Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Optimization of Nanostructured Lipid Carriers of Fenofibrate Using a Box-Behnken Design for Oral Bioavailability Enhancement

Author(s): Huijuan Wang, Wei Hong, Xiangyu Li, Qian Jin, Weifeng Ye, Yumiao Feng, Biyao Huang, Zhongjia Tai , Lu Chen, Zhiping Li, Yuli Wang, Yang Yang, Chunsheng Gao, Wei Gong* and Meiyan Yang*

Volume 19, Issue 7, 2022

Published on: 04 January, 2022

Page: [773 - 787] Pages: 15

DOI: 10.2174/1567201818666210423110745

Price: $65

Abstract

Background: Fenofibrate (FNB) is a commonly used hypolipidemic agent. However, the oral bioavailability of FNB is limited by slow dissolution due to its low solubility. Thus, investigations on novel FNB formulations are necessary for their use.

Objective: The objective of this study is to enhance the oral bioavailability of FNB using optimized Nanostructured Lipid Carrier (NLC) formulations.

Methods: Hot homogenization followed by ultrasonication was used to prepare FNB-NLCs. These formulations were optimized using a Box-Behnken design, where the amount of FNB (X1), a ratio of solid lipid/liquid lipid (X2), and the percentage of emulsifier (X3) were set as independent variables, while the particle size (Y1), and Entrapment Efficiency (EE%) (Y2), were used as dependent factors. An in vitro dissolution test was then performed using a paddle method, while an in vivo pharmacokinetic study of FNB-NLC formulation was performed in rats.

Results: FNB-NLCs were successfully prepared and optimized using a Box-Behnken design. The particle size and EE% of the FNB-NLC had less than 5% difference from predicted values. The in vitro dissolution and oral bioavailability of the FNB-NLC were both higher than those of raw FNB.

Conclusion: A Box-Behnken design was successfully applied to optimize FNB-NLC formulation for the enhancement of the dissolution and bioavailability of FNB, a poorly water-soluble drug.

Keywords: Fenofibrate, nanostructured lipid carriers, Box-Behnken design, dissolution, oral bioavailability, poorly water-soluble drug.

Graphical Abstract

[1]
Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[2]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[3]
Yang, M.; Gong, W.; Wang, Y.; Shan, L.; Li, Y.; Gao, C. Bioavailability improvement strategies for poorly water-soluble drugs based on the supersaturation mechanism, an update. J. Pharm. Pharm. Sci., 2016, 19(2), 208-225.
[http://dx.doi.org/10.18433/J3W904] [PMID: 27518171]
[4]
Zhang, X.; Xing, H.; Zhao, Y.; Ma, Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs., Pharmaceutics, 2018, 10, E74.
[http://dx.doi.org/10.3390/pharmaceutics10030074]
[5]
Sudhakar, B.; NagaJyothi, K.; Murthy, K.V. Nanosuspensions as a versatile carrier based drug delivery system-an overview. Curr. Drug Deliv., 2014, 11(3), 299-305.
[http://dx.doi.org/10.2174/1567201811666140323131342] [PMID: 24655052]
[6]
Li, X.; Yang, M.; Li, Y.; Gong, W.; Wang, Y.; Shan, L.; Shao, S.; Gao, C.; Zhong, W. Formulation and characterization of a ternary inclusion complex containing hydroxypropyl-β-cyclodextrin and meglumine for solubility enhancement of poorly water-soluble ST-246, an anti-smallpox drug. Curr. Drug Deliv., 2017, 14(8), 1130-1143.
[http://dx.doi.org/10.2174/1567201813666161003151225] [PMID: 27697036]
[7]
Gala, U.H.; Miller, D.A.; Williams, R.O., III Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188319.
[http://dx.doi.org/10.1016/j.bbcan.2019.188319] [PMID: 31678141]
[8]
Aidana, Y.; Wang, Y.; Li, J.; Chang, S.; Wang, K.; Yu, D.G. Fast dissolution electrospun medicated nanofifibers for effective delivery of poorly water soluble drugs. Curr. Drug Deliv., 2022, 19(4), 422-435.
[http://dx.doi.org/10.2174/1567201818666210215110359] [PMID: 33588728]
[9]
Kang, S.; He, Y.; Yu, D.G.; Li, W.; Wang, K. Drug-zein@lipid hybrid nanoparticles: Electrospraying preparation and drug extended release application. Colloids Surf. B Biointerfaces, 2021, 201, 111629.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111629] [PMID: 33639514]
[10]
Weng, T.; Qi, J.; Lu, Y.; Wang, K.; Tian, Z.; Hu, K.; Yin, Z.; Wu, W. The role of lipid-based nano delivery systems on oral bioavailability enhancement of fenofibrate, a BCS II drug: comparison with fast-release formulations. J. Nanobiotechnology, 2014, 12, 39.
[http://dx.doi.org/10.1186/s12951-014-0039-3] [PMID: 25248304]
[11]
Zhang, X.; Qi, J.; Lu, Y.; He, W.; Li, X.; Wu, W. Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine (Lond.), 2014, 10(1), 167-176.
[http://dx.doi.org/10.1016/j.nano.2013.07.011] [PMID: 23891617]
[12]
Tong, Y.T.; Wang, Y.L.; Yang, M.Y.; Yang, J.H.; Chen, L.; Chu, X.Y.; Gao, C.H.; Qian, J.; Gong, W.; Gao, C.S. Systematic development of self-nanoemulsifying liquisolid tablets to improve the dissolution and oral bioavailability of an oily drug, vitamin K1. Pharmaceutics, 2018, 10, E96.
[13]
Zhang, X.; Chen, G.; Zhang, T.; Ma, Z.; Wu, B. Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: a mechanistic investigation. Int. J. Nanomedicine, 2014, 9, 5503-5514.
[http://dx.doi.org/10.2147/IJN.S73340] [PMID: 25473287]
[14]
Pyo, Y.C.; Tran, P.; Kim, D.H.; Park, J.S. Chitosan-coated nanostructured lipid carriers of fenofibrate with enhanced oral bioavailability and efficacy. Colloids Surf. B Biointerfaces, 2020, 196, 111331.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111331] [PMID: 32906001]
[15]
Talegaonkar, S.; Bhattacharyya, A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech, 2019, 20(3), 121.
[http://dx.doi.org/10.1208/s12249-019-1337-8] [PMID: 30805893]
[16]
Montenegro, L.; Lai, F.; Offerta, A.; Sarpietro, M.G.; Micicche, L.; Maccioni, A.M.; Valenti, D.; Fadda, A.M. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol., 2016, 32, 100-112.
[http://dx.doi.org/10.1016/j.jddst.2015.10.003]
[17]
Patil, H.; Feng, X.; Ye, X.; Majumdar, S.; Repka, M.A. Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: a systematic study based on a quality by design approach. AAPS J., 2015, 17(1), 194-205.
[http://dx.doi.org/10.1208/s12248-014-9674-8] [PMID: 25344439]
[18]
Kumar, R.; Singh, A.; Sharma, K.; Dhasmana, D.; Garg, N.; Siril, P.F. Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. Mater. Sci. Eng. C, 2020, 106, 110184.
[http://dx.doi.org/10.1016/j.msec.2019.110184] [PMID: 31753394]
[19]
Yang, L.; Shao, Y.; Han, H.K. Aminoclay-lipid hybrid composite as a novel drug carrier of fenofibrate for the enhancement of drug release and oral absorption. Int. J. Nanomedicine, 2016, 11, 1067-1076.
[http://dx.doi.org/10.2147/IJN.S101116] [PMID: 27042061]
[20]
Tran, T.H.; Ramasamy, T.; Truong, D.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech, 2014, 15(6), 1509-1515.
[http://dx.doi.org/10.1208/s12249-014-0175-y] [PMID: 25035071]
[21]
Göke, K.; Bunjes, H. Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions. Eur. J. Pharm. Biopharm., 2018, 126, 132-139.
[http://dx.doi.org/10.1016/j.ejpb.2017.08.004] [PMID: 28807819]
[22]
Yu, D.G. Preface - bettering drug delivery knowledge from pharmaceutical techniques and excipients. Curr. Drug Deliv., 2021, 18, 2-3.
[http://dx.doi.org/10.2174/156720181801201203091653]
[23]
Patel, M.H.; Mundada, V.P.; Sawant, K.K. Novel drug delivery approach via self-microemulsifying drug delivery system for enhancing oral bioavailability of asenapine maleate, optimization, characterization, cell uptake, and in vivo pharmacokinetic studies. AAPS PharmSciTech, 2019, 20(2), 44.
[http://dx.doi.org/10.1208/s12249-018-1212-z] [PMID: 30617712]
[24]
Yen, C.C.; Chang, C.W.; Hsu, M.C.; Wu, Y.T. Self-nanoemulsifying drug delivery system for resveratrol, enhanced oral bioavailability and reduced physical fatigue in rats. Int. J. Mol. Sci., 2017, 18(9), 497-509.
[http://dx.doi.org/10.3390/ijms18091853] [PMID: 28841149]
[25]
Jain, A.; Kaur, R.; Beg, S.; Kushwah, V.; Jain, S.; Singh, B. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv. Transl. Res., 2018, 8(3), 670-692.
[http://dx.doi.org/10.1007/s13346-018-0514-8] [PMID: 29589250]
[26]
Kauss, T.; Gaubert, A.; Tabaran, L.; Tonelli, G.; Phoeung, T.; Langlois, M.H.; White, N.; Cartwright, A.; Gomes, M.; Gaudin, K. Development of rectal self-emulsifying suspension of a moisture-labile water-soluble drug. Int. J. Pharm., 2018, 536(1), 283-291.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.067] [PMID: 29198808]
[27]
Said, M.; Elsayed, I.; Aboelwafa, A.A.; Elshafeey, A.H. Transdermal agomelatine microemulsion gel: pyramidal screening, statistical optimization and in vivo bioavailability. Drug Deliv., 2017, 24(1), 1159-1169.
[http://dx.doi.org/10.1080/10717544.2017.1365392] [PMID: 28831842]
[28]
Alam, M.I.; Baboota, S.; Ahuja, A.; Ali, M.; Ali, J.; Sahni, J.K.; Bhatnagar, A. Pharmacoscintigraphic evaluation of potential of lipid nanocarriers for nose-to-brain delivery of antidepressant drug. Int. J. Pharm., 2014, 470(1-2), 99-106.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.004] [PMID: 24810241]
[29]
Elmowafy, M.; Ibrahim, H.M.; Ahmed, M.A.; Shalaby, K.; Salama, A.; Hefesha, H. Atorvastatin-loaded nanostructured lipid carriers (NLCs): strategy to overcome oral delivery drawbacks. Drug Deliv., 2017, 24(1), 932-941.
[http://dx.doi.org/10.1080/10717544.2017.1337823] [PMID: 28617150]
[30]
Son, G.H.; Na, Y.G.; Huh, H.W.; Wang, M.; Kim, M.K.; Han, M.G.; Byeon, J.J.; Lee, H.K.; Cho, C.W. Systemic design and evaluation of ticagrelor-loaded nanostructured lipid carriers for enhancing bioavailability and antiplatelet activity. Pharmaceutics, 2019, 11(5), 222.
[http://dx.doi.org/10.3390/pharmaceutics11050222] [PMID: 31071977]
[31]
Kim, B.S.; Na, Y.G.; Choi, J.H.; Kim, I.; Lee, E.; Kim, S.Y.; Lee, J.Y.; Cho, C.W. The improvement of skin whitening of phenylethyl resorcinol by nanostructured lipid carriers. Nanomaterials (Basel), 2017, 7(9), 241.
[http://dx.doi.org/10.3390/nano7090241] [PMID: 28846658]
[32]
32Tran, T.H.; Ramasamy, T.; Cho, H.J.; Kim, Y.I.;Poudel, B.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. J. Nanosci. Nanotechnol., 2014, 14, 4820-4831.
[http://dx.doi.org/10.1166/jnn.2014.8722]
[33]
Mathur, P.; Sharma, S.; Rawal, S.; Patel, B.; Patel, M.M. Fabrication, optimization, and in vitro evaluation of docetaxel-loaded nanostructured lipid carriers for improved anticancer activity. J. Liposome Res., 2020, 30(2), 182-196.
[http://dx.doi.org/10.1080/08982104.2019.1614055] [PMID: 31060404]
[34]
Göke, K.; Bunjes, H. Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area. Int. J. Pharm., 2017, 529(1-2), 617-628.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.025] [PMID: 28705617]
[35]
Kim, M.H.; Kim, K.T.; Sohn, S.Y.; Lee, J.Y.; Lee, C.H.; Yang, H.; Lee, B.K.; Lee, K.W.; Kim, D.D. Formulation and evaluation of nanostructured lipid carriers (NLCs) of 20(S)-Protopanaxadiol (PPD) by Box-Behnken design. Int. J. Nanomedicine, 2019, 14, 8509-8520.
[http://dx.doi.org/10.2147/IJN.S215835] [PMID: 31749618]
[36]
Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food. Sci. Emerg, 2013, 19, 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[37]
Truong, N.P.; Whittaker, M.R.; Mak, C.W.; Davis, T.P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv., 2015, 12(1), 129-142.
[http://dx.doi.org/10.1517/17425247.2014.950564] [PMID: 25138827]
[38]
Zhou, X.; Zhang, X.; Ye, Y.; Zhang, T.; Wang, H.; Ma, Z.; Wu, B. Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption. Int. J. Pharm., 2015, 479(2), 391-398.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.068] [PMID: 25556104]
[39]
Han, H.K.; Lee, B.J.; Lee, H.K. Enhanced dissolution and bioavailability of biochanin A via the preparation of solid dispersion: in vitro and in vivo evaluation. Int. J. Pharm., 2011, 415(1-2), 89-94.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.055] [PMID: 21645596]
[40]
He, C.; Yin, L.; Tang, C.; Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials, 2012, 33(33), 8569-8578.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.063] [PMID: 22906606]
[41]
Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.010] [PMID: 16828192]
[42]
Zhang, T.; Chen, J.; Zhang, Y.; Shen, Q.; Pan, W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur. J. Pharm. Sci., 2011, 43(3), 174-179.
[http://dx.doi.org/10.1016/j.ejps.2011.04.005] [PMID: 21530654]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy