Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antiglycolytic Activities of Strobilanthes crispus Active Fraction and its Bioactive Components on Triple-Negative Breast Cancer Cells In Vitro

Author(s): Siti N.H. Muhammad, Nik S. Yaacob, Nur A.M. Safuwan and Agustine N. Fauzi*

Volume 22, Issue 7, 2022

Published on: 05 January, 2022

Page: [1363 - 1369] Pages: 7

DOI: 10.2174/1871520621666210427104804

Price: $65

Abstract

Background: Survival and progression of cancer cells are highly dependent on aerobic glycolysis. Strobilanthes crispus has been shown to have promising anticancer effects on breast cancer cells. The involvement of the glycolysis pathway in producing these effects is unconfirmed, thus further investigation is required to elucidate this phenomenon.

Objective: This study aims to determine the effect of S. crispus active fraction (F3) and its bioactive components on glycolysis in triple-negative breast cancer cells (MDA-MB-231).

Methods: This study utilizes F3, lutein, β-sitosterol, and stigmasterol to be administered in MDA-MB-231 cells for measurement of antiglycolytic activities through cell poliferation, glucose uptake, and lactate concentration assays. Cell proliferation was assessed by MTT assay of MDA-MB-231 cells after treatment with F3 and its bioactive components lutein, β-sitosterol, and stigmasterol. The IC50 value in each compound was determined by MTT assay to be used in subsequent assays. The determination of glucose uptake activity and lactate concentration were quantified using fluorescence spectrophotometry.

Results: Antiproliferative activities were observed for F3 and its bioactive components, with IC50 values of 100 μg/mL (F3), 20 μM (lutein), 25 μM (β-sitosterol), and 90 μM (stigmasterol) in MDA-MB-231 cells at 48 h. The percentage of glucose uptake and lactate concentration in MDA-MB-231 cells treated with F3, lutein, or β sitosterol were significantly lower than those observed in the untreated cells in a time-dependent manner. However, treatment with stigmasterol decreased the concentration of lactate without affecting the glucose uptake in MDA-MB-231 cells.

Conclusion: The antiglycolytic activities of F3 on MDA-MB-231 cells are attributed to its bioactive components.

Keywords: Strobilanthes crispus, glucose uptake, lactate concentration, MDA-MB-231, glucose metabolism, breast cancer.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[PMID: 33538338]
[2]
Guestini, F.; McNamara, K.M.; Ishida, T.; Sasano, H. Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification. Expert Opin. Ther. Targets, 2016, 20(6), 705-720.
[http://dx.doi.org/10.1517/14728222.2016.1125469] [PMID: 26607563]
[3]
Telli, M.L.; Chang, E.T.; Kurian, A.W.; Keegan, T.H.; McClure, L.A.; Lichtensztajn, D.; Ford, J.M.; Gomez, S.L. Asian ethnicity and breast cancer subtypes: a study from the California Cancer Registry. Breast Cancer Res. Treat., 2011, 127(2), 471-478.
[http://dx.doi.org/10.1007/s10549-010-1173-8] [PMID: 20957431]
[4]
Pegram, M.D.; Lipton, A.; Hayes, D.F.; Weber, B.L.; Baselga, J.M.; Tripathy, D.; Baly, D.; Baughman, S.A.; Twaddell, T.; Glaspy, J.A.; Slamon, D.J. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol., 1998, 16(8), 2659-2671.
[http://dx.doi.org/10.1200/JCO.1998.16.8.2659] [PMID: 9704716]
[5]
Wiggans, R.G.; Woolley, P.V.; Smythe, T.; Hoth, D.; Macdonald, J.S.; Green, L.; Schein, P.S. Phase-II trial of tamoxifen in advanced breat cancer. Cancer Chemother. Pharmacol., 1979, 3(1), 45-48.
[http://dx.doi.org/10.1007/BF00254419] [PMID: 535127]
[6]
Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res., 2007, 13(8), 2329-2334.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1109] [PMID: 17438091]
[7]
Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: from folklore to practice. Front. Plant Sci., 2015, 6, 799.
[http://dx.doi.org/10.3389/fpls.2015.00799] [PMID: 26483815]
[8]
Lee, M.M.L.; Chan, B.D.; Wong, W.Y.; Qu, Z.; Chan, M.S.; Leung, T.W.; Lin, Y.; Mok, D.K.W.; Chen, S.; Tai, W.C.S. Anticancer activity of centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-κB, and STAT3 signaling pathways. Front. Oncol., 2020, 10, 491.
[PMID: 32328465]
[9]
Alshaeri, H.K.; Alasmari, M.M.; Natto, Z.S.; Pino-Figueroa, A. Effects of Annona muricata extract on triple-negative breast cancer cells mediated through EGFR signaling. Cancer Manag. Res., 2020, 12, 12519-12526.
[http://dx.doi.org/10.2147/CMAR.S278647] [PMID: 33304106]
[10]
Peng, B.; He, R.; Xu, Q.; Yang, Y.; Hu, Q.; Hou, H.; Liu, X.; Li, J. Ginsenoside 20(S)-protopanaxadiol inhibits triple-negative breast cancer metastasis in vivo by targeting EGFR-mediated MAPK pathway. Pharmacol. Res., 2019, 142, 1-13.
[http://dx.doi.org/10.1016/j.phrs.2019.02.003] [PMID: 30735802]
[11]
Perry, L.M.; Metzger, J. Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses; MIT Press: Cambridge, 1980.
[12]
Noraida, A. Penyembuhan semula jadi dengan herba; PTS Litera Utama, 2005.
[13]
Al-Henhena, N.; Khalifa, S.A.; Ying, R.P.Y.; Ismail, S.; Hamadi, R.; Shawter, A.N.; Idris, A.M.; Azizan, A.; Al-Wajeeh, N.S.; Abdulla, M.A.; El-Seedi, H.R. Evaluation of chemopreventive potential of Strobilanthes crispus against colon cancer formation in vitro and in vivo. BMC Complement. Altern. Med., 2015, 15(1), 419.
[http://dx.doi.org/10.1186/s12906-015-0926-7] [PMID: 26608653]
[14]
Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Phytochemical constituents and biological activities of different extracts of Strobilanthes crispus (L.) Bremek leaves grown in different locations of Malaysia. BMC Complement. Altern. Med., 2015, 15(1), 422.
[http://dx.doi.org/10.1186/s12906-015-0873-3] [PMID: 26613959]
[15]
Yaacob, N.S.; Hamzah, N.; Nik Mohamed Kamal, N.N.; Zainal Abidin, S.A.; Lai, C.S.; Navaratnam, V.; Norazmi, M.N. Anticancer activity of a sub-fraction of dichloromethane extract of Strobilanthes crispus on human breast and prostate cancer cells in vitro. BMC Complement. Altern. Med., 2010, 10, 42.
[http://dx.doi.org/10.1186/1472-6882-10-42] [PMID: 20684795]
[16]
Yaacob, N.S.; Nik Mohamed Kamal, N.N.; Wong, K.K.; Norazmi, M.N. Cell cycle modulation of MCF-7 and MDA-MB-231 by a sub-fraction of Strobilanthes crispus and its combination with tamoxifen. Asian Pac. J. Cancer Prev., 2015, 16(18), 8135-8140.
[http://dx.doi.org/10.7314/APJCP.2015.16.18.8135] [PMID: 26745050]
[17]
Yankuzo, H.M.; Baraya, Y.S.; Mustapha, Z.; Wong, K.K.; Yaacob, N.S. Immunomodulatory effects of a bioactive fraction of Strobilanthes crispus in NMU-induced rat mammary tumor model. J. Ethnopharmacol., 2018, 213, 31-37.
[http://dx.doi.org/10.1016/j.jep.2017.10.024] [PMID: 29100935]
[18]
Baraya, Y.S.; Wong, K.K.; Yaacob, N.S. Strobilanthes crispus inhibits migration, invasion and metastasis in breast cancer. J. Ethnopharmacol., 2019, 233, 13-21.
[http://dx.doi.org/10.1016/j.jep.2018.12.041] [PMID: 30594607]
[19]
Yaacob, N.S.; Yankuzo, H.M.; Devaraj, S.; Wong, J.K.M.; Lai, C.S. Anti-tumor action, clinical biochemistry profile and phytochemical constituents of a pharmacologically active fraction of S. crispus in NMU-induced rat mammary tumour model. PLoS One, 2015, 10(5), e0126426.
[http://dx.doi.org/10.1371/journal.pone.0126426] [PMID: 26000968]
[20]
Weyandt, J.D.; Thompson, C.B.; Giaccia, A.J.; Rathmell, W.K. Metabolic alterations in cancer and their potential as therapeutic targets. Am. Soc. Clin. Oncol. Educ. Book, 2017, 37, 825-832.
[http://dx.doi.org/10.14694/EDBK_175561] [PMID: 28561705]
[21]
Li, N.; Tan, W.; Li, J.; Li, P.; Lee, S.; Wang, Y.; Gong, Y. Glucose metabolism in breast cancer and its implication in cancer therapy. Int. J. Clin. Med., 2011, 2, 110-128.
[http://dx.doi.org/10.4236/ijcm.2011.22022]
[22]
Choi, Y.K.; Park, K.G. Targeting glutamine metabolism for cancer treatment. Biomol. Ther. (Seoul), 2018, 26(1), 19-28.
[http://dx.doi.org/10.4062/biomolther.2017.178] [PMID: 29212303]
[23]
Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol., 1927, 8(6), 519-530.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[24]
Fantin, V.R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9(6), 425-434.
[http://dx.doi.org/10.1016/j.ccr.2006.04.023] [PMID: 16766262]
[25]
Fantin, V.R.; St-Pierre, J.; Leder, P. Metabolic therapies inhibit tumor growth in vivo and in silico. Sci. Rep., 2019, 9(1), 1-10.
[26]
Bhattacharya, B.; Mohd Omar, M.F.; Soong, R. The Warburg effect and drug resistance. Br. J. Pharmacol., 2016, 173(6), 970-979.
[http://dx.doi.org/10.1111/bph.13422] [PMID: 26750865]
[27]
Varghese, E.; Samuel, S.M.; Líšková, A.; Samec, M.; Kubatka, P.; Büsselberg, D. Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers (Basel), 2020, 12(8), 2252.
[http://dx.doi.org/10.3390/cancers12082252] [PMID: 32806533]
[28]
Annibaldi, A.; Widmann, C. Glucose metabolism in cancer cells. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(4), 466-470.
[http://dx.doi.org/10.1097/MCO.0b013e32833a5577] [PMID: 20473153]
[29]
Farhadi, P.; Yarani, R.; Dokaneheifard, S.; Mansouri, K. The emerging role of targeting cancer metabolism for cancer therapy. Tumour Biol., 2020, 42(10), 1010428320965284.
[http://dx.doi.org/10.1177/1010428320965284] [PMID: 33028168]
[30]
Abdel-Wahab, A.F.; Mahmoud, W.; Al-Harizy, R.M. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol. Res., 2019, 150, 104511.
[http://dx.doi.org/10.1016/j.phrs.2019.104511] [PMID: 31678210]
[31]
Fiume, L.; Vettraino, M.; Manerba, M.; Di Stefano, G. Inhibition of lactic dehydrogenase as a way to increase the anti-proliferative effect of multi-targeted kinase inhibitors. Pharmacol. Res., 2011, 63(4), 328-334.
[http://dx.doi.org/10.1016/j.phrs.2010.12.005] [PMID: 21168502]
[32]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[33]
Lunt, S.Y.; Vander Heiden, M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol., 2011, 27, 441-464.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154237] [PMID: 21985671]
[34]
Muti, P.; Quattrin, T.; Grant, B.J.; Krogh, V.; Micheli, A.; Schünemann, H.J.; Ram, M.; Freudenheim, J.L.; Sieri, S.; Trevisan, M.; Berrino, F. Fasting glucose is a risk factor for breast cancer: a prospective study. Cancer Epidemiol. Biomarkers Prev., 2002, 11(11), 1361-1368.
[PMID: 12433712]
[35]
Hay, N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer, 2016, 16(10), 635-649.
[http://dx.doi.org/10.1038/nrc.2016.77] [PMID: 27634447]
[36]
Zhang, W.L.; Zhao, Y.N.; Shi, Z.Z.; Cong, D.; Bai, Y.S. Lutein inhibits cell growth and activates apoptosis via the PI3K/AKT/mTOR signaling pathway in A549 human non-small-cell lung cancer cells. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(4), 341-350.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018027418] [PMID: 30806240]
[37]
Mignone, L.I.; Giovannucci, E.; Newcomb, P.A.; Titus-Ernstoff, L.; Trentham-Dietz, A.; Hampton, J.M.; Willett, W.C.; Egan, K.M. Dietary carotenoids and the risk of invasive breast cancer. Int. J. Cancer, 2009, 124(12), 2929-2937.
[http://dx.doi.org/10.1002/ijc.24334] [PMID: 19330841]
[38]
Sumantran, V.N.; Zhang, R.; Lee, D.S.; Wicha, M.S. Differential regulation of apoptosis in normal versus transformed mammary epithelium by lutein and retinoic acid. Cancer Epidemiol. Biomarkers Prev., 2000, 9(3), 257-263.
[PMID: 10750663]
[39]
Gong, X.; Smith, J.R.; Swanson, H.M.; Rubin, L.P. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Molecules, 2018, 23(4), 905.
[http://dx.doi.org/10.3390/molecules23040905] [PMID: 29662002]
[40]
Awad, A.B.; Burr, A.T.; Fink, C.S. Effect of resveratrol and β-sitosterol in combination on reactive oxygen species and prostaglandin release by PC-3 cells. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 72(3), 219-226.
[http://dx.doi.org/10.1016/j.plefa.2004.11.005] [PMID: 15664307]
[41]
Cao, Z.Q.; Wang, X.X.; Lu, L.; Xu, J.W.; Li, X.B.; Zhang, G.R.; Ma, Z.J.; Shi, A.C.; Wang, Y.; Song, Y.J. β-Sitosterol and gemcitabine exhibit synergistic anti-pancreatic cancer activity by modulating apoptosis and inhibiting epithelial-mesenchymal transition by deactivating Akt/GSK-3β signaling. Front. Pharmacol., 2019, 9, 1525.
[http://dx.doi.org/10.3389/fphar.2018.01525] [PMID: 30670971]
[42]
Vundru, S.S.; Kale, R.K.; Singh, R.P. β-Sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells. BMC Complement. Altern. Med., 2013, 13, 280.
[http://dx.doi.org/10.1186/1472-6882-13-280] [PMID: 24160369]
[43]
Awad, A.B.; Chinnam, M.; Fink, C.S.; Bradford, P.G. β-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine, 2007, 14(11), 747-754.
[http://dx.doi.org/10.1016/j.phymed.2007.01.003] [PMID: 17350814]
[44]
Sofi, M.S.; Sateesh, M.K.; Bashir, M.; Ganie, M.A.; Nabi, S. Chemopreventive and anti-breast cancer activity of compounds isolated from leaves of Abrus precatorius L. 3 Biotech, 2018, 8(8), 371.
[http://dx.doi.org/10.1007/s13205-018-1395-8] [PMID: 30105196]
[45]
Li, K.; Yuan, D.; Yan, R.; Meng, L.; Zhang, Y.; Zhu, K. Stigmasterol exhibits potent antitumor effects in human gastric cancer cells mediated via inhibition of cell migration, cell cycle arrest, mitochondrial mediated apoptosis and inhibition of JAK/STAT signalling pathway. J. BUON, 2018, 23(5), 1420-754.
[PMID: 30570868]
[46]
Jacobo-Herrera, N.J.; Perez-Plasencia, C.; Garcia-Castillo, V.; Villanueva-Sanchez, O. Avila- Rodriguez, M.A.; Zentella-Dehesa, A. The inhibition of mTOR and LDH-A leads to tumor growth inhibition in a triple negative breast cancer xenotransplant. Int. J. Mol. Med 2015, 36 S41

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy