatics. Int. J. Quantum Chem., 2013, 113, 2413-2446.
[http://dx.doi.org/10.1002/qua.24479]
[42]
Randic, M.; Zupan, J.; Balaban, A.T. Unique graphical representation of protein sequences based on nucleotide triplet codons. Chem. Phys. Lett., 2004, 397, 247-252.
[http://dx.doi.org/10.1016/j.cplett.2004.08.118]
[43]
Wen, J.; Zhang, Y.Y. A 2D graphical representation of protein sequence and its numerical characterization. Chem. Phys. Lett., 2009, 2009(476), 281-286.
[http://dx.doi.org/10.1016/j.cplett.2009.06.017]
[44]
Abo-Elkhier, M.M.; Abd Elwahaab, M.A.; Abo El Maaty, M.I. Measuring similarity among protein sequences using a new descriptor. BioMed Res. Int., 2019, 20192796971
[http://dx.doi.org/10.1155/2019/2796971] [PMID: 31886192]
[45]
Nandy, A.; Ghosh, A.; Nandy, P. Numerical characterization of protein sequences and application to voltage-gated sodium channel alpha subunit phylogeny. In Silico Biol., 2009, 9(3), 77-87.
[http://dx.doi.org/10.3233/ISB-2009-0389] [PMID: 19795567]
[46]
Dey, T.; Biswas, S.; Chatterjee, S.; Manna, S.; Nandy, A.; Basak, S.C. 2D polar co-ordinate representation of amino acid sequences with some applications to ebolavirus, SARS and SARS-CoV-2 (COVID-19). MOL2NET, Int. Conf. Multidisciplinary Sci., Duluth, USA, 2020.,
[47]
Randic, M. A graph theoretical characterization of proteomics maps. Int. J. Quantum Chem., 2002, 90, 848-858.
[http://dx.doi.org/10.1002/qua.10060]
[48]
Bajzer, Z.; Randić, M.; Plavsić, D.; Basak, S.C. Novel map descriptors for characterization of toxic effects in proteomics maps. J. Mol. Graph. Model., 2003, 22(1), 1-9.
[http://dx.doi.org/10.1016/S1093-3263(02)00186-9] [PMID: 12798386]
[49]
Nandy, A. Graphical analysis of DNA sequence structure: III. indications of evolutionary distinctions and characteristics of introns and exons. Curr. Sci., 1996, 70(7), 661-668.
[50]
Nandy, A. Investigations on evolutionary changes in base distributions in gene sequences. Int. Electr. J. Mol. Design, 2002, 1, 545-558.
[51]
Nandy, A. Two-dimensional graphical representation of DNA sequences and intron-exon discrimination in intron-rich sequences. Comput. Appl. Biosci., 1996, 12(1), 55-62.
[http://dx.doi.org/10.1093/bioinformatics/12.1.55] [PMID: 8670620]
[52]
He, P.; Li, C.; Wang, J. Finding protein coding genes in the yeast genome based on the characteristic sequences. Internet. Electron. J. Mol. Des., 2005, 4, 613-624.
[53]
Li, C.; Wang, J. Relative entropy of DNA and its application. Physica A, 2005, 347, 465-471.
[http://dx.doi.org/10.1016/j.physa.2004.08.041]
[54]
Larionov, S.; Loskutov, A.; Ryadchenko, E. Chromosome evolution with naked eye: Palindromic context of the life origin. Chaos, 2008, 18(1)013105
[http://dx.doi.org/10.1063/1.2826631] [PMID: 18377056]
[55]
Wiesner, I.; Wiesnerova, D. 2D random walk representation of Begonia × tuberhybrida multiallelic loci used for germplasm identification. Biol. Plant., 2010, 54(2), 353-356.
[http://dx.doi.org/10.1007/s10535-010-0062-7]
[56]
González-Díaz, H.; Agüero-Chapin, G.; Varona-Santos, J.; Molina, R.; de la Riva, G.; Uriarte, E. 2D RNA-QSAR: Assigning ACC oxidase family membership with stochastic molecular descriptors; isolation and prediction of a sequence from Psidium guajava L. Bioorg. Med. Chem. Lett., 2005, 15(11), 2932-2937.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.017] [PMID: 15878661]
[57]
González-Díaz, H.; Vilar, S.; Santana, L.; Uriarte, E. Medicinal chemistry and bioinformatics--current trends in drugs discovery with networks topological indices. Curr. Top. Med. Chem., 2007, 7(10), 1015-1029.
[http://dx.doi.org/10.2174/156802607780906771] [PMID: 17508935]
[58]
Dey, S.; De, A.; Nandy, A. Rational design of peptide vaccines against multiple types of human papillomavirus. Cancer Inform., 2016, 15(S1)(Suppl. 1), 1-16.
[http://dx.doi.org/10.4137/CIN.S39071] [PMID: 27279731]
[59]
Agüero-Chapin, G.; de la Riva, G.A.; Molina-Ruiz, R.; Sánchez-Rodríguez, A.; Pérez-Machado, G.; Vasconcelos, V.; Antunes, A. Non-linear models based on simple topological indices to identify RNase III protein members. J. Theor. Biol., 2011, 273(1), 167-178.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.019] [PMID: 21192951]
[60]
Agüero-Chapin, G.; Sánchez-Rodríguez, A.; Hidalgo-Yanes, P.I.; Pérez-Castillo, Y.; Molina-Ruiz, R.; Marchal, K.; Vasconcelos, V.; Antunes, A. An alignment-free approach for eukaryotic ITS2 annotation and phylogenetic inference. PLoS One, 2011, 6(10)e26638
[http://dx.doi.org/10.1371/journal.pone.0026638] [PMID: 22046320]
[61]
Roy, P.; Dey, S.; Nandy, A.; Basak, S.C.; Das, S. Base distribution in Dengue nucleotide sequences differs significantly from other mosquito-borne human-infecting flavivirus members. Curr. Comput. Aided Drug Des., 2019, 15(1), 29-44.
[http://dx.doi.org/10.2174/1573409914666180731090005] [PMID: 30062973]
[62]
Dey, T.; Chatterjee, S.; Manna, S.; Nandy, A.; Basak, S.C. Identification and computational analysis of mutations in SARS-CoV-2. Comput. Biol. Med., 2021, 129104166
[http://dx.doi.org/10.1016/j.compbiomed.2020.104166] [PMID: 33383528]
[63]
Chatterjee, S; Dey, T Manna, S emergence of a pathogenic strain of covid-19. J. Bioinform. Syst. Biol., 2020, 3(4), 081-091.,
[64]
Vracko, M.; Basak, S.C; Sen, D.; Nandy, A. Clustering of zika viruses originating from different geographical regions using computational sequence descriptors. Curr. Comp-aided Drug Des., 2020, 17(2), 314-322.
[65]
De, A.; Sarkar, T.; Nandy, A. Bioinformatics studies of Influenza a hemagglutinin sequence data indicate recombination-like events leading to segment exchanges. BMC Res. Notes, 2016, 9, 222.
[http://dx.doi.org/10.1186/s13104-016-2017-3] [PMID: 27083561]
[66]
Dutta, T.; Nandy, A. Homologous recombination-like events of whole gene exchanges in flavivirus genomes. EC Microbiology, 2019, 15(12), 1-9.
[67]
Ghosh, A.; Nandy, A.; Nandy, P.; Gute, B.D.; Basak, S.C. Computational study of dispersion and extent of mutated and duplicated sequences of the H5N1 influenza neuraminidase over the period 1997-2008. J. Chem. Inf. Model., 2009, 49(11), 2627-2638.
[http://dx.doi.org/10.1021/ci9001662] [PMID: 19778054]
[68]
Nandy, A.; Sarkar, T.; Basak, S.C.; Nandy, P.; Das, S. Characteristics of influenza HA-NA interdependence determined through a graphical technique. Curr. Comput. Aided Drug Des., 2014, 10(4), 285-302.
[http://dx.doi.org/10.2174/1573409911666150318203621] [PMID: 25794303]
[69]
Nandy, A. Empirical relationship between intra-purine and intra-pyrimidine differences in conserved gene sequences. PLoS One, 2009, 4(8)e6829
[http://dx.doi.org/10.1371/journal.pone.0006829] [PMID: 19714250]
[70]
Liebovitch, L.S.; Tao, Y.; Todorov, A.T.; Levine, L. Is there an error correcting code in the base sequence in DNA? Biophys. J., 1996, 71(3), 1539-1544.
[http://dx.doi.org/10.1016/S0006-3495(96)79356-6] [PMID: 8874027]
[71]
Lolle, S.J.; Victor, J.L.; Young, J.M.; Pruitt, R.E. Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature, 2005, 434(7032), 505-509.
[http://dx.doi.org/10.1038/nature03380] [PMID: 15785770]
[72]
Gouglas, D.; Thanh Le, T.; Henderson, K.; Kaloudis, A.; Danielsen, T.; Hammersland, N.C.; Robinson, J.M.; Heaton, P.M.; Røttingen, J.A. Estimating the cost of vaccine development against epidemic infectious diseases: A cost minimisation study. Lancet Glob. Health, 2018, 6(12), e1386-e1396.
[http://dx.doi.org/10.1016/S2214-109X(18)30346-2] [PMID: 30342925]
[73]
Pronker, E.S.; Weenen, T.C.; Commandeur, H.; Claassen, E.H.; Osterhaus, A.D. Risk in vaccine research and development quantified. PLoS One, 2013, 8(3)e57755
[http://dx.doi.org/10.1371/journal.pone.0057755] [PMID: 23526951]
[74]
Basak, S.C.; Nandy, A. Computer-assisted approaches as decision support systems in the overall strategy of combating emerging diseases: Some comments regarding drug design, vaccinomics, and genomic surveillance of the zika virus. Curr. Comp. Aided Drug Des., 2016, 12(1), 1-3.
[http://dx.doi.org/10.2174/1573409912999160315115502]
[75]
Nandy, A.; Basak, S.C. A brief review of computer-assisted approaches to rational design of peptide vaccines. Int. J. Mol. Sci., 2016, 17(5), 666.
[http://dx.doi.org/10.3390/ijms17050666] [PMID: 27153063]
[76]
Zika virus surveillance, vaccinology and anti-zika drug discovery – computer assisted strategies to combat the menace.Nova science publishers, nova medicine and health: New York, New York,. 2019.
[77]
Ghosh, A.; Nandy, A.; Nandy, P. Computational analysis and determination of a highly conserved surface exposed segment in H5N1 avian flu and H1N1 swine flu neuraminidase. BMC Struct. Biol., 2010, 10, 6.
[http://dx.doi.org/10.1186/1472-6807-10-6] [PMID: 20170556]
[78]
Ghosh, A.; Chattopadhyay, S.; Chawla-Sarkar, M.; Nandy, P.; Nandy, A. In silico study of rotavirus VP7 surface accessible conserved regions for antiviral drug/vaccine design. PLoS One, 2012, 7(7)e40749
[http://dx.doi.org/10.1371/journal.pone.0040749] [PMID: 22844409]
[79]
Basak, S.C.; Majumdar, S.; Nandy, A.; Roy, P.; Dutta, T.; Vracko, M.; Bhattacharjee, A.K. Compu Drug ter-Assisted and Data Driven Approaches for Surveillance,Discovery, and vaccine design for the zika virus. Pharmaceuticals (Basel), 2019, 12(4), 157.
[http://dx.doi.org/10.3390/ph12040157] [PMID: 31623241]
[80]
Nandy, A.; Manna, S.; Basak, S C Computational methodology for peptide vaccine design for zika virus: A bioinformatics approach – ch.2 -book chapter in immunoinformatics.Methods Mol Biol; Tomar, N, Ed.; 17-30. Springer Protocols, Humana Press: New York, New York, 2020, 2131, pp;
[81]
Biswas, S.; Dey, T.; Chatterjee, S.; Manna, S.; Nandy, A.; Das, S.; Nandy, P.; Basak, S.C. A novel approach to peptide vaccine design for ebola virus. 24 November 2019. MDPI AG in MOL2NET 2019 International Conference on Multidisciplinary Sciences, (5)2019,
[82]
Purcell, A.W.; McCluskey, J.; Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov., 2007, 6(5), 404-414.
[http://dx.doi.org/10.1038/nrd2224] [PMID: 17473845]
[83]
Nandy, A.; Dey, S.; Roy, P.; Basak, S.C. Epidemics and peptide vaccine response: A brief review. Curr. Top. Med. Chem., 2018, 18(26), 2202-2208.
[http://dx.doi.org/10.2174/1568026618666181112144745] [PMID: 30417788]
[84]
Fediuk, R.S.; Lesovik, V.S.; Liseitsev, Y.L.; Timokhin, R.A.; Bituyev, A.V.; Zaiakhanov, M.Y.; Mochalov, A.V. Composite binders for concretes with improved shock resistance. Magazine Civil Engg., 2019, 85(1), 28-38.
[85]
Fediuk, R.; Yushin, A. Composite binders for concrete with reduced permeability.IOP Conference Series: Materials Sci. Engg., 2016, 116(1), p. 012021.
[http://dx.doi.org/10.1088/1757-899X/116/1/012021]
[86]
Fediuk, R. Reducing permeability of fiber concrete using composite binders. Special Topics Rev. Porous Media., 2018, 9(1), 79-89.
[http://dx.doi.org/10.1615/SpecialTopicsRevPorousMedia.v9.i1.100]
[87]
Lesovik, V.; Voronov, V.; Glagolev, E.; Fediuk, R.; Alaskhanov, A.; Mugahed Amran, Y.H.; Murali, G.; Baranov, A. Improving the behaviors of foam concrete through the use of composite binder. J. Build. Eng., 2020, 31101414
[http://dx.doi.org/10.1016/j.jobe.2020.101414]
[88]
Fediuk, R.S.; Pak, A.; Kuzmin, D. Fine-grained concrete of composite binder. IOP Conf. Series Mater. Sci. Eng., 2017, 262(1)012025
[http://dx.doi.org/10.1088/1757-899X/262/1/012025]
[89]
Sarkar, M.; Adak, D.; Tamang, A.; Chattopadhyay, B.; Mandal, S. Genetically-enriched microbe-facilitated selfhealing concrete –a sustainable material for a new generation of construction technology; RSC Adv, 2015, p. 105363.
[90]
Sarkar, M.; Alam, N.; Chaudhuri, B.; Chattopadhyay, B.; Mandal, S. Development of an improved E. coli bacterial strain for green and sustainable concrete technology; RSC Adv, 2015, p. 32175.
[91]
Ghosh, S.; Biswas, M.; Chattopadhyay, B.D.; Mandal, S. Microbial activity on the microstructure of bacteria modified mortar. Cement Concr. Compos., 2009, 31, 93-98.
[http://dx.doi.org/10.1016/j.cemconcomp.2009.01.001]
[92]
Biswas, M.; Majumdar, S.; Chowdhury, T.; Chattopadhyay, B.D; Mandal, S.; Halder, U.; Yamasaki, S. Bioremediase a unique protein from a novel bacterium BKH1, ushering a new hope in concrete technology. Enz. Microbial Tech., 2010, 46, 581-587.
[http://dx.doi.org/10.1016/j.enzmictec.2010.03.005]
[93]
Zhang, Z.; Song, T.; Zeng, X.; Niu, Y.; Jiang, Y.; Pan, L.; Ye, Y. ColorSquare: A colorful square visualization of DNA sequences. MATCH Commun. Math. Comput. Chem., 2012, 68, 621-637.
[94]
Li, C.; Fei, W.; Zhao, Y.; Yu, X. Novel graphical representation and numerical characterization of DNA sequences. Appl. Sci. (Basel), 2016, 6(3), 63.
[http://dx.doi.org/10.3390/app6030063]
[95]
Bielinska-Waz, D.; Panas, D.; Waz, P. Dynamic representations of biological sequences. MATCH Commun. Math. Comput. Chem., 2019, 82, 205-218.
[96]
Grifoni, A.; Sidney, J.; Zhang, Y.; Scheuermann, R.H.; Peters, B.; Sette, A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe, 2020, 27(4), 671-680.e2.
[http://dx.doi.org/10.1016/j.chom.2020.03.002] [PMID: 32183941]
[97]
Zhang, J. Cai, Y Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science, 2021.
[98]
Battineni, G.; Chintalapudi, N.; Amenta, F. 2020 SARS-CoV-2 epidemic calculation in Italy by SEIR compartmental models. 2020. Available from:, https://www.emerald.com/insight/2210-8327.htm [Accessed on: 6th April 2021]
[99]
Meeusen, E.NT.; Walker, J.; Peters, A.; Pastoret, P-P.; Jungersen, G. Current status of veterinary vaccines. Clin. Microbiol. Rev., 2007, 20(3), 489-510.
[http://dx.doi.org/10.1128/CMR.00005-07]
[100]
Basak, S.C. Mathematical descriptors for the prediction of property, bioactivity, and toxicity of chemicals from their structure: A chemical-cum-biochemical approach. Curr. Comput. Aided Drug Des., 2013, 9(4), 449-462.
[http://dx.doi.org/10.2174/15734099113096660041] [PMID: 24138422]
[101]
Basak, S.C. Importance of proper statistical practices in the use of chemodescriptors and biodescriptors in the twenty-first century. Future Med. Chem., 2019, 11(21), 2755-2758.
[http://dx.doi.org/10.4155/fmc-2019-0250] [PMID: 31686545]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy