Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Arsenite Induced Conformational Changes and Aggregation in Human Serum Albumin (HSA) and its Prevention by Naringin

Author(s): Shamila Fatima, Fareeha Arshad and Samreen Amani*

Volume 19, Issue 2, 2022

Published on: 23 April, 2021

Page: [153 - 162] Pages: 10

DOI: 10.2174/1570164618666210423131625

Price: $65

Abstract

Background: Heavy metals and metalloids like arsenic, cadmium, mercury acts as denaturing agent for biomolecules. They interfere with protein’s physiological activity by forming a complex with the protein’s side chain or removing the essential metal ions from metalloproteins and replacing them. Protein aggregation is an extensive phenomenon in a cell and is linked with various pathological conditions.

Aim: In this study, we aim to prove that proteins are highly susceptible to arsenite toxicity by arsenite-induced protein aggregation; and that naringin reduces the aggregation effect.

Methods: Several biophysical techniques were employed to study the protein aggregation due to arsenite and its prevention by naringin.

Results: Through our experiments, the results showed that aggregation induced by arsenite was reduced in the presence of naringin at twice the concentration of arsenite.

Conclusion: In conclusion, our study showed that naringin plays a protective role during HSA aggregation due to arsenite.

Keywords: Protein aggregation, arsenite, naringin, HSA, amyloid diseases, congo red.

Graphical Abstract

[1]
Shankar, S.; Shanker, U.; Shikha, Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. ScientificWorldJournal, 2014, 2014, 304524-304542.
[http://dx.doi.org/10.1155/2014/304524] [PMID: 25374935]
[2]
Dordevic, T.; Kolitsch, U.; Serafimovski, T.; Tasev, G.; Tepe, N.; Stoger-Pollach, M.; Hofmann, T.; Boev, B. Mineralogy and weathering of realgar-rich tailings at a former As-Sb-Cr mine at Lojane, North Macedonia. Can. Mineral., 2019, 57, 403-423.
[3]
Liu, S.X.; Athar, M.; Lippai, I.; Waldren, C.; Hei, T.K. Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1643-1648.
[http://dx.doi.org/10.1073/pnas.98.4.1643] [PMID: 11172004]
[4]
Jana, K.; Jana, S.; Samanta, P.K. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action. Reprod. Biol. Endocrinol., 2006, 4, 9.
[http://dx.doi.org/10.1186/1477-7827-4-9] [PMID: 16483355]
[5]
Chen, Q.Y.; DesMarais, T.; Costa, M. Metals and mechanisms of carcinogenesis. Annu. Rev. Pharmacol. Toxicol., 2019, 59, 537-554.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021031] [PMID: 30625284]
[6]
Wei, S.; Zhang, H.; Tao, S. A review of arsenic exposure and lung cancer. Toxicol. Res. (Camb.), 2019, 8(3), 319-327.
[http://dx.doi.org/10.1039/C8TX00298C] [PMID: 31160966]
[7]
Li, X.; Yi, H.; Wang, H. Sulphur dioxide and arsenic affect male reproduction via interfering with spermatogenesis in mice. Ecotoxicol. Environ. Saf., 2018, 165, 164-173.
[http://dx.doi.org/10.1016/j.ecoenv.2018.08.109] [PMID: 30195209]
[8]
Abdul, K.S.; Jayasinghe, S.S.; Chandana, E.P.S.; Jayasumana, C.; De Silva, P.M.C.S. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol., 2015, 40(3), 828-846.
[http://dx.doi.org/10.1016/j.etap.2015.09.016] [PMID: 26476885]
[9]
Jacobson, T.; Navarrete, C.; Sharma, S.K.; Sideri, T.C.; Ibstedt, S.; Priya, S.; Grant, C.M.; Christen, P.; Goloubinoff, P.; Tamás, M.J. Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. J. Cell Sci., 2012, 125(Pt 21), 5073-5083.
[http://dx.doi.org/10.1242/jcs.107029] [PMID: 22946053]
[10]
Patel, K.; Singh, G.K.; Patel, D.K. A Review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[11]
Waterborg, J.H.; Matthews, H.R. The lowry method for protein quantitation. Methods Mol. Biol., 1984, 1, 1-3.
[PMID: 20512668]
[12]
Riener, C.K.; Kada, G.; Gruber, H.J. Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal. Bioanal. Chem., 2002, 373(4-5), 266-276.
[http://dx.doi.org/10.1007/s00216-002-1347-2] [PMID: 12110978]
[13]
Amani, S.; Naeem, A. Deciphering aggregates, prefibrillar oligomers and protofibrils of cytochrome c. Amino Acids, 2014, 46(8), 1839-1851.
[http://dx.doi.org/10.1007/s00726-014-1698-y] [PMID: 24729012]
[14]
Matulis, D.; Lovrien, R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys. J., 1998, 74(1), 422-429.
[http://dx.doi.org/10.1016/S0006-3495(98)77799-9] [PMID: 9449342]
[15]
Amani, S.; Naeem, A. Transition of transferrin from native to fibrillar state: An implication for amyloid-linked diseases. Biochem. Eng. J., 2014, 91, 120-128.
[http://dx.doi.org/10.1016/j.bej.2014.08.004]
[16]
Robert, E. Electrophoresis of RNA. RNA methodologies, 2010, 4, 179-219.
[17]
National Research Council (US) Subcommittee. Biomarkers of arsenic exposure. Arsen. Drink. Water; National Academies Press: US, 1999.
[18]
Hughes, M.F. Biomarkers of exposure: a case study with inorganic arsenic. Environ. Health Perspect., 2006, 114(11), 1790-1796.
[http://dx.doi.org/10.1289/ehp.9058] [PMID: 17107869]
[19]
Valeur, B.; Brochon, J. C. New trends in fluorescence spectroscopy: applications to chemical and life science. Springer series on fluorescence, 2001, 460.
[20]
Lin, C.Z.; Hu, M.; Wu, A.Z.; Zhu, C.C. Investigation on the differences of four flavonoids with similar structure binding to human serum albumin. J. Pharm. Anal., 2014, 4(6), 392-398.
[http://dx.doi.org/10.1016/j.jpha.2014.04.001] [PMID: 29403905]
[21]
Kluska, K.; Adamczyk, J.; Krezel, A. Metal binding properties, stability and reactivity of zinc fingers. Coord. Chem. Rev., 2018, 367, 18-64.
[http://dx.doi.org/10.1016/j.ccr.2018.04.009]
[22]
Shen, S.; Li, X.F.; Cullen, W.R.; Weinfeld, M.; Le, X.C. Arsenic binding to proteins. Chem. Rev., 2013, 113(10), 7769-7792.
[http://dx.doi.org/10.1021/cr300015c] [PMID: 23808632]
[23]
Ghosh, S.; Paul, B.K.; Chattopadhyay, N. Interaction of cyclodextrins with human and bovine serum albumins: A combined spectroscopic and computational investigation. J. Chem. Sci., 2014, 126, 931-944.
[http://dx.doi.org/10.1007/s12039-014-0652-6]
[24]
Lakowicz, J.R. Principles of fluorescence spectroscopy, 3rd ed; Springer, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[25]
Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res., 2008, 25(7), 1487-1499.
[http://dx.doi.org/10.1007/s11095-007-9516-9] [PMID: 18172579]
[26]
Verdugo, M.; Ruiz Encinar, J.; Costa-Fernández, J.M.; Menendez-Miranda, M.; Bouzas-Ramos, D.; Bravo, M.; Quiroz, W. Study of conformational changes and protein aggregation of bovine serum albumin in presence of Sb(III) and Sb(V). PLoS One, 2017, 12(2), e0170869.
[http://dx.doi.org/10.1371/journal.pone.0170869] [PMID: 28151990]
[27]
Naeem, A.; Amani, S. Deciphering structural intermediates and genotoxic fibrillar aggregates of albumins: a molecular mechanism underlying for degenerative diseases. PLoS One, 2013, 8(1), e54061.
[http://dx.doi.org/10.1371/journal.pone.0054061] [PMID: 23342075]
[28]
Vetri, V.; D’Amico, M.; Foderà, V.; Leone, M.; Ponzoni, A.; Sberveglieri, G.; Militello, V. Bovine Serum Albumin protofibril- like aggregates formation: solo but not simple mechanism. Arch. Biochem. Biophys., 2011, 508(1), 13-24.
[http://dx.doi.org/10.1016/j.abb.2011.01.024] [PMID: 21303653]
[29]
Khan, J.M.; Sharma, P.; Arora, K.; Kishor, N.; Kaila, P.; Guptasarma, P. The Achilles’ Heel of “Ultrastable” hyperthermophile proteins: Submillimolar concentrations of SDS stimulate rapid conformational change, aggregation, and amyloid formation in proteins carrying overall positive charge. Biochemistry, 2016, 55(28), 3920-3936.
[http://dx.doi.org/10.1021/acs.biochem.5b01343] [PMID: 27331826]
[30]
Santiago, P.S.; Carvalho, F.A.; Domingues, M.M.; Carvalho, J.W.; Santos, N.C.; Tabak, M. Isoelectric point determination for Glossoscolex paulistus extracellular hemoglobin: oligomeric stability in acidic pH and relevance to protein-surfactant interactions. Langmuir, 2010, 26(12), 9794-9801.
[http://dx.doi.org/10.1021/la100060p] [PMID: 20423061]
[31]
Sulatskaya, A.I.; Lavysh, A.V.; Maskevich, A.A.; Kuznetsova, I.M.; Turoverov, K.K. Thioflavin T fluoresces as excimer in highly concentrated aqueous solutions and as monomer being incorporated in amyloid fibrils. Sci. Rep., 2017, 7(1), 2146.
[http://dx.doi.org/10.1038/s41598-017-02237-7] [PMID: 28526838]
[32]
Brorsson, A.C.; Bolognesi, B.; Tartaglia, G.G.; Shammas, S.L.; Favrin, G.; Watson, I.; Lomas, D.A.; Chiti, F.; Vendruscolo, M.; Dobson, C.M.; Crowther, D.C.; Luheshi, L.M. Intrinsic determinants of neurotoxic aggregate formation by the amyloid beta peptide. Biophys. J., 2010, 98(8), 1677-1684.
[http://dx.doi.org/10.1016/j.bpj.2009.12.4320] [PMID: 20409489]
[33]
Wu, C.; Scott, J.; Shea, J.E. Binding of Congo red to amyloid protofibrils of the Alzheimer Aβ(9-40) peptide probed by molecular dynamics simulations. Biophys. J., 2012, 103(3), 550-557.
[http://dx.doi.org/10.1016/j.bpj.2012.07.008] [PMID: 22947871]
[34]
Roterman, I.; KrUl, M.; Nowak, M.; Konieczny, L.; Rybarska, J.; Stopa, B.; Piekarska, B.; Zemanek, G. Why Congo red binding is specific for amyloid proteins - model studies and a computer analysis approach. Med. Sci. Monit., 2001, 7(4), 771-784.
[PMID: 11433211]
[35]
Millucci, L.; Raggiaschi, R.; Franceschini, D.; Terstappen, G.; Santucci, A. Rapid aggregation and assembly in aqueous solution of A beta (25-35) peptide. J. Biosci., 2009, 34(2), 293-303.
[http://dx.doi.org/10.1007/s12038-009-0033-3] [PMID: 19550045]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy