Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

The Use of Cinchona Alkaloid Derivatives as Chiral Ligands and Organocatalysts in Asymmetric Catalysis

Author(s): Minghua Li, Wei He* and Sheng-Yong Zhang*

Volume 19, Issue 2, 2022

Published on: 28 April, 2021

Page: [146 - 165] Pages: 20

DOI: 10.2174/1570193X18666210428133120

Price: $65

Abstract

Cinchona alkaloids are natural products extracted from cinchona plants, which contain quinine, quinidine, cinchonine, and cinchonidine. During the past 30 years, due to their attractive structural properties, these compounds have been used as chiral skeletons and organocatalysts in asymmetric organic synthesis. In this review, we summarize the applications of cinchona alkaloids derivatives in asymmetric catalysis recently developed by our group, including oxidation, reduction, and C-C bonds formation. These studies have solved some of the problems with the various asymmetric reactions discussed, while also enriching alkaloids chemistry, providing new ideas for the design and synthesis of chiral catalysts, and providing abundant experimental data for the chiral induction process.

Keywords: Enantioselectivity, catalysts, chiral induction, oxidation, reduction, C-C bonds formation.

Graphical Abstract

[1]
Kacprzak, K.; Gawroñski, J. Cinchona alkaloids and their derivatives: versatile catalysts and ligands in asymmetric synthesis. Synthesis, 2001, 7, 961-998.
[2]
Dolling, U.H.; Dvais, P.; Grabowski, E.J.J. Efficient catalytic asymmetric alkylations enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysis. J. Am. Chem. Soc., 1984, 106, 446-447.
[http://dx.doi.org/10.1021/ja00314a045]
[3]
Yoon, T.P.; Jacobsen, E.N. Privileged chiral catalysts. Science, 2003, 299(5613), 1691-1693.
[http://dx.doi.org/10.1126/science.1083622] [PMID: 12637734]
[4]
Bryant, L.A.; Fanelli, R.; Cobb, A.J. Cupreines and cupreidines: An established class of bifunctional cinchona organocatalysts. Beilstein J. Org. Chem., 2016, 12, 429-443.
[http://dx.doi.org/10.3762/bjoc.12.46] [PMID: 27340439]
[5]
Itsuno, S. Synthesis of chiral polymer catalysts and their application to asymmetric reactions. Yuki Gosei Kagaku Kyokaishi, 2016, 74, 710-719.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.74.710]
[6]
Duan, J.; Li, P. Asymmetric organocatalysis mediated by primary amines derived from cinchona alkaloids: Recent advances. Catal. Sci. Technol., 2014, 4, 311-320.
[http://dx.doi.org/10.1039/C3CY00739A]
[7]
Zheng, S.Q.; Schienebeck, C.M.; Zhang, W.; Wang, H.Y.; Tang, W.P. Cinchona alkaloids as organocata-lysts in enantioselective halofunctionalization of alkenes and alkynes. Asian J. Org. Chem., 2014, 3, 366-376.
[http://dx.doi.org/10.1002/ajoc.201400030]
[8]
Melchiorre, P. Cinchona-based primary amine catalysis in the asymmetric functionalization of carbonyl compounds. Angew. Chem. Int. Ed. Engl., 2012, 51(39), 9748-9770.
[http://dx.doi.org/10.1002/anie.201109036] [PMID: 22893602]
[9]
Yeboah, E.M.O.; Yeboah, S.O.; Singh, G.S. Recent applications of cinchona alkaloids and their derivatives as catalysts in metal-free asymmetric synthesis. Tetrahedron, 2011, 67, 1725-1762.
[http://dx.doi.org/10.1016/j.tet.2010.12.050]
[10]
Jiang, L.; Chen, Y.C. Recent advances in asymmetric catalysis with cinchona alkaloid-based primary amines. Catal. Sci. Technol., 2011, 1, 354-365.
[http://dx.doi.org/10.1039/c0cy00096e]
[11]
Marcelli, T.; Hiemstra, H. Cinchona alkaloids in asymmetric organocatalysis. Synthesis, 2010, 8, 1229-1279.
[http://dx.doi.org/10.1055/s-0029-1218699]
[12]
Jew, S.S.; Park, H.G. Cinchona-based phase-transfer catalysts for asymmetric synthesis. Chem. Commun. (Camb.), 2009, 46(46), 7090-7103.
[http://dx.doi.org/10.1039/b914028j] [PMID: 19920996]
[13]
Connon, S.J. Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocata-lysts. Chem. Commun. , 2008, 22, 2499-2510.
[http://dx.doi.org/10.1039/b719249e]
[14]
Tálas, E.; Margitfalvi, J.L. Natural alkaloids and synthetic relatives as chiral templates of the Orito’s reaction. Chirality, 2010, 22(1), 3-15.
[http://dx.doi.org/10.1002/chir.20694] [PMID: 19205040]
[15]
Blaser, H.U.; Studer, M. Cinchona-modified platinum catalysts: From ligand acceleration to technical processes. Acc. Chem. Res., 2007, 40(12), 1348-1356.
[http://dx.doi.org/10.1021/ar700088f] [PMID: 17713963]
[16]
Bodkin, J.A.; McLeod, M.D. The sharpless asymmetric aminohydroxylation. J. Chem. Sci., 2002, 24, 2733-2746.
[17]
Gao, Y.; Hanson, R.M.; Sharpless, K.B. Catalytic asymmetric epoxidation and kinetic resolution: Modified procedures including in situ derivatization. J. Am. Chem. Soc., 1987, 109, 5765-5780.
[http://dx.doi.org/10.1021/ja00253a032]
[18]
Zhu, Y.; Wang, Q.; Cornwall, R.G.; Shi, Y. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem. Rev., 2014, 114(16), 8199-8256.
[http://dx.doi.org/10.1021/cr500064w] [PMID: 24785198]
[19]
Katsuki, T.; Martin, V.S. Asymmetric epoxidation of allylic alcohols: The Katsuki-Sharpless epoxidation reaction. Org. React., 1996, 48, 1-299.
[http://dx.doi.org/10.1002/0471264180.or048.01]
[20]
Matsumoto, K.; Saitoand, B.; Katsuki, T. Asymmetric catalysis of metal complexes with non-planar ONNO ligands: Salen, salalen and salan. Chem. Comm., 2007, 3619-3627.
[21]
Wong, O.A.; Shi, Y. Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by chiral ketones and iminium salts. Chem. Rev., 2008, 108(9), 3958-3987.
[http://dx.doi.org/10.1021/cr068367v] [PMID: 18590339]
[22]
Xia, Q.H.; Ge, H.Q.; Ye, C.P.; Liu, Z.M.; Su, K.X. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem. Rev., 2005, 105(5), 1603-1662.
[http://dx.doi.org/10.1021/cr0406458] [PMID: 15884785]
[23]
De Faveri, G.; Ilyashenko, G.; Watkinson, M. Recent advances in catalytic asymmetric epoxidation using the environmentally benign oxidant hydrogen peroxide and its derivatives. Chem. Soc. Rev., 2011, 40(3), 1722-1760.
[http://dx.doi.org/10.1039/C0CS00077A] [PMID: 21079863]
[24]
Ji, N.; Yuan, J.; Liu, M.; Lan, T.; He, W. Novel chiral Schiff base/Ti(iv) catalysts for the catalytic asymmetric epoxidation of N-alkenyl sulfonamides. Chem. Commun. (Camb.), 2016, 52(49), 7731-7734.
[http://dx.doi.org/10.1039/C6CC02852G] [PMID: 27240928]
[25]
Minatti, A.; Muñiz, K. Intramolecular aminopalladation of alkenes as a key step to pyrrolidines and related heterocycles. Chem. Soc. Rev., 2007, 36(7), 1142-1152.
[http://dx.doi.org/10.1039/B607474J] [PMID: 17576481]
[26]
Tian, Q.Q.; Liu, Y.L.; Wang, X.Y.; Wang, X.; He, W. PdII/novel chiral cinchona alkaloid oxazoline-catalyzed enantioselective oxidative cyclization of aromatic Alkenyl Amides. Eur. J. Org. Chem., 2019, 3850-3855.
[http://dx.doi.org/10.1002/ejoc.201900431]
[27]
Kolb, H.C.; Van Nieuwenhze, M.S.; Sharpless, K.B. Catalytic asymmetric dihydroxylation. Chem. Rev., 1994, 94, 2483-2547.
[http://dx.doi.org/10.1021/cr00032a009]
[28]
Hentges, S.G.; Sharpless, K.B. Asymmetric induction in the reaction of osmium tetroxide with oleifns. J. Am. Chem. Soc., 1980, 102, 4263-4265.
[http://dx.doi.org/10.1021/ja00532a050]
[29]
Jacobsen, E.N.; Marko, I.; Mungall, W.S.; Schroder, G.; Sharpless, K.B. Asymmetric dihydrocylation via ligand-accelerated catalysis. J. Am. Chem. Soc., 1988, 110, 1968-1970.
[http://dx.doi.org/10.1021/ja00214a053]
[30]
Kuang, Y.Q.; Zhang, S.Y.; Wei, L.L. A simple and effective soluble polymer-bound ligand for the asymmetric dihydroxylation of olefins: DHQD-PHAL-OPEG-OMe. Tetrahedron Lett., 2001, 42, 5925-5927.
[http://dx.doi.org/10.1016/S0040-4039(01)01105-4]
[31]
Han, H.; Janda, K.D. A soluble polymer-bound approach to the Sharpless catalytic asymmetric dihydroxylation (AD) reaction: Preparation and application of a [(DHQD)2PHAL-PEG-OMe] ligand. Tetrahedron Lett., 1997, 38, 1527-1530.
[http://dx.doi.org/10.1016/S0040-4039(97)00129-9]
[32]
Kuang, Y.Q.; Zhang, S.Y.; Jiang, R.; Wei, L.L. A free ligand for the asymmetric dihydroxylation of olefin sutilizing one-phase catalysis and two-phase separation. Tetrahedron Lett., 2002, 43, 3669-3671.
[http://dx.doi.org/10.1016/S0040-4039(02)00624-X]
[33]
Song, C.E.; Jung, D.U.; Roh, E.J.; Lee, S.G.; Chi, D.Y. Osmium tetroxide-(QN)2PHAL in an ionic liquid: A highly efficient and recyclable catalyst system for asymmetric dihydroxylation of olefins. Chem. Commun. (Camb.), 2002, 24(24), 3038-3039.
[http://dx.doi.org/10.1039/B210104C] [PMID: 12536805]
[34]
Jiang, R.; Kuang, Y.Q.; Sun, X.L.; Zhang, S.Y. An improved catalytic system for recycling OsO4 and chiral ligands in the asymmetric dihydroxylation of olefins. Tetrahedron Asymmetry, 2004, 15, 743-746.
[http://dx.doi.org/10.1016/j.tetasy.2004.01.011]
[35]
Chen, H.; Wang, Q.F.; Sun, X.L.; Luo, J.; Jiang, R. Cinchona alkaloid ester derivatives as ligands in the asymmetric dihydroxylation and aminohydroxylation of alkenes. Mendeleev Commun., 2010, 20, 104-105.
[http://dx.doi.org/10.1016/j.mencom.2010.03.013]
[36]
Li, G.G.; Angert, H.H.; Sharpless, K.B. N-Halocarbamate salts lead to more efficient catalytic asymmetric aminohydroxylation. Angew. Chem. Int. Ed. Engl., 1996, 35, 2813-2817.
[http://dx.doi.org/10.1002/anie.199628131]
[37]
Wassman, S.; Wilken, J.M. Synthesis and application of C2-symmetrical bis-β-amino alcohols based on the octahydro-cyclopenta[b]pyrrole system in the catalytic enantioselective addition of diethylzinc to benzaldehyde. Tetrahedron Asymmetry, 1999, 10, 4437-4445.
[http://dx.doi.org/10.1016/S0957-4166(99)00475-9]
[38]
Cheng, S.K.; Kuang, Y.Q.; Lu, L.H.; Li, X.Y.; Zhang, S.Y. Asymmetric amino hydroxylation of olefins catalyzed by 1,4- bis(9-O-quininy1)phthalazine-OsO4 complex. Chem. J. Chin. Univ., 2004, 25, 651-653.
[39]
Cheng, S.K.; Zhang, S.Y.; Li, X.Y.; Jiang, R.; Nan, P.J. Synthesis of chiral ligand 3,6-bis (9- O-dihydro-quinidine) pyridazine and its catalytic performance in Asymmetric amino hydroxylation of olefins. Chin. J. Catal., 2005, 26, 621-624.
[40]
Cheng, S.K.; Zhang, S.Y.; Sun, X.L.; Jiang, R.; Wang, Q.F. Synthesis of new chiral ligand(QN)2AQN and its application to the catalytic asymmetric amino hydroxylation of methyl cinnamates. Youji Huaxue, 2005, 25, 982-986.
[41]
Ani, D.; Beneesh, P.B.; Aswathy, L.B. Synthesis of furans – recent advances. Org. Prep. Proced. Int., 2019, 51, 409-442.
[http://dx.doi.org/10.1080/00304948.2019.1633228]
[42]
Calter, M.A.; Phillips, R.M.; Flaschenriem, C. Catalytic, asymmetric, “interrupted” Feist-Bénary reactions. J. Am. Chem. Soc., 2005, 127(42), 14566-14567.
[http://dx.doi.org/10.1021/ja055752d] [PMID: 16231897]
[43]
Jin, Y.; Liu, X.Y.; Jing, L.L.; He, W.; Sun, X.L.; Zhang, S.Y. Investigation on 1,4-dichlorophthalazine-derivatized cinchona alkaloids-catalyzed asymmetric “interrupted” Feist-Bénary reaction. Chirality, 2007, 19(5), 386-390.
[http://dx.doi.org/10.1002/chir.20394] [PMID: 17380487]
[44]
Creary, X.J. Reaction of organometallic reagents with ethyl trifluoroacetate and diethyl oxalate. Formation of trifluoromethyl ketones and alpha-keto esters via stable tetrahedral adducts. J. Org. Chem., 1987, 52, 5026-5030.
[http://dx.doi.org/10.1021/jo00231a036]
[45]
Jin, Y.; Yao, Z.J.; Liu, P.; Jiang, R.; Zhang, S.Y. Investigation on 3,6-dichloro pyridazine-derivatized cinchona alkaloid catalyzed asymmetrie “Interrupted” Feist-Bénary reactions. Youji Huaxue, 2008, 1, 94-98.
[46]
Chen, H.; Jin, Y.; Jiang, R.; Sun, X.L.; Li, X.Y.; Zhang, S.Y. New cinchona alkaloid ester derivatives as catalysts in asymmetric “Interrupted” Feist–Bénary reaction. Catal. Commun., 2008, 9, 1858-1862.
[http://dx.doi.org/10.1016/j.catcom.2008.03.003]
[47]
Jin, Y.; Zhang, T.Y.; Chang, S. Cinchona alkaloid-9-O-trimethylsilyl derivatives as organocatalysts for the asymmetric “Interrupted” Feist-Bénary reaction. Chin. J. Appl. Chem., 2012, 29, 1006-1010.
[http://dx.doi.org/10.3724/SP.J.1095.2012.00417]
[48]
Lykke, L.; Rodríguez-Escrich, C.; Jørgensen, K.A. Catalytic enantioselective oxaziridination. J. Am. Chem. Soc., 2011, 133(38), 14932-14935.
[http://dx.doi.org/10.1021/ja2064457] [PMID: 21875125]
[49]
Ji, N.; Yuan, J.N.; Xue, S.S.; Zhang, J.N.; He, W. Novel chiral thiourea organocatalysts for the catalytic asymmetricoxaziri-dination. Tetrahedron, 2016, 72, 512-517.
[http://dx.doi.org/10.1016/j.tet.2015.12.010]
[50]
Zassinovich, G.; Mestroni, G.; Gladiali, S. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts. Chem. Rev., 1992, 92, 1051-1069.
[http://dx.doi.org/10.1021/cr00013a015]
[51]
Noyori, R.; Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res., 1997, 30, 97-102.
[http://dx.doi.org/10.1021/ar9502341]
[52]
Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. Asymmetric transfer hydrogenation of imines. J. Am. Chem. Soc., 1996, 118, 2521-2522.
[http://dx.doi.org/10.1021/ja954126l]
[53]
Zhou, Y.B.; Tang, F.Y.; Xu, H.D.; Wu, X.Y.; Ma, J.A.; Zhou, Q.L. Chiral 1,2,3,4-tetrahydroquinolinyl- oxazoline ligands for Ru-catalyzed asymmetric transfer hydrogenation of ketones. Tetrahedron, 2002, 13, 469-473.
[http://dx.doi.org/10.1016/S0957-4166(02)00139-8]
[54]
Liu, P.N.; Chen, Y.C.; Deng, J.G.; Tu, Y.Q. Study of the recycling use of the dendritic catalyst in asymmetric transfer hydrogenation. Youji Huaxue, 2005, 25, 598-600.
[55]
He, W.; Zhang, B.L.; Liu, P.; Sun, X.L.; Zhang, S.Y. Synthesis of chiral diamine ligands derived from cinchona alkaloids and their catalytic performance for asymmetric transfer hydrogenation. Chin. J. Catal., 2006, 27, 527-531.
[http://dx.doi.org/10.1016/S1872-2067(06)60030-2]
[56]
Henry, L. Nitro-alcohols. C. R. Hebd. Seances Acad. Sci., 1895, 120, 1265-1268.
[57]
Boruwa, J.; Gogoi, N.; Saikia, P.P. Catalytic asymmetric Henry reaction. Tetrahedron Asymmetry, 2007, 17, 3315-3326.
[http://dx.doi.org/10.1016/j.tetasy.2006.12.005]
[58]
Zhang, S.; Lia, Y.A.; Xua, Y.G.; Wang, Z.Y. Recent progress in copper catalyzed asymmetric Henry reaction. Chin. Chem. Lett., 2018, 29, 873-883.
[http://dx.doi.org/10.1016/j.cclet.2017.10.001]
[59]
Wei, Y.; Yao, L.; Zhang, B.L.; He, W.; Zhang, S.Y. Novel schiff base ligands derived from cinchona alkaloids for Cu (II)-catalyzed asymmetric Henry reaction. Tetrahedron, 2011, 67, 8552-8558.
[http://dx.doi.org/10.1016/j.tet.2011.08.076]
[60]
Yao, L.; Wei, Y.; Wang, P.A.; He, W.; Zhang, S.Y. Promotion of Henry reactions using Cu (OTf)2 and a sterically hindered Schiff base: Access to enantioenriched b-hydroxynitroalkanes. Tetrahedron, 2012, 68, 9119-9124.
[http://dx.doi.org/10.1016/j.tet.2012.08.029]
[61]
Noble, A.; Anderson, J.C. Nitro-Mannich reaction. Chem. Rev., 2013, 113(5), 2887-2939.
[http://dx.doi.org/10.1021/cr300272t] [PMID: 23461586]
[62]
Ting, A.; Schaus, S.E. Organocatalytic asymmetric Mannich reactions: New methodology, catalyst design, and synthetic applications. Eur. J. Org. Chem., 2007, 35, 5797-5815.
[http://dx.doi.org/10.1002/ejoc.200700409]
[63]
Wei, Y.; He, W.; Liu, Y.; Liu, P.; Zhang, S. Highly enantioselective nitro-Mannich reaction catalyzed by cinchona alkaloids and N-benzotriazole derived ammonium salts. Org. Lett., 2012, 14(3), 704-707.
[http://dx.doi.org/10.1021/ol203170x] [PMID: 22257269]
[64]
Li, M.H.; Ji, N.; Lan, T.; He, W.; Liu, R. Construction of chiral quaternary carbon center via catalytic asymmetric aza-Henry reaction with a substituted nitroacetates. RSC Advances, 2014, 4, 20346-20350.
[http://dx.doi.org/10.1039/C4RA01390E]
[65]
Khan, N.H.; Kureshy, R.I.; Abdi, S.H.R. Metal catalyzed asymmetric cyanation reactions. Coord. Chem. Rev., 2008, 252, 593-623.
[http://dx.doi.org/10.1016/j.ccr.2007.09.010]
[66]
Wang, W.T.; Liu, X.H.; Lin, L.L.; Feng, X.M. Recent progress in the chemically catalyzed enantioselective synthesis of cyanohydrins. Eur. J. Org. Chem., 2010, 4751-4769.
[http://dx.doi.org/10.1002/ejoc.201000462]
[67]
Ji, N.; Yao, L.; He, W.; Liu, Y.R. Bifunctional Schiff base/Ti (IV) catalysts for enantioselective cyano formylation of aldehydes with ethyl cyanoformate. Appl. Org. Chem., 2013, 27, 209-213.
[http://dx.doi.org/10.1002/aoc.2951]
[68]
Trost, B.M.; Strege, P.E. Asymmetric induction in catalytic allylic alkylation. J. Am. Chem. Soc., 1977, 99, 1649-1651.
[http://dx.doi.org/10.1021/ja00447a064]
[69]
Rios, I.G.; Rosas-Hernandez, A.; Martin, E. Recent advances in the application of chiral phosphine ligands in Pd-catalysed asymmetric allylic alkylation. Molecules, 2011, 16(1), 970-1010.
[http://dx.doi.org/10.3390/molecules16010970] [PMID: 21258301]
[70]
Samar, N.; Ameer, F.Z.; Sajjad, A.; Irum, S.; Ali, I.; Sadia, F. Novel chiral ligands for Palladium-catalyzed asymmetric allylic alkylation/asymmetric Tsuji-Trost reaction. Curr. Org. Chem., 2019, 23, 1168-1213.
[http://dx.doi.org/10.2174/1385272823666190624145039]
[71]
Wang, Q.F.; He, W.; Liu, X.Y.; Chen, H.; Qin, X.Y.; Zhang, S.Y. Facile one-pot synthesis of cinchona alkaloid-based P,N ligands and their application to Pd-catalyzed asymmetric allylic alkylation. Tetrahedron Asymmetry, 2008, 19, 2447-2450.
[http://dx.doi.org/10.1016/j.tetasy.2008.10.030]
[72]
Ban, S.; Du, D.M.; Liu, H.; Yang, W. Synthesis of binaphthyl sulfonimides and their application in the enantioselective Michael addition of ketones to nitroalkenes. Eur. J. Org. Chem., 2010, 27, 5160-5164.
[http://dx.doi.org/10.1002/ejoc.201000818]
[73]
Shi, X.; He, W.; Li, H.; Zhang, X.; Zhang, S.Y. Highly efficient and enantioselective Michael addition of acetylacetone to nitro olefins catalyzed by chiral bifunctional organocatalyst bearing multiple hydrogen-bonding donors. Tetrahedron Lett., 2011, 52, 3204-3207.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.043]
[74]
Li, H.; Zhang, X.; Shi, X.; Ji, N.; He, W.; Zhang, S.Y.; Zhang, B.L. Modular bifunctional chiral thioureas as versatile organocatalysts for highly enantioselective Aza-Henry reaction and Michael addition. Adv. Synth. Catal., 2012, 354, 2264-2274.
[http://dx.doi.org/10.1002/adsc.201200144]
[75]
Liu, Y.; Wang, X.; Wang, X.; He, W. Highly enantioselective Michael addition of diethyl malonate to chalcones catalyzed by cinchona alkaloids-derivatived bifunctional tertiary amine-thioureas bearing multiple hydrogen-bonding donors. Org. Biomol. Chem., 2014, 12(20), 3163-3166.
[http://dx.doi.org/10.1039/C4OB00203B] [PMID: 24682148]
[76]
Yuan, J.N.; Liu, H.X.; Tian, Q.Q.; Ji, N.; Shen, K.; He, W. Highly enantioselective Michael addition of dithiomalonates to nitroolefins catalyzed by new bifunctional chiral thioureas. Synthesis, 2018, 50, 2577-2586.
[http://dx.doi.org/10.1055/s-0036-1591987]
[77]
Hashimoto, T.; Maruoka, K. Recent development and application of chiral phase-transfer catalysts. Chem. Rev., 2007, 107(12), 5656-5682.
[http://dx.doi.org/10.1021/cr068368n] [PMID: 18072806]
[78]
Lygo, B.; Andrews, B.I.; Crosby, J.; Peterson, J.A. Asymmetric alkylation of glycine imines using in situ generated phase-transfer catalysts. Tetrahedron Lett., 2002, 43, 8015-8018.
[http://dx.doi.org/10.1016/S0040-4039(02)01982-2]
[79]
Han, Z.; Yamaguchi, Y.; Kitamura, M.; Maruoka, K. Convenient preparation of highly active Phase‐Transfer catalyst for catalytic asymmetric synthesis of α‐Alkyl‐ and α,α‐Dialkyl‐α‐amino Acids: Application to the short asymmetric synthesis of BIRT‐377. Tetrahedron Lett., 2005, 46, 8555-8558.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.185]
[80]
O’Donnell, M.J.; Wu, S.; Huffman, J.C. A new active catalyst species for enantioselective alkylation by Phase-Transfer catalysis. Tetrahedron, 1994, 50, 4507-4518.
[http://dx.doi.org/10.1016/S0040-4020(01)89382-0]
[81]
Zassinovich, G.; Mestroni, G.; Gladiali, S. Asymmetric hydrogen transfer- reactions promoted by homogeneous transition-metal catalysts. Chem. Rev., 1992, 92, 1051-1069.
[http://dx.doi.org/10.1021/cr00013a015]
[82]
He, W.; Zhang, B.L.; Liu, W.M.; Sun, X.L.; Zhang, S.Y. A novel class of chiral Phase Transfer catalysts and their catalytic performance. Youji Huaxue, 2006, 7, 1008-1011.
[83]
He, W.; Wang, Q.J.; Zhang, S.Y. Synthesis of novel chrial Phase-Transfer catalysts and their application to asymmetric synthesis of α -Amino acids derivatives. Synlett, 2009, 8, 1311-1314.
[84]
Song, J.Q.; He, W.; Nie, H.F.; Li, X.Y.; Zhang, S.Y. Synthesis ofnew cinchona quaternary ammonium salts as the chiral phase transfer catalysts and their catalytic activity. Chinese J. Synth. Chem., 2011, 19, 32-35.
[85]
Zhang, D.; Chen, Y.; Cai, H.; Yin, L.; Zhong, J.; Man, J.; Zhang, Q.F.; Bethi, V.; Tanaka, F. Direct catalytic asymmetric synthesis of oxindole-derived δ-hydroxy-β-ketoesters by aldol reactions. Org. Lett., 2020, 22(1), 6-10.
[http://dx.doi.org/10.1021/acs.orglett.9b03527] [PMID: 31746616]
[86]
Spinnato, D.; Schweitzer-Chaput, B.; Goti, G.; Ošeka, M.; Melchiorre, P. A Photochemical organocatalytic strategy for the α-alkylation of ketones by using radicals. Angew. Chem. Int. Ed. Engl., 2020, 59(24), 9485-9490.
[http://dx.doi.org/10.1002/anie.201915814] [PMID: 32053279]
[87]
Yang, Y.; Jiang, Y.; Du, W.; Chen, Y.C. Asymmetric cross [10+2] cycloadditions of 2-alkylidene-1-indanones and activated alkenes under Phase-Transfer catalysis. Chemistry, 2020, 26(8), 1754-1758.
[http://dx.doi.org/10.1002/chem.201904930] [PMID: 31777118]
[88]
Arai, R.; Hirashima, S.I.; Nakano, T.; Kawada, M.; Akutsu, H.; Nakashima, K.; Miura, T. Asymmetric conjugate addition of phosphonates to enones using cinchona-diamino methylenemal-ononitrile organocatalysts. J. Org. Chem., 2020, 85(5), 3872-3878.
[http://dx.doi.org/10.1021/acs.joc.9b02553] [PMID: 31986038]
[89]
Ullah, M.S.; Chhanda, S.A.; Itsuno, S. ADMET polymerization of dimeric cinchona squaramides for the preparation of a highly enantioselective polymeric organocatalyst. Catalysts, 2020, 10, 591.
[http://dx.doi.org/10.3390/catal10050591]
[90]
Majdecki, M.; Tyszka-Gumkowska, A.; Jurczak, J. Highly enantioselective epoxidation of α,β-unsaturated ketones using amide-based cinchona alkaloids as hybrid Phase-Transfer catalysts. Org. Lett., 2020, 22(21), 8687-8691.
[http://dx.doi.org/10.1021/acs.orglett.0c03272] [PMID: 33112627]
[91]
Lu, N.; Fang, Y.; Gao, Y.; Wei, Z.; Cao, J.; Liang, D.; Lin, Y.; Duan, H. Bifunctional thiourea−ammonium salt catalysts derived from cinchona alkaloids: Cooperative Phase-Transfer catalysts in the enantioselective Aza-Henry reaction of ketimines. J. Org. Chem., 2018, 83(3), 1486-1492.
[http://dx.doi.org/10.1021/acs.joc.7b03078] [PMID: 29271656]
[92]
Su, Z.S.; Hu, C.W.; Nasir, S.; Chan, K.K. Asymmetric cyanation of activated olefins with ethyl cyanoformate catalyzed by Ti(IV)-Catalyst: A theoretical study. Catalysts, 2020, 10, 1079.
[http://dx.doi.org/10.3390/catal10091079]
[93]
Liu, Y.; Wang, J.; Wei, Z.; Cao, J.; Liang, D.; Lin, Y.; Duan, H.S. Diastereo- and enantioselective Nitro-Mannich reaction of α-aryl nitromethanes with isatin-derived N-Boc ketimines catalyzed by chiral Phase-Transfer catalysts bearing multipl hydrogen bonding donors. New J. Chem., 2018, 42, 1608-1611.
[http://dx.doi.org/10.1039/C7NJ04527A]
[94]
Shao, Y.D.; He, X.Y.; Han, D.D.; Yang, X.R.; Yao, H.B.; Cheng, D.J. Asymmetric Aza-Henry reaction of indolenines mediated by a cinchona-alkaloid-thiourea organocatalyst. Asian J. Org. Chem., 2019, 8, 2023-2026.
[http://dx.doi.org/10.1002/ajoc.201900504]
[95]
Li, P.; Sun, D.W.; Jiang, M.; Liu, J.T. Asymmetric aza-Henry reaction of fluoromethylated imines catalyzed by cinchona-derived bifunctional thiourea. Tetrahedron, 2019, 75, 603-607.
[http://dx.doi.org/10.1016/j.tet.2018.12.055]
[96]
Shao, Y.D.; Han, D.D.; Yang, X.Y.; Zhou, D.D.; Wang, T.; Cheng, D.J. Enantioselective aza-Henry reaction of seven-membered cyclic imines dibenzo[b,f][1,4]oxazepines by bifunctional organocatalysis. Eur. J. Org. Chem., 2019, 9, 1957-1961.
[http://dx.doi.org/10.1002/ejoc.201900151]
[97]
Li, S.L.; Yang, C.; Wu, Q.; Zheng, H.L.; Li, X.; Cheng, J.P. Atroposelective catalytic asymmetric allylic alkylation reaction for axially chiral anilides with achiral Morita−Baylis−Hillman carbonates. J. Am. Chem. Soc., 2018, 140(40), 12836-12843.
[http://dx.doi.org/10.1021/jacs.8b06014] [PMID: 30226765]
[98]
Jin, L.; Zhao, S.; Chen, X. Synthesis of both enantiomers of chiral phenylalanine derivatives catalyzed by cinchona alkaloid quaternary ammonium salts as asymmetric phase transfer catalysts. Molecules, 2018, 23(6), 1421.
[http://dx.doi.org/10.3390/molecules23061421] [PMID: 29895754]
[99]
Manish, K.J.; Rajesh, K.; Sanjay, S.; Shailija, J.; Kumar, V.; Ravi, P.S. The vinylogous Michael Addition of 3–alkylidene–2–oxindoles to β,γ-unsaturated α–keto esters by bifunctional cinchona alkaloids. Eur. J. Org. Chem., 2020, 35, 5690-5694.
[100]
Rajesh, K.; Manish, K.J.; Ravi, P.S. Bifunctional cinchona alkaloid catalyzed vinylogous Michael reaction of 3–alkylideneoxindole with 4-Oxo-enoates: A route to chiral γ-keto alkylideneoxindole esters. Asian J. Org. Chem., 2020, 9, 1576-1580.
[http://dx.doi.org/10.1002/ajoc.202000227]
[101]
Róbert, R.; Monika, T.; Jozef, G.; Ján, E. Novel carbohydrate-based thioureas as organocatalysts for asymmetric michael addition of 1,3-dicarbonyl compounds to nitroolefins. Tetrahedron, 2020, 76131339
[http://dx.doi.org/10.1016/j.tet.2020.131339]
[102]
Trubitsõn, D.; Martõnova, J.; Erkman, K.; Metsala, A.; Saame, J.; Kõster, K.; Järving, I.; Leito, I.; Kanger, T. Enantioselective N-alkylation of nitroindoles under Phase-Transfer catalysis. Synthesis, 2020, 52, 1047-1059.
[http://dx.doi.org/10.1055/s-0039-1690751]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy