Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Do Naturally Occurring Antioxidants Protect Against Neurodegeneration of the Dopaminergic System? A Systematic Revision in Animal Models of Parkinson's Disease

Author(s): Carmen Costas and Lilian R.F. Faro*

Volume 20, Issue 2, 2022

Published on: 05 January, 2022

Page: [432 - 459] Pages: 28

DOI: 10.2174/1570159X19666210421092725

Price: $65

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by a significant decrease in dopamine levels, caused by progressive degeneration of the dopaminergic neurons in the nigrostriatal pathway. Multiple mechanisms have been implicated in its pathogenesis, including oxidative stress, neuroinflammation, protein aggregation, mitochondrial dysfunction, insufficient support for neurotrophic factors and cell apoptosis. The absence of treatments capable of slowing or stopping the progression of PD has increased the interest in the natural antioxidant substances present in the diet, since they have multiple beneficial properties and it is possible that they can influence the mechanisms responsible for the dysfunction and death of dopaminergic neurons. Thus, the purpose of this systematic review is to analyze the results obtained in a set of studies carried out in the last years, which describe the neuroprotective, antioxidant and regenerative functions of some naturally occurring antioxidants in experimental models of PD. The results show that the exogenous no enzymatic antioxidants can significantly modify the biochemical and behavioral mechanisms that contribute to the pathophysiology of Parkinsonism in experimental animals. Therefore, it is possible that they may contribute to effective neuroprotection by providing a significant improvement in neuropathological markers. In conclusion, the results of this review suggest that exogenous antioxidants can be promising therapeutic candidates for the prevention and treatment of PD.

Keywords: Naturally occurring antioxidants, Parkinson’s disease, experimental models of parkinsonism, vitamins, polyphenols, flavonoids.

Graphical Abstract

[1]
Sandoval-Ávila, S.; Díaz, N.F.; Gómez-Pinedo, U.; Canales-Aguirre, A.A.; Gutiérrez-Mercado, Y.K.; Padilla-Camberos, E.; Márquez-Aguirre, A.L.; Díaz-Martínez, N.E. Efecto neuroprotector de fitoquímicos en cultivo de neuronas dopaminérgicas. Neurologia, 2019, 34(2), 114-124.
[http://dx.doi.org/10.1016/j.nrl.2016.04.018] [PMID: 27342389]
[2]
Twelves, D.; Perkins, K.S.; Counsell, C. Systematic review of incidence studies of Parkinson’s disease. Mov. Disord., 2003, 18(1), 19-31.
[http://dx.doi.org/10.1002/mds.10305] [PMID: 12518297]
[3]
Agim, Z.S.; Cannon, J.R. Dietary factors in the etiology of Parkinson’s disease. BioMed Res. Int., 2015, 2015672838
[http://dx.doi.org/10.1155/2015/672838] [PMID: 25688361]
[4]
Pohl, F.; Kong, T.; Lin, P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules, 2018, 23(12), 3283.
[http://dx.doi.org/10.3390/molecules23123283] [PMID: 30544977]
[5]
Cabreira, V.; Massano, J. Doença de Parkinson: Revisão clínica e atualização. Acta Med. Port., 2019, 32(10), 661-670.
[http://dx.doi.org/10.20344/amp.11978] [PMID: 31625879]
[6]
Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry, 2008, 79(4), 368-376.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[7]
Zhang, Y.; Dawson, V.L.; Dawson, T.M. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol. Dis., 2000, 7(4), 240-250.
[http://dx.doi.org/10.1006/nbdi.2000.0319] [PMID: 10964596]
[8]
Mhyre, T.R.; Boyd, J.T.; Hamill, R.W.; Maguire-Zeiss, K. Parkinson’s disease.Protein aggregation and fibrillogenesis in cerebral and systemic amyloid disease. Subcellular biochemistry; Harris, J.R., Ed.; Springer: Dordrecht, 2012, Vol. 65, pp. 389-455.
[9]
Dauer, W.; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[10]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3(1), 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[11]
Shah, S.P.; Duda, J.E. Dietary modifications in Parkinson’s disease: A neuroprotective intervention? Med. Hypotheses, 2015, 85(6), 1002-1005.
[http://dx.doi.org/10.1016/j.mehy.2015.08.018] [PMID: 26364043]
[12]
Stoker, T.B.; Greenland, J.C. Parkinson’s disease: Pathogenesis and clinical aspects; Codon Publications: Brisbane, 2018.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018]
[13]
Gazewood, J.D.; Richards, D.R.; Clebak, K. Parkinson disease: an update. Am. Fam. Physician, 2013, 87(4), 267-273.
[PMID: 23418798]
[14]
Fu, W.; Zhuang, W.; Zhou, S.; Wang, X. Plant-derived neuroprotective agents in Parkinson’s disease. Am. J. Transl. Res., 2015, 7(7), 1189-1202.
[PMID: 26328004]
[15]
Olanow, C.W.; Schapira, A.H. Therapeutic prospects for Parkinson disease. Ann. Neurol., 2013, 74(3), 337-347.
[http://dx.doi.org/10.1002/ana.24011] [PMID: 24038341]
[16]
Ali, S.S.; Ahsan, H.; Zia, M.K.; Siddiqui, T.; Khan, F.H. Understanding oxidants and antioxidants: Classical team with new players. J. Food Biochem., 2020, 44(3)e13145
[http://dx.doi.org/10.1111/jfbc.13145] [PMID: 31960481]
[17]
Kelsey, N.A.; Wilkins, H.M.; Linseman, D.A. Nutraceutical antioxidants as novel neuroprotective agents. Molecules, 2010, 15(11), 7792-7814.
[http://dx.doi.org/10.3390/molecules15117792] [PMID: 21060289]
[18]
Ding, Y.; Xin, C.; Zhang, C.W.; Lim, K.L.; Zhang, H.; Fu, Z.; Li, L.; Huang, W. Natural molecules from Chinese herbs protecting against Parkinson’s disease via anti-oxidative stress. Front. Aging Neurosci., 2018, 10, 246.
[http://dx.doi.org/10.3389/fnagi.2018.00246] [PMID: 30233351]
[19]
Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med., 2013, 62, 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[20]
Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem., 2019, 178, 687-704.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.010] [PMID: 31228811]
[21]
Carocho, M.; Ferreira, I.C. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[22]
Aziz, M.A.; Diab, A.S.; Mohammed, A.A. Antioxidant categories and mode of action.Antioxidants; Shalaby, E., Ed.; IntechOpen: London, 2019, pp. 1-20.
[http://dx.doi.org/10.5772/intechopen.83544]
[23]
He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem., 2017, 44(2), 532-553.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[24]
Guerra-Araiza, C.; Álvarez-Mejía, A.L.; Sánchez-Torres, S.; Farfan-García, E.; Mondragón-Lozano, R.; Pinto-Almazán, R.; Salgado-Ceballos, H. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic. Res., 2013, 47(6-7), 451-462.
[http://dx.doi.org/10.3109/10715762.2013.795649] [PMID: 23594291]
[25]
Lalkovičová, M.; Danielisová, V. Neuroprotection and antioxidants. Neural Regen. Res., 2016, 11(6), 865-874.
[http://dx.doi.org/10.4103/1673-5374.184447] [PMID: 27482198]
[26]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[27]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Lopez-Gonzalez del Rey, N. Animal models of Parkinson’s disease.Challenges in Parkinson’s disease; Dorszewska, J.; Kozubski, W., Eds.; IntechOpen: London, 2016, pp. 195-216.
[http://dx.doi.org/10.5772/63328]
[28]
Blandini, F.; Armentero, M.T.; Martignoni, E. The 6-hydroxydopamine model: news from the past. Parkinsonism Relat. Disord., 2008, 14(2)(Suppl. 2), S124-S129.
[http://dx.doi.org/10.1016/j.parkreldis.2008.04.015] [PMID: 18595767]
[29]
Blandini, F.; Armentero, M.T. Animal models of Parkinson’s disease. FEBS J., 2012, 279(7), 1156-1166.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08491.x] [PMID: 22251459]
[30]
Duty, S.; Jenner, P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol., 2011, 164(4), 1357-1391.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01426.x] [PMID: 21486284]
[31]
Fei, Q.; McCormack, A.L.; Di Monte, D.A.; Ethell, D.W. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J. Biol. Chem., 2008, 283(6), 3357-3364.
[http://dx.doi.org/10.1074/jbc.M708451200] [PMID: 18056701]
[32]
Polinski, N.K.; Volpicelli-Daley, L.A.; Sortwell, C.E.; Luk, K.C.; Cremades, N.; Gottler, L.M.; Froula, J.; Duffy, M.F.; Lee, V.M.Y.; Martínez, T.N.; Dave, K.D. Best practices for generating and using alpha-synuclein pre-formed fibrils to model Parkinson’s disease in rodents. J. Parkinsons Dis., 2018, 8(2), 303-322.
[http://dx.doi.org/10.3233/JPD-171248] [PMID: 29400668]
[33]
Luk, K.C.; Song, C.; O’Brien, P.; Stieber, A.; Branch, J.R.; Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M.Y. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 20051-20056.
[http://dx.doi.org/10.1073/pnas.0908005106] [PMID: 19892735]
[34]
Luk, K.C.; Kehm, V.M.; Zhang, B.; O’Brien, P.; Trojanowski, J.Q.; Lee, V.M. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med., 2012, 209(5), 975-986.
[http://dx.doi.org/10.1084/jem.20112457] [PMID: 22508839]
[35]
Patterson, J.R.; Polinski, N.K.; Duffy, M.F.; Kemp, C.J.; Luk, K.C.; Volpicelli-Daley, L.A.; Kanaan, N.M.; Sortwell, C.E. Generation of alpha-Synuclein preformed fibrils from monomers and use in vivo. JoVE, 2019, JoVE(148) e59758.
[36]
Grassi, D.; Howard, S.; Zhou, M.; Diaz-Perez, N.; Urban, N.T.; Guerrero-Given, D.; Kamasawa, N.; Volpicelli-Daley, L.A.; LoGrasso, P.; Lasmézas, C.I. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2018, 115(11), E2634-E2643.
[http://dx.doi.org/10.1073/pnas.1713849115] [PMID: 29487216]
[37]
Ham, S.; Yun, S.P.; Kim, H.; Kim, D.; Seo, B.A.; Kim, H.; Shin, J.Y.; Dar, M.A.; Lee, G.H.; Lee, Y.I.; Kim, D.; Kim, S.; Kweon, H.S.; Shin, J.H.; Ko, H.S.; Lee, Y. Amyloid-like oligomerization of AIMP2 contributes to α-synuclein interaction and Lewy-like inclusion. Sci. Transl. Med., 2020, 12(569)eaax0091
[http://dx.doi.org/10.1126/scitranslmed.aax0091] [PMID: 33177178]
[38]
Zhang, J.; Park, E.S.; Park, H.J.; Yan, R.; Grudniewska, M.; Zhang, X.; Oh, S.; Yang, X.; Baum, J.; Mouradian, M.M. Apoptosis signal regulating kinase 1 deletion mitigates α-synuclein pre-formed fibril propagation in mice. Neurobiol. Aging, 2020, 85, 49-57.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.012] [PMID: 31734439]
[39]
Chung, H.K.; Ho, H.A.; Pérez-Acuña, D.; Lee, S.J. Modeling α-synuclein propagation with preformed fibril injections. J. Mov. Disord., 2019, 12(3), 139-151.
[http://dx.doi.org/10.14802/jmd.19046] [PMID: 31556259]
[40]
Earls, R.H.; Menees, K.B.; Chung, J.; Barber, J.; Gutekunst, C.A.; Hazim, M.G.; Lee, J.K. Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. J. Neuroinflammation, 2019, 16(1), 250.
[http://dx.doi.org/10.1186/s12974-019-1636-8] [PMID: 31796095]
[41]
Kuan, W.L.; Stott, K.; He, X.; Wood, T.C.; Yang, S.; Kwok, J.C.F.; Hall, K.; Zhao, Y.; Tietz, O.; Aigbirhio, F.I.; Vernon, A.C.; Barker, R.A. Systemic α-synuclein injection triggers selective neuronal pathology as seen in patients with Parkinson’s disease. Mol. Psychiatry, 2021, 26(2), 556-567.
[http://dx.doi.org/10.1038/s41380-019-0608-9] [PMID: 31758091]
[42]
Gamber, K.M. Animal models of Parkinson’s disease: New models provide greater translational and predictive value. Biotechniques, 2016, 61(4), 210-211.
[http://dx.doi.org/10.2144/000114463]
[43]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med., 2009, 6(7)e1000097
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[44]
Kunzler, A.; Ribeiro, C.T.; Gasparotto, J.; Petiz, L.L.; da Rosa Silva, H.T.; da Silva, J.D., Jr; Bortolin, R.; de Souza, P.O.; Barreto, F.; Espitia-Pérez, P.; Schnorr, C.E.; Somensi, N.; Moreira, J.C.F.; Gelain, D.P. The effects of retinol oral supplementation in 6-hydroxydopamine dopaminergic denervation model in Wistar rats. Neurochem. Int., 2019, 125, 25-34.
[http://dx.doi.org/10.1016/j.neuint.2019.02.002] [PMID: 30739037]
[45]
Xia, X.J.; Lian, Y.G.; Zhao, H.Y.; Xu, Q.L. Curcumin protects from oxidative stress and inhibits α-synuclein aggregation in MPTP induced parkinsonian mice. Int. J. Clin. Exp. Med., 2016, 9(2), 2654-2665.
[46]
Del Fabbro, L.; Rossito Goes, A.; Jesse, C.R.; de Gomes, M.G.; Cattelan, S.L.; Lobo, L.F.V.; Lobo, L.A.A.B.; Nunes, A.R.V.; Reis, S.A.; Oliveira, M.S.; Furian, A.F.; Boeira, S.P. Chrysin protects against behavioral, cognitive and neurochemical alterations in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci. Lett., 2019, 706, 158-163.
[http://dx.doi.org/10.1016/j.neulet.2019.05.036] [PMID: 31121284]
[47]
Xu, Q.; Langley, M.; Kanthasamy, A.G.; Reddy, M.B. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J. Nutr., 2017, 147(10), 1926-1931.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[48]
Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Anees Khan, A.; Ali, A.; Hossain, M.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother. Res., 2020, 34(1), 214-226.
[http://dx.doi.org/10.1002/ptr.6523] [PMID: 31657074]
[49]
Nataraj, J.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.M. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutr. Neurosci., 2016, 19(6), 237-246.
[http://dx.doi.org/10.1179/1476830515Y.0000000010] [PMID: 25730317]
[50]
Baluchnejadmojarad, T.; Jamali-Raeufy, N.; Zabihnejad, S.; Rabiee, N.; Roghani, M. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson’s disease: Possible involvement of PI3K/ERβ signaling. Eur. J. Pharmacol., 2017, 801, 72-78.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.002] [PMID: 28284752]
[51]
Lima, L.A.R.; Lopes, M.J.P.; Costa, R.O.; Lima, F.A.V.; Neves, K.R.T.; Calou, I.B.F.; Andrade, G.M.; Viana, G.S.B. Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J. Neuroinflammation, 2018, 15(1), 249.
[http://dx.doi.org/10.1186/s12974-018-1266-6] [PMID: 30170624]
[52]
Zhu, Y.L.; Sun, M.F.; Jia, X.B.; Cheng, K.; Xu, Y.D.; Zhou, Z.L.; Zhang, P.H.; Qiao, C.M.; Cui, C.; Chen, X.; Yang, X.S.; Shen, Y.Q. Neuroprotective effects of Astilbin on MPTP-induced Parkinson’s disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int. Immunopharmacol., 2019, 66, 19-27.
[http://dx.doi.org/10.1016/j.intimp.2018.11.004] [PMID: 30419450]
[53]
Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[54]
Krishnamoorthy, A.; Sevanan, M.; Mani, S.; Balu, M.; Balaji, S. P, R. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model. Neurosci. Lett., 2019, 709134382
[http://dx.doi.org/10.1016/j.neulet.2019.134382] [PMID: 31325581]
[55]
Song, S.; Nie, Q.; Li, Z.; Du, G. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats. Pathol. Res. Pract., 2016, 212(4), 247-251.
[http://dx.doi.org/10.1016/j.prp.2015.11.012] [PMID: 26922613]
[56]
Wang, Y.L.; Ju, B.; Zhang, Y.Z.; Yin, H.L.; Liu, Y.J.; Wang, S.S.; Zeng, Z.L.; Yang, X.P.; Wang, H.T.; Li, J.F. Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson’s disease through the Wnt/β-catenin signaling pathway. Cell. Physiol. Biochem., 2017, 43(6), 2226-2241.
[http://dx.doi.org/10.1159/000484302] [PMID: 29069652]
[57]
Li, X.H.; Dai, C.F.; Chen, L.; Zhou, W.T.; Han, H.L.; Dong, Z.F. 7,8-dihydroxyflavone ameliorates motor deficits via suppressing α‐synuclein expression and oxidative stress in the MPTP‐induced mouse model of Parkinson’s disease. CNS Neurosci. Ther., 2016, 22(7), 617-624.
[http://dx.doi.org/10.1111/cns.12555] [PMID: 27079181]
[58]
Mani, S.; Sekar, S.; Barathidasan, R.; Manivasagam, T.; Thenmozhi, A.J.; Sevanan, M.; Chidambaram, S.B.; Essa, M.M.; Guillemin, G.J.; Sakharkar, M.K. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson’s disease model in mice. Neurotox. Res., 2018, 33(3), 656-670.
[http://dx.doi.org/10.1007/s12640-018-9869-3] [PMID: 29427283]
[59]
Sugumar, M.; Sevanan, M.; Sekar, S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int. J. Neurosci., 2019, 129(6), 534-539.
[http://dx.doi.org/10.1080/00207454.2018.1545772] [PMID: 30433834]
[60]
Sian, J.; Dexter, D.T.; Lees, A.J.; Daniel, S.; Agid, Y.; Javoy-Agid, F.; Jenner, P.; Marsden, C.D. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol., 1994, 36(3), 348-355.
[http://dx.doi.org/10.1002/ana.410360305] [PMID: 8080242]
[61]
Dexter, D.T.; Wells, F.R.; Lees, A.J.; Agid, F.; Agid, Y.; Jenner, P.; Marsden, C.D. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J. Neurochem., 1989, 52(6), 1830-1836.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb07264.x] [PMID: 2723638]
[62]
Riederer, P.; Sofic, E.; Rausch, W.D.; Schmidt, B.; Reynolds, G.P.; Jellinger, K.; Youdim, M.B. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem., 1989, 52(2), 515-520.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb09150.x] [PMID: 2911028]
[63]
Stankiewicz, J.; Panter, S.S.; Neema, M.; Arora, A.; Batt, C.E.; Bakshi, R. Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics, 2007, 4(3), 371-386.
[http://dx.doi.org/10.1016/j.nurt.2007.05.006] [PMID: 17599703]
[64]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[65]
Ammal Kaidery, N.; Ahuja, M.; Thomas, B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Mol. Cell. Neurosci., 2019, 101103413
[http://dx.doi.org/10.1016/j.mcn.2019.103413] [PMID: 31644952]
[66]
Kovac, S.; Angelova, P.R.; Holmström, K.M.; Zhang, Y.; Dinkova-Kostova, A.T.; Abramov, A.Y. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim. Biophys. Acta, 2015, 1850(4), 794-801.
[http://dx.doi.org/10.1016/j.bbagen.2014.11.021] [PMID: 25484314]
[67]
Ahuja, M.; Ammal Kaidery, N.; Yang, L.; Calingasan, N.; Smirnova, N.; Gaisin, A.; Gaisina, I.N.; Gazaryan, I.; Hushpulian, D.M.; Kaddour-Djebbar, I.; Bollag, W.B.; Morgan, J.C.; Ratan, R.R.; Starkov, A.A.; Beal, M.F.; Thomas, B. Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson’s-like disease. J. Neurosci., 2016, 36(23), 6332-6351.
[http://dx.doi.org/10.1523/JNEUROSCI.0426-16.2016] [PMID: 27277809]
[68]
Aquilano, K.; Baldelli, S.; Rotilio, G.; Ciriolo, M.R. Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem. Res., 2008, 33(12), 2416-2426.
[http://dx.doi.org/10.1007/s11064-008-9697-6] [PMID: 18415676]
[69]
Marinova-Mutafchieva, L.; Sadeghian, M.; Broom, L.; Davis, J.B.; Medhurst, A.D.; Dexter, D.T. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J. Neurochem., 2009, 110(3), 966-975.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06189.x] [PMID: 19549006]
[70]
Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[71]
Zhang, G.; Yang, G.; Liu, J. Phloretin attenuates behavior deficits and neuroinflammatory response in MPTP induced Parkinson’s disease in mice. Life Sci., 2019, 232116600
[http://dx.doi.org/10.1016/j.lfs.2019.116600] [PMID: 31251998]
[72]
Blandini, F. Neural and immune mechanisms in the pathogenesis of Parkinson’s disease. J. Neuroimmune Pharmacol., 2013, 8(1), 189-201.
[http://dx.doi.org/10.1007/s11481-013-9435-y] [PMID: 23378275]
[73]
Sawada, M.; Suzumura, A.; Hosoya, H.; Marunouchi, T.; Nagatsu, T. Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J. Neurochem., 1999, 72(4), 1466-1471.
[http://dx.doi.org/10.1046/j.1471-4159.1999.721466.x] [PMID: 10098850]
[74]
Kwilasz, A.J.; Grace, P.M.; Serbedzija, P.; Maier, S.F.; Watkins, L.R. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology,, 2015, 96(Pt A), 55-69.
[http://dx.doi.org/10.1016/j.neuropharm.2014.10.020] [PMID: 25446571]
[75]
Zhao, W.; Xie, W.; Xiao, Q.; Beers, D.R.; Appel, S.H. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J. Neurochem., 2006, 99(4), 1176-1187.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04172.x] [PMID: 17018025]
[76]
Arimoto, T.; Choi, D.Y.; Lu, X.; Liu, M.; Nguyen, X.V.; Zheng, N.; Stewart, C.A.; Kim, H.C.; Bing, G. Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiol. Aging, 2007, 28(6), 894-906.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.04.011] [PMID: 21887889]
[77]
Hühner, L.; Rilka, J.; Gilsbach, R.; Zhou, X.; Machado, V.; Spittau, B. Interleukin-4 protects dopaminergic neurons in vitro but is dispensable for MPTP induced neurodegeneration in vivo. Front. Mol. Neurosci., 2017, 10, 62.
[http://dx.doi.org/10.3389/fnmol.2017.00062] [PMID: 28337124]
[78]
Schwenkgrub, J.; Joniec-Maciejak, I.; Sznejder-Pachołek, A.; Wawer, A.; Ciesielska, A.; Bankiewicz, K.; Członkowska, A.; Członkowski, A. Effect of human interleukin-10 on the expression of nitric oxide synthases in the MPTP-based model of Parkinson’s disease. Pharmacol. Rep., 2013, 65(1), 44-49.
[http://dx.doi.org/10.1016/S1734-1140(13)70962-9] [PMID: 23563022]
[79]
Tesseur, I.; Nguyen, A.; Chang, B.; Li, L.; Woodling, N.S.; Wyss-Coray, T.; Luo, J. Deficiency in neuronal TGF-β signaling leads to nigrostriatal degeneration and activation of TGF-β signaling protects against MPTP neurotoxicity in mice. J. Neurosci., 2017, 37(17), 4584-4592.
[http://dx.doi.org/10.1523/JNEUROSCI.2952-16.2017] [PMID: 28363982]
[80]
Dobolyi, A.; Vincze, C.; Pál, G.; Lovas, G. The neuroprotective functions of transforming growth factor beta proteins. Int. J. Mol. Sci., 2012, 13(7), 8219-8258.
[http://dx.doi.org/10.3390/ijms13078219] [PMID: 22942700]
[81]
Makwana, M.; Jones, L.L.; Cuthill, D.; Heuer, H.; Bohatschek, M.; Hristova, M.; Friedrichsen, S.; Ormsby, I.; Bueringer, D.; Koppius, A.; Bauer, K.; Doetschman, T.; Raivich, G. Endogenous transforming growth factor β 1 suppresses inflammation and promotes survival in adult CNS. J. Neurosci., 2007, 27(42), 11201-11213.
[http://dx.doi.org/10.1523/JNEUROSCI.2255-07.2007] [PMID: 17942715]
[82]
Krieglstein, K.; Unsicker, K. Transforming growth factor-β promotes survival of midbrain dopaminergic neurons and protects them against N-methyl-4-phenylpyridinium ion toxicity. Neuroscience, 1994, 63(4), 1189-1196.
[http://dx.doi.org/10.1016/0306-4522(94)90583-5] [PMID: 7700516]
[83]
Krieglstein, K.; Suter-Crazzolara, C.; Fischer, W.H.; Unsicker, K. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J., 1995, 14(4), 736-742.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07052.x] [PMID: 7882977]
[84]
Andrews, Z.B.; Zhao, H.; Frugier, T.; Meguro, R.; Grattan, D.R.; Koishi, K.; McLennan, I.S. Transforming growth factor beta2 haploinsufficient mice develop age-related nigrostriatal dopamine deficits. Neurobiol. Dis., 2006, 21(3), 568-575.
[http://dx.doi.org/10.1016/j.nbd.2005.09.001] [PMID: 16257223]
[85]
Farkas, L.M.; Dünker, N.; Roussa, E.; Unsicker, K.; Krieglstein, K. Transforming growth factor-β(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J. Neurosci., 2003, 23(12), 5178-5186.
[http://dx.doi.org/10.1523/JNEUROSCI.23-12-05178.2003] [PMID: 12832542]
[86]
Hung, K.C.; Huang, H.J.; Wang, Y.T.; Lin, A.M.Y. Baicalein attenuates α-synuclein aggregation, inflammasome activation and autophagy in the MPP+-treated nigrostriatal dopaminergic system in vivo. J. Ethnopharmacol., 2016, 194, 522-529.
[http://dx.doi.org/10.1016/j.jep.2016.10.040] [PMID: 27742410]
[87]
Zhou, T.; Zhu, M.; Liang, Z. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Mol. Med. Rep., 2018, 17(4), 4883-4888.
[http://dx.doi.org/10.3892/mmr.2018.8470] [PMID: 29363729]
[88]
Antunes, M.S.; Cattelan, S.L.; Ladd, F.V.L.; Ladd, A.A.B.L.; Moreira, A.L.; Bortolotto, V.C.; Silva, M.R.P.; Araújo, S.M.; Prigol, M.; Nogueira, C.W.; Boeira, S.P. Hesperidin ameliorates anxiety-depressive-like behavior in 6-OHDA model of Parkinson’s disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice. Mol. Neurobiol., 2020, 57(7), 3027-3041.
[http://dx.doi.org/10.1007/s12035-020-01940-3] [PMID: 32458386]
[89]
Kim, H.D.; Jeong, K.H.; Jung, U.J.; Kim, S.R. Myricitrin ameliorates 6-hydroxydopamine-induced dopaminergic neuronal loss in the substantia nigra of mouse brain. J. Med. Food, 2016, 19(4), 374-382.
[http://dx.doi.org/10.1089/jmf.2015.3581] [PMID: 26991235]
[90]
Kim, H.D.; Jeong, K.H.; Jung, U.J.; Kim, S.R. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson’s disease in vivo, but not enough to restore the lesioned dopaminergic system. J. Nutr. Biochem., 2016, 28, 140-146.
[http://dx.doi.org/10.1016/j.jnutbio.2015.10.013] [PMID: 26878791]
[91]
Jiang, M.; Yun, Q.; Niu, G.; Gao, Y.; Shi, F.; Yu, S. Puerarin prevents inflammation and apoptosis in the neurocytes of a murine Parkinson’s disease model. Genet. Mol. Res., 2016, 15(4), 1-9.
[http://dx.doi.org/10.4238/gmr.15047501] [PMID: 27808353]
[92]
Yang, J.S.; Wu, X.H.; Yu, H.G.; Teng, L.S. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology, 2017, 25(4), 471-484.
[http://dx.doi.org/10.1007/s10787-017-0348-x] [PMID: 28577132]
[93]
Calvello, R.; Cianciulli, A.; Nicolardi, G.; De Nuccio, F.; Giannotti, L.; Salvatore, R.; Porro, C.; Trotta, T.; Panaro, M.A.; Lofrumento, D.D. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, shifting M1 to M2 microglia responses. J. Neuroimmune Pharmacol., 2017, 12(2), 327-339.
[http://dx.doi.org/10.1007/s11481-016-9720-7] [PMID: 27987058]
[94]
Liu, W.; Tang, Y.; Feng, J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci., 2011, 89(5-6), 141-146.
[http://dx.doi.org/10.1016/j.lfs.2011.05.011] [PMID: 21684291]
[95]
Okuno, T.; Nakatsuji, Y.; Kumanogoh, A.; Moriya, M.; Ichinose, H.; Sumi, H.; Fujimura, H.; Kikutani, H.; Sakoda, S. Loss of dopaminergic neurons by the induction of inducible nitric oxide synthase and cyclooxygenase-2 via CD 40: relevance to Parkinson’s disease. J. Neurosci. Res., 2005, 81(6), 874-882.
[http://dx.doi.org/10.1002/jnr.20599] [PMID: 16041799]
[96]
Eve, D.J.; Nisbet, A.P.; Kingsbury, A.E.; Hewson, E.L.; Daniel, S.E.; Lees, A.J.; Marsden, C.D.; Foster, O.J. Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res. Mol. Brain Res., 1998, 63(1), 62-71.
[http://dx.doi.org/10.1016/S0169-328X(98)00259-9] [PMID: 9838046]
[97]
Hunot, S.; Boissière, F.; Faucheux, B.; Brugg, B.; Mouatt-Prigent, A.; Agid, Y.; Hirsch, E.C. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience, 1996, 72(2), 355-363.
[http://dx.doi.org/10.1016/0306-4522(95)00578-1] [PMID: 8737406]
[98]
Shergill, J.K.; Cammack, R.; Cooper, C.E.; Cooper, J.M.; Mann, V.M.; Schapira, A.H. Detection of nitrosyl complexes in human substantia nigra, in relation to Parkinson’s disease. Biochem. Biophys. Res. Commun., 1996, 228(2), 298-305.
[http://dx.doi.org/10.1006/bbrc.1996.1656] [PMID: 8920909]
[99]
Liberatore, G.T.; Jackson-Lewis, V.; Vukosavic, S.; Mandir, A.S.; Vila, M.; McAuliffe, W.G.; Dawson, V.L.; Dawson, T.M.; Przedborski, S. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med., 1999, 5(12), 1403-1409.
[http://dx.doi.org/10.1038/70978] [PMID: 10581083]
[100]
Tieu, K.; Ischiropoulos, H.; Przedborski, S. Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life, 2003, 55(6), 329-335.
[http://dx.doi.org/10.1080/1521654032000114320] [PMID: 12938735]
[101]
Knott, C.; Stern, G.; Wilkin, G.P. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci., 2000, 16(6), 724-739.
[http://dx.doi.org/10.1006/mcne.2000.0914] [PMID: 11124893]
[102]
Campolo, M.; Paterniti, I.; Siracusa, R.; Filippone, A.; Esposito, E.; Cuzzocrea, S. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson’s diseases in vivo model. Brain Behav. Immun., 2019, 76, 236-247.
[http://dx.doi.org/10.1016/j.bbi.2018.12.003] [PMID: 30550933]
[103]
Fellner, L.; Irschick, R.; Schanda, K.; Reindl, M.; Klimaschewski, L.; Poewe, W.; Wenning, G.K.; Stefanova, N. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia, 2013, 61(3), 349-360.
[http://dx.doi.org/10.1002/glia.22437] [PMID: 23108585]
[104]
Leitner, G.R.; Wenzel, T.J.; Marshall, N.; Gates, E.J.; Klegeris, A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin. Ther. Targets, 2019, 23(10), 865-882.
[http://dx.doi.org/10.1080/14728222.2019.1676416] [PMID: 31580163]
[105]
Dresselhaus, E.C.; Meffert, M.K. Cellular specificity of NF-κB function in the nervous system. Front. Immunol., 2019, 10, 1043.
[http://dx.doi.org/10.3389/fimmu.2019.01043] [PMID: 31143184]
[106]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 1-9.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[107]
Lang, Y.; Chu, F.; Shen, D.; Zhang, W.; Zheng, C.; Zhu, J.; Cui, L. Role of inflammasomes in neuroimmune and neurodegenerative diseases: a systematic review. Mediators Inflamm., 2018, 20181549549
[http://dx.doi.org/10.1155/2018/1549549] [PMID: 29849483]
[108]
Pellegrini, C.; Fornai, M.; Antonioli, L.; Blandizzi, C.; Calderone, V. Phytochemicals as novel therapeutic strategies for NLRP3 inflammasome-related neurological, metabolic, and inflammatory diseases. Int. J. Mol. Sci., 2019, 20(12), 2876.
[http://dx.doi.org/10.3390/ijms20122876] [PMID: 31200447]
[109]
Gordon, R.; Albornoz, E.A.; Christie, D.C.; Langley, M.R.; Kumar, V.; Mantovani, S.; Robertson, A.A.B.; Butler, M.S.; Rowe, D.B.; O’Neill, L.A.; Kanthasamy, A.G.; Schroder, K.; Cooper, M.A.; Woodruff, T.M. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med., 2018, 10(465)eaah4066
[http://dx.doi.org/10.1126/scitranslmed.aah4066] [PMID: 30381407]
[110]
Zhang, P.; Shao, X.Y.; Qi, G.J.; Chen, Q.; Bu, L.L.; Chen, L.J.; Shi, J.; Ming, J.; Tian, B. Cdk5‐dependent activation of neuronal inflammasomes in Parkinson’s disease. Mov. Disord., 2016, 31(3), 366-376.
[http://dx.doi.org/10.1002/mds.26488] [PMID: 26853432]
[111]
Mao, Z.; Liu, C.; Ji, S.; Yang, Q.; Ye, H.; Han, H.; Xue, Z. The NLRP3 inflammasome is involved in the pathogenesis of Parkinson’s disease in rats. Neurochem. Res., 2017, 42(4), 1104-1115.
[http://dx.doi.org/10.1007/s11064-017-2185-0] [PMID: 28247334]
[112]
Zhou, Y.; Lu, M.; Du, R.H.; Qiao, C.; Jiang, C.Y.; Zhang, K.Z.; Ding, J.H.; Hu, G. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol. Neurodegener., 2016, 11(1), 28.
[http://dx.doi.org/10.1186/s13024-016-0094-3] [PMID: 27084336]
[113]
Cao, L.; He, C. Polarization of macrophages and microglia in inflammatory demyelination. Neurosci. Bull., 2013, 29(2), 189-198.
[http://dx.doi.org/10.1007/s12264-013-1324-0] [PMID: 23558588]
[114]
Liu, J.Q.; Zhao, M.; Zhang, Z.; Cui, L.Y.; Zhou, X.; Zhang, W.; Chu, S.F.; Zhang, D.Y.; Chen, N.H. Rg1 improves LPS-induced Parkinsonian symptoms in mice via inhibition of NF-κB signaling and modulation of M1/M2 polarization. Acta Pharmacol. Sin., 2020, 41(4), 523-534.
[http://dx.doi.org/10.1038/s41401-020-0358-x] [PMID: 32203085]
[115]
Pisanu, A.; Lecca, D.; Mulas, G.; Wardas, J.; Simbula, G.; Spiga, S.; Carta, A.R. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol. Dis., 2014, 71, 280-291.
[http://dx.doi.org/10.1016/j.nbd.2014.08.011] [PMID: 25134730]
[116]
Giuliano, C.; Siani, F.; Mus, L.; Ghezzi, C.; Cerri, S.; Pacchetti, B.; Bigogno, C.; Blandini, F. Neuroprotective effects of lignan 7-hydroxymatairesinol (HMR/lignan) in a rodent model of Parkinson’s disease. Nutrition, 2020, 69110494
[http://dx.doi.org/10.1016/j.nut.2019.04.006] [PMID: 31586482]
[117]
Hernández-Romero, M.C.; Delgado-Cortés, M.J.; Sarmiento, M.; de Pablos, R.M.; Espinosa-Oliva, A.M.; Argüelles, S.; Bández, M.J.; Villarán, R.F.; Mauriño, R.; Santiago, M.; Venero, J.L.; Herrera, A.J.; Cano, J.; Machado, A. Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. Neurotoxicology, 2012, 33(3), 347-360.
[http://dx.doi.org/10.1016/j.neuro.2012.01.018] [PMID: 22330755]
[118]
Guo, Y.J.; Dong, S.Y.; Cui, X.X.; Feng, Y.; Liu, T.; Yin, M.; Kuo, S.H.; Tan, E.K.; Zhao, W.J.; Wu, Y.C. Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol. Nutr. Food Res., 2016, 60(10), 2161-2175.
[http://dx.doi.org/10.1002/mnfr.201600111] [PMID: 27296520]
[119]
Zhai, H.; Kang, Z.; Zhang, H.; Ma, J.; Chen, G. Baicalin attenuated substantia nigra neuronal apoptosis in Parkinson’s disease rats via the mTOR/AKT/GSK-3β pathway. J. Integr. Neurosci., 2019, 18(4), 423-429.
[http://dx.doi.org/10.31083/j.jin.2019.04.192] [PMID: 31912701]
[120]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[121]
Kitada, M.; Ogura, Y.; Koya, D. Role of SIRT1 as a regulator of autophagy.Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging; Hayat, M.A., Ed.; Academic Press, 2016, Vol. 8, pp. 89-100.
[http://dx.doi.org/10.1016/B978-0-12-802937-4.00003-X]
[122]
Li, X.; Wang, Y.; Xiong, Y.; Wu, J.; Ding, H.; Chen, X.; Lan, L.; Zhang, H. Galangin induces autophagy via deacetylation of LC3 by SIRT1 in HepG2 cells. Sci. Rep., 2016, 6(1), 30496.
[http://dx.doi.org/10.1038/srep30496] [PMID: 27460655]
[123]
Liu, H.; Dai, C.; Fan, Y.; Guo, B.; Ren, K.; Sun, T.; Wang, W. From autophagy to mitophagy: the roles of P62 in neurodegenerative diseases. J. Bioenerg. Biomembr., 2017, 49(5), 413-422.
[http://dx.doi.org/10.1007/s10863-017-9727-7] [PMID: 28975445]
[124]
Nakaso, K.; Yoshimoto, Y.; Nakano, T.; Takeshima, T.; Fukuhara, Y.; Yasui, K.; Araga, S.; Yanagawa, T.; Ishii, T.; Nakashima, K. Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson’s disease. Brain Res., 2004, 1012(1-2), 42-51.
[http://dx.doi.org/10.1016/j.brainres.2004.03.029] [PMID: 15158159]
[125]
Shin, W.H.; Park, J.H.; Chung, K.C. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson’s disease. BMB Rep., 2020, 53(1), 56-63.
[http://dx.doi.org/10.5483/BMBRep.2020.53.1.283] [PMID: 31818366]
[126]
Park, J.S.; Davis, R.L.; Sue, C.M. Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep., 2018, 18(5), 21.
[http://dx.doi.org/10.1007/s11910-018-0829-3] [PMID: 29616350]
[127]
Eschbach, J.; von Einem, B.; Müller, K.; Bayer, H.; Scheffold, A.; Morrison, B.E.; Rudolph, K.L.; Thal, D.R.; Witting, A.; Weydt, P.; Otto, M.; Fauler, M.; Liss, B.; McLean, P.J.; Spada, A.R.; Ludolph, A.C.; Weishaupt, J.H.; Danzer, K.M. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann. Neurol., 2015, 77(1), 15-32.
[http://dx.doi.org/10.1002/ana.24294] [PMID: 25363075]
[128]
Chen, C.; Turnbull, D.M.; Reeve, A.K. Mitochondrial Dysfunction in Parkinson’s Disease-Cause or Consequence? Biology (Basel), 2019, 8(2), 38.
[http://dx.doi.org/10.3390/biology8020038] [PMID: 31083583]
[129]
Franco-Iborra, S.; Vila, M.; Perier, C. The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist, 2016, 22(3), 266-277.
[http://dx.doi.org/10.1177/1073858415574600] [PMID: 25761946]
[130]
Hu, Q.; Wang, G. Mitochondrial dysfunction in Parkinson’s disease. Transl. Neurodegener., 2016, 5(1), 14.
[http://dx.doi.org/10.1186/s40035-016-0060-6] [PMID: 27453777]
[131]
Gómez-Lázaro, M.; Bonekamp, N.A.; Galindo, M.F.; Jordán, J.; Schrader, M. 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic. Biol. Med., 2008, 44(11), 1960-1969.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.009] [PMID: 18395527]
[132]
Rahimmi, A.; Khosrobakhsh, F.; Izadpanah, E.; Moloudi, M.R.; Hassanzadeh, K. N-acetylcysteine prevents rotenone-induced Parkinson’s disease in rat: An investigation into the interaction of parkin and Drp1 proteins. Brain Res. Bull., 2015, 113, 34-40.
[http://dx.doi.org/10.1016/j.brainresbull.2015.02.007] [PMID: 25732239]
[133]
Rappold, P.M.; Cui, M.; Grima, J.C.; Fan, R.Z.; de Mesy-Bentley, K.L.; Chen, L.; Zhuang, X.; Bowers, W.J.; Tieu, K. Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nat. Commun., 2014, 5(1), 5244.
[http://dx.doi.org/10.1038/ncomms6244] [PMID: 25370169]
[134]
Wang, X.; Su, B.; Liu, W.; He, X.; Gao, Y.; Castellani, R.J.; Perry, G.; Smith, M.A.; Zhu, X. DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson’s disease. Aging Cell, 2011, 10(5), 807-823.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00721.x] [PMID: 21615675]
[135]
Kamp, F.; Exner, N.; Lutz, A.K.; Wender, N.; Hegermann, J.; Brunner, B.; Nuscher, B.; Bartels, T.; Giese, A.; Beyer, K.; Eimer, S.; Winklhofer, K.F.; Haass, C. Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J., 2010, 29(20), 3571-3589.
[http://dx.doi.org/10.1038/emboj.2010.223] [PMID: 20842103]
[136]
Xie, W.; Chung, K.K. Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson’s disease. J. Neurochem., 2012, 122(2), 404-414.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07769.x] [PMID: 22537068]
[137]
Grünewald, A.; Kumar, K.R.; Sue, C.M. New insights into the complex role of mitochondria in Parkinson’s disease. Prog. Neurobiol., 2019, 177, 73-93.
[http://dx.doi.org/10.1016/j.pneurobio.2018.09.003] [PMID: 30219247]
[138]
Siegel, G.J.; Chauhan, N.B. Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res. Brain Res. Rev., 2000, 33(2-3), 199-227.
[http://dx.doi.org/10.1016/S0165-0173(00)00030-8] [PMID: 11011066]
[139]
Frim, D.M.; Uhler, T.A.; Galpern, W.R.; Beal, M.F.; Breakefield, X.O.; Isacson, O. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc. Natl. Acad. Sci. USA, 1994, 91(11), 5104-5108.
[http://dx.doi.org/10.1073/pnas.91.11.5104] [PMID: 8197193]
[140]
Gash, D.M.; Zhang, Z.; Ovadia, A.; Cass, W.A.; Yi, A.; Simmerman, L.; Russell, D.; Martin, D.; Lapchak, P.A.; Collins, F.; Hoffer, B.J.; Gerhardt, G.A. Functional recovery in parkinsonian monkeys treated with GDNF. Nature, 1996, 380(6571), 252-255.
[http://dx.doi.org/10.1038/380252a0] [PMID: 8637574]
[141]
Tomac, A.; Lindqvist, E.; Lin, L.F.; Ögren, S.O.; Young, D.; Hoffer, B.J.; Olson, L. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature, 1995, 373(6512), 335-339.
[http://dx.doi.org/10.1038/373335a0] [PMID: 7830766]
[142]
Sampaio, T.B.; Savall, A.S.; Gutierrez, M.E.Z.; Pinton, S. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: implications for pathogenesis and therapy. Neural Regen. Res., 2017, 12(4), 549-557.
[http://dx.doi.org/10.4103/1673-5374.205084] [PMID: 28553325]
[143]
Cai, P.; Ye, J.; Zhu, J.; Liu, D.; Chen, D.; Wei, X.; Johnson, N.R.; Wang, Z.; Zhang, H.; Cao, G.; Xiao, J.; Ye, J.; Lin, L. Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effect of bFGF in the 6-OHDA-induced Parkinson’s disease model. Aging Dis., 2016, 7(4), 336-449.
[http://dx.doi.org/10.14336/AD.2016.0117] [PMID: 27493838]
[144]
Engele, J.; Bohn, M.C. The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J. Neurosci., 1991, 11(10), 3070-3078.
[http://dx.doi.org/10.1523/JNEUROSCI.11-10-03070.1991] [PMID: 1941074]
[145]
Hsuan, S.L.; Klintworth, H.M.; Xia, Z. Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways. J. Neurosci., 2006, 26(17), 4481-4491.
[http://dx.doi.org/10.1523/JNEUROSCI.4922-05.2006] [PMID: 16641227]
[146]
Tooyama, I.; Kawamata, T.; Walker, D.; Yamada, T.; Hanai, K.; Kimura, H.; Iwane, M.; Igarashi, K.; McGeer, E.G.; McGeer, P.L. Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson’s disease. Neurology, 1993, 43(2), 372-376.
[http://dx.doi.org/10.1212/WNL.43.2.372] [PMID: 8437705]
[147]
Hu, J.; Ferreira, A.; Van Eldik, L.J. S100β induces neuronal cell death through nitric oxide release from astrocytes. J. Neurochem., 1997, 69(6), 2294-2301.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69062294.x] [PMID: 9375660]
[148]
Bianchi, R.; Adami, C.; Giambanco, I.; Donato, R. S100B binding to RAGE in microglia stimulates COX-2 expression. J. Leukoc. Biol., 2007, 81(1), 108-118.
[http://dx.doi.org/10.1189/jlb.0306198] [PMID: 17023559]
[149]
Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: from biomarker to active factor in neural injury. J. Neurochem., 2019, 148(2), 168-187.
[http://dx.doi.org/10.1111/jnc.14574] [PMID: 30144068]
[150]
Sorci, G.; Bianchi, R.; Riuzzi, F.; Tubaro, C.; Arcuri, C.; Giambanco, I.; Donato, R. S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc. Psychiatry Neurol., 2010, 2010, 1-13.
[http://dx.doi.org/10.1155/2010/656481] [PMID: 20827421]
[151]
Muramatsu, Y.; Kurosaki, R.; Watanabe, H.; Michimata, M.; Matsubara, M.; Imai, Y.; Araki, T. Expression of S-100 protein is related to neuronal damage in MPTP-treated mice. Glia, 2003, 42(3), 307-313.
[http://dx.doi.org/10.1002/glia.10225] [PMID: 12673835]
[152]
Papuć, E.; Rejdak, K. Increased cerebrospinal fluid S100B and NSE reflect neuronal and glial damage in Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 156.
[http://dx.doi.org/10.3389/fnagi.2020.00156] [PMID: 32792937]
[153]
Sathe, K.; Maetzler, W.; Lang, J.D.; Mounsey, R.B.; Fleckenstein, C.; Martin, H.L.; Schulte, C.; Mustafa, S.; Synofzik, M.; Vukovic, Z.; Itohara, S.; Berg, D.; Teismann, P. S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. Brain, 2012, 135(Pt 11), 3336-3347.
[http://dx.doi.org/10.1093/brain/aws250] [PMID: 23169921]
[154]
Viana, S.D.; Valero, J.; Rodrigues-Santos, P.; Couceiro, P.; Silva, A.M.; Carvalho, F.; Ali, S.F.; Fontes-Ribeiro, C.A.; Pereira, F.C. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson’s disease. J. Neurochem., 2016, 138(4), 598-609.
[http://dx.doi.org/10.1111/jnc.13682] [PMID: 27221633]
[155]
Westphal, D.; Dewson, G.; Czabotar, P.E.; Kluck, R.M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta, 2011, 1813(4), 521-531.
[http://dx.doi.org/10.1016/j.bbamcr.2010.12.019] [PMID: 21195116]
[156]
Youle, R.J.; Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 47-59.
[http://dx.doi.org/10.1038/nrm2308] [PMID: 18097445]
[157]
Szybińska, A.; Leśniak, W. P53 dysfunction in neurodegenerative diseases-the cause or effect of pathological changes? Aging Dis., 2017, 8(4), 506-518.
[http://dx.doi.org/10.14336/AD.2016.1120] [PMID: 28840063]
[158]
Chen, W.F.; Wu, L.; Du, Z.R.; Chen, L.; Xu, A.L.; Chen, X.H.; Teng, J.J.; Wong, M.S. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine, 2017, 25, 93-99.
[http://dx.doi.org/10.1016/j.phymed.2016.12.017] [PMID: 28190476]
[159]
Huang, N.; Zhang, Y.; Chen, M.; Jin, H.; Nie, J.; Luo, Y.; Zhou, S.; Shi, J.; Jin, F. Resveratrol delays 6-hydroxydopamine-induced apoptosis by activating the PI3K/Akt signaling pathway. Exp. Gerontol., 2019, 124110653
[http://dx.doi.org/10.1016/j.exger.2019.110653] [PMID: 31295526]
[160]
Zhang, S.; Wang, S.; Shi, X.; Feng, X. Polydatin alleviates parkinsonism in MPTP-model mice by enhancing glycolysis in dopaminergic neurons. Neurochem. Int., 2020, 139104815
[http://dx.doi.org/10.1016/j.neuint.2020.104815] [PMID: 32758587]
[161]
Colla, E. Linking the endoplasmic reticulum to Parkinson’s disease and alphasynucleinopathy. Front. Neurosci., 2019, 13, 560.
[http://dx.doi.org/10.3389/fnins.2019.00560] [PMID: 31191239]
[162]
Burke, R.E. Programmed cell death and new discoveries in the genetics of parkinsonism. J. Neurochem., 2008, 104(4), 875-890.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05106.x] [PMID: 17996022]
[163]
Chaudhry, Z.L.; Ahmed, B.Y. The role of caspases in Parkinson’s disease pathogenesis: a brief look at the mitochondrial pathway. Austin Alzheimers Parkinsons Dis., 2014, 1(3), 1-5.
[164]
Hitomi, J.; Katayama, T.; Eguchi, Y.; Kudo, T.; Taniguchi, M.; Koyama, Y.; Manabe, T.; Yamagishi, S.; Bando, Y.; Imaizumi, K.; Tsujimoto, Y.; Tohyama, M. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J. Cell Biol., 2004, 165(3), 347-356.
[http://dx.doi.org/10.1083/jcb.200310015] [PMID: 15123740]
[165]
Jha, S.K.; Jha, N.K.; Kar, R.; Ambasta, R.K.; Kumar, P. p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int. J. Mol. Cell. Med., 2015, 4(2), 67-86.
[PMID: 26261796]
[166]
Nakanishi, A.; Wada, Y.; Kitagishi, Y.; Matsuda, S. Link between PI3K/AKT/PTEN pathway and NOX proteinin diseases. Aging Dis., 2014, 5(3), 203-211.
[http://dx.doi.org/10.14336/AD.2014.0500203] [PMID: 24900943]
[167]
Luo, D.; Shi, Y.; Wang, J.; Lin, Q.; Sun, Y.; Ye, K.; Yan, Q.; Zhang, H. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents. Neurosci. Lett., 2016, 620, 43-49.
[http://dx.doi.org/10.1016/j.neulet.2016.03.042] [PMID: 27019033]
[168]
Kim, S.R.; Chen, X.; Oo, T.F.; Kareva, T.; Yarygina, O.; Wang, C.; During, M.; Kholodilov, N.; Burke, R.E. Dopaminergic pathway reconstruction by Akt/Rheb-induced axon regeneration. Ann. Neurol., 2011, 70(1), 110-120.
[http://dx.doi.org/10.1002/ana.22383] [PMID: 21437936]
[169]
Huang, Y.; Sun, L.; Zhu, S.; Xu, L.; Liu, S.; Yuan, C.; Guo, Y.; Wang, X. Neuroprotection against Parkinson’s disease through the activation of Akt/GSK3β signaling pathway by Tovophyllin A. Front. Neurosci., 2020, 14, 723.
[http://dx.doi.org/10.3389/fnins.2020.00723] [PMID: 32742256]
[170]
Smith, K.M.; Dahodwala, N. Sex differences in Parkinson’s disease and other movement disorders. Exp. Neurol., 2014, 259, 44-56.
[http://dx.doi.org/10.1016/j.expneurol.2014.03.010] [PMID: 24681088]
[171]
Chen, L.W. Roles of Wnt/β-catenin signaling in controlling the dopaminergic neuronal cell commitment of midbrain and therapeutic application for Parkinson’s disease.Trends in cell signaling pathways in neuronal fate decision; Wislet, S., Ed.; IntechOpen: London, 2013, pp. 141-151.
[http://dx.doi.org/10.5772/53282]
[172]
Marchetti, B. Wnt/β-catenin signaling pathway governs a full program for dopaminergic neuron survival, neurorescue and regeneration in the MPTP mouse model of Parkinson’s disease. Int. J. Mol. Sci., 2018, 19(12), 3743.
[http://dx.doi.org/10.3390/ijms19123743] [PMID: 30477246]
[173]
Marchetti, B.; Tirolo, C.; L’Episcopo, F.; Caniglia, S.; Testa, N.; Smith, J.A.; Pluchino, S.; Serapide, M.F. Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell, 2020, 19(3)e13101
[http://dx.doi.org/10.1111/acel.13101] [PMID: 32050297]
[174]
Pike, J.W.; Meyer, M.B. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol. Metab. Clin. North Am., 2010, 39(2), 255-269.
[http://dx.doi.org/10.1016/j.ecl.2010.02.007] [PMID: 20511050]
[175]
Cui, X.; Pelekanos, M.; Liu, P.Y.; Burne, T.H.J.; McGrath, J.J.; Eyles, D.W. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience, 2013, 236, 77-87.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.035] [PMID: 23352937]
[176]
Eyles, D.W.; Smith, S.; Kinobe, R.; Hewison, M.; McGrath, J.J. Distribution of the vitamin D receptor and 1 α-hydroxylase in human brain. J. Chem. Neuroanat., 2005, 29(1), 21-30.
[http://dx.doi.org/10.1016/j.jchemneu.2004.08.006] [PMID: 15589699]
[177]
Pertile, R.A.N.; Cui, X.; Hammond, L.; Eyles, D.W. Vitamin D regulation of GDNF/Ret signaling in dopaminergic neurons. FASEB J., 2018, 32(2), 819-828.
[http://dx.doi.org/10.1096/fj.201700713R] [PMID: 29018141]
[178]
Kim, D.H.; Meza, C.A.; Clarke, H.; Kim, J.S.; Hickner, R.C. Vitamin D and endothelial function. Nutrients, 2020, 12(2), 575.
[http://dx.doi.org/10.3390/nu12020575] [PMID: 32098418]
[179]
Takahashi, S.; Maeda, T.; Sano, Y.; Nishihara, H.; Takeshita, Y.; Shimizu, F.; Kanda, T. Active form of vitamin D directly protects the blood–brain barrier in multiple sclerosis. Clin. Exp. Neuroimmunol., 2017, 8(3), 244-254.
[http://dx.doi.org/10.1111/cen3.12398]
[180]
Won, S.; Sayeed, I.; Peterson, B.L.; Wali, B.; Kahn, J.S.; Stein, D.G. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways. PLoS One, 2015, 10(3)e0122821
[http://dx.doi.org/10.1371/journal.pone.0122821] [PMID: 25815722]
[181]
Kim, H.; Shin, J.Y.; Lee, Y.S.; Yun, S.P.; Maeng, H.J.; Lee, Y. Brain endothelial P-glycoprotein level is reduced in Parkinson’s disease via a vitamin D receptor-dependent pathway. Int. J. Mol. Sci., 2020, 21(22), 8538.
[http://dx.doi.org/10.3390/ijms21228538] [PMID: 33198348]
[182]
Calabrese, E.J.; Mattson, M.P.; Calabrese, V. Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum. Exp. Toxicol., 2010, 29(12), 980-1015.
[http://dx.doi.org/10.1177/0960327110383625] [PMID: 21115559]
[183]
Calabrese, E.J.; Dhawan, G.; Kapoor, R.; Mattson, M.P.; Rattan, S.I. Curcumin and hormesis with particular emphasis on neural cells. Food Chem. Toxicol., 2019, 129, 399-404.
[http://dx.doi.org/10.1016/j.fct.2019.04.053] [PMID: 31047936]
[184]
Calabrese, E.J.; Kozumbo, W.J. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol. Res., 2021, 163105283
[http://dx.doi.org/10.1016/j.phrs.2020.105283] [PMID: 33160067]
[185]
Inoue, H.; Akiyama, S.; Maeda-Yamamoto, M.; Nesumi, A.; Tanaka, T.; Murakami, A. High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions. Cell Stress Chaperones, 2011, 16(6), 653-662.
[http://dx.doi.org/10.1007/s12192-011-0280-8] [PMID: 21766215]
[186]
Brunetti, G.; Di Rosa, G.; Scuto, M.; Leri, M.; Stefani, M.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Health span maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int. J. Mol. Sci., 2020, 21(7), 2588.
[http://dx.doi.org/10.3390/ijms21072588] [PMID: 32276415]
[187]
Calabrese, V.; Santoro, A.; Trovato Salinaro, A.; Modafferi, S.; Scuto, M.; Albouchi, F.; Monti, D.; Giordano, J.; Zappia, M.; Franceschi, C.; Calabrese, E.J. Hormetic approaches to the treatment of Parkinson’s disease: Perspectives and possibilities. J. Neurosci. Res., 2018, 96(10), 1641-1662.
[http://dx.doi.org/10.1002/jnr.24244] [PMID: 30098077]
[188]
Miquel, S.; Champ, C.; Day, J.; Aarts, E.; Bahr, B.A.; Bakker, M.; Bánáti, D.; Calabrese, V.; Cederholm, T.; Cryan, J.; Dye, L.; Farrimond, J.A.; Korosi, A.; Layé, S.; Maudsley, S.; Milenkovic, D.; Mohajeri, M.H.; Sijben, J.; Solomon, A.; Spencer, J.P.E.; Thuret, S.; Vanden Berghe, W.; Vauzour, D.; Vellas, B.; Wesnes, K.; Willatts, P.; Wittenberg, R.; Geurts, L. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res. Rev., 2018, 42, 40-55.
[http://dx.doi.org/10.1016/j.arr.2017.12.004] [PMID: 29248758]
[189]
Andreadi, C.K.; Howells, L.M.; Atherfold, P.A.; Manson, M.M. Involvement of Nrf2, p38, B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. Mol. Pharmacol., 2006, 69(3), 1033-1040.
[http://dx.doi.org/10.1124/mol.105.018374] [PMID: 16354769]
[190]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[191]
Calkins, M.J.; Johnson, D.A.; Townsend, J.A.; Vargas, M.R.; Dowell, J.A.; Williamson, T.P.; Kraft, A.D.; Lee, J.M.; Li, J.; Johnson, J.A. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Signal., 2009, 11(3), 497-508.
[http://dx.doi.org/10.1089/ars.2008.2242] [PMID: 18717629]
[192]
Kim, S.; Indu Viswanath, A.N.; Park, J.H.; Lee, H.E.; Park, A.Y.; Choi, J.W.; Kim, H.J.; Londhe, A.M.; Jang, B.K.; Lee, J.; Hwang, H.; Lim, S.M.; Pae, A.N.; Park, K.D. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model. Neuropharmacology, 2020, 167107989
[http://dx.doi.org/10.1016/j.neuropharm.2020.107989] [PMID: 32032607]
[193]
Calabrese, E.J.; Kozumbo, W.J. The hormetic dose-response mechanism: Nrf2 activation. Pharmacol. Res., 2021, 167105526
[http://dx.doi.org/10.1016/j.phrs.2021.105526] [PMID: 33667690]
[194]
Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev., 1999, 13(1), 76-86.
[http://dx.doi.org/10.1101/gad.13.1.76] [PMID: 9887101]
[195]
Joshi, G.; Johnson, J.A. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Patents CNS Drug Discov., 2012, 7(3), 218-229.
[http://dx.doi.org/10.2174/157488912803252023] [PMID: 22742419]
[196]
Wakabayashi, N.; Slocum, S.L.; Skoko, J.J.; Shin, S.; Kensler, T.W. When NRF2 talks, who’s listening? Antioxid. Redox Signal., 2010, 13(11), 1649-1663.
[http://dx.doi.org/10.1089/ars.2010.3216] [PMID: 20367496]
[197]
Chen, C.Y.; Jang, J.H.; Li, M.H.; Surh, Y.J. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem. Biophys. Res. Commun., 2005, 331(4), 993-1000.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.237] [PMID: 15882976]
[198]
Chen, M.C.; Ye, Y.Y.; Ji, G.; Liu, J.W. Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells. J. Agric. Food Chem., 2010, 58(6), 3330-3335.
[http://dx.doi.org/10.1021/jf904549s] [PMID: 20170153]
[199]
Cheng, D.; Li, W.; Wang, L.; Lin, T.; Poiani, G.; Wassef, A.; Hudlikar, R.; Ondar, P.; Brunetti, L.; Kong, A.N. Pharmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers. Mol. Pharm., 2019, 16(5), 1881-1889.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01246] [PMID: 30860383]
[200]
Ghanim, H.; Sia, C.L.; Korzeniewski, K.; Lohano, T.; Abuaysheh, S.; Marumganti, A.; Chaudhuri, A.; Dandona, P. A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal. J. Clin. Endocrinol. Metab., 2011, 96(5), 1409-1414.
[http://dx.doi.org/10.1210/jc.2010-1812] [PMID: 21289251]
[201]
Hwang, Y.P.; Jeong, H.G. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1. Toxicol. Appl. Pharmacol., 2008, 233(3), 371-381.
[http://dx.doi.org/10.1016/j.taap.2008.09.006] [PMID: 18845176]
[202]
Kode, A.; Rajendrasozhan, S.; Caito, S.; Yang, S.R.; Megson, I.L.; Rahman, I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 294(3), L478-L488.
[http://dx.doi.org/10.1152/ajplung.00361.2007] [PMID: 18162601]
[203]
Ma, Z.C.; Hong, Q.; Wang, Y.G.; Liang, Q.D.; Tan, H.L.; Xiao, C.R.; Tang, X.L.; Shao, S.; Zhou, S.S.; Gao, Y. Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2. Drug Discov. Ther., 2011, 5(6), 299-305.
[http://dx.doi.org/10.5582/ddt.2011.v5.6.299] [PMID: 22466441]
[204]
Qin, S.; Chen, J.; Tanigawa, S.; Hou, D.X. Gene expression profiling and pathway network analysis of hepatic metabolic enzymes targeted by baicalein. J. Ethnopharmacol., 2012, 140(1), 131-140.
[http://dx.doi.org/10.1016/j.jep.2011.12.046] [PMID: 22265932]
[205]
Seyyedebrahimi, S.; Khodabandehloo, H.; Nasli Esfahani, E.; Meshkani, R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. Acta Diabetol., 2018, 55(4), 341-353.
[http://dx.doi.org/10.1007/s00592-017-1098-3] [PMID: 29357033]
[206]
Yang, H.; Xu, W.; Zhou, Z.; Liu, J.; Li, X.; Chen, L.; Weng, J.; Yu, Z. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies. Exp. Clin. Endocrinol. Diabetes, 2015, 123(6), 360-367.
[http://dx.doi.org/10.1055/s-0035-1545345] [PMID: 25875220]
[207]
Yu, C.L.; Zhao, X.M.; Niu, Y.C. Ferulic acid protects against lead acetate-induced inhibition of neurite outgrowth by upregulating HO-1 in PC12 cells: involvement of ERK1/2-Nrf2 pathway. Mol. Neurobiol., 2016, 53(9), 6489-6500.
[http://dx.doi.org/10.1007/s12035-015-9555-x] [PMID: 26611834]
[208]
Khor, T.O.; Huang, Y.; Wu, T.Y.; Shu, L.; Lee, J.; Kong, A.N.T. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem. Pharmacol., 2011, 82(9), 1073-1078.
[http://dx.doi.org/10.1016/j.bcp.2011.07.065] [PMID: 21787756]
[209]
Shankar, S.; Kumar, D.; Srivastava, R.K. Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol. Ther., 2013, 138(1), 1-17.
[http://dx.doi.org/10.1016/j.pharmthera.2012.11.002] [PMID: 23159372]
[210]
Fainstein, M.K. Nrf2: La historia de un nuevo factor de transcripción que responde a estrés oxidativo. Rev. Educ. Bioquímica, 2007, 26(1), 18-25.
[211]
Hui, Y.; Chengyong, T.; Cheng, L.; Haixia, H.; Yuanda, Z.; Weihua, Y. Resveratrol attenuates the cytotoxicity induced by amyloid-β1–42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem. Res., 2018, 43(2), 297-305.
[http://dx.doi.org/10.1007/s11064-017-2421-7] [PMID: 29090409]
[212]
Qin, S.; Hou, D.X. The biofunctions of phytochemicals and their applications in farm animals: the Nrf2/Keap1 system as a target. Engineering, 2017, 3(5), 738-752.
[http://dx.doi.org/10.1016/J.ENG.2017.03.011]
[213]
Zhang, Y.; Liu, B.; Chen, X.; Zhang, N.; Li, G.; Zhang, L.H.; Tan, L.Y. Naringenin ameliorates behavioral dysfunction and neurological deficits in a d-galactose-induced aging mouse model through activation of PI3K/Akt/Nrf2 pathway. Rejuvenation Res., 2017, 20(6), 462-472.
[http://dx.doi.org/10.1089/rej.2017.1960] [PMID: 28622086]
[214]
Lister, T. Nutrition and lifestyle interventions for managing Parkinson’s disease: a narrative review. J. Mov. Disord., 2020, 13(2), 97-104.
[http://dx.doi.org/10.14802/jmd.20006] [PMID: 32498495]
[215]
Medeiros, M.S.; Schumacher-Schuh, A.; Cardoso, A.M.; Bochi, G.V.; Baldissarelli, J.; Kegler, A.; Santana, D.; Chaves, C.M.M.B.S.; Schetinger, M.R.C.; Moresco, R.N.; Rieder, C.R.M.; Fighera, M.R. Iron and oxidative stress in Parkinson’s disease: an observational study of injury biomarkers. PLoS One, 2016, 11(1)e0146129
[http://dx.doi.org/10.1371/journal.pone.0146129] [PMID: 26751079]
[216]
Paraskevas, G.P.; Kapaki, E.; Petropoulou, O.; Anagnostouli, M.; Vagenas, V.; Papageorgiou, C. Plasma levels of antioxidant vitamins C and E are decreased in vascular parkinsonism. J. Neurol. Sci., 2003, 215(1-2), 51-55.
[http://dx.doi.org/10.1016/S0022-510X(03)00184-9] [PMID: 14568128]
[217]
Percário, S.; da Silva Barbosa, A.; Varela, E.L.P.; Gomes, A.R.Q.; Ferreira, M.E.S.; de Nazaré Araújo Moreira, T.; Dolabela, M.F. Oxidative stress in Parkinson’s disease: potential benefits of antioxidant supplementation. Oxid. Med. Cell. Longev., 2020, 20202360872
[http://dx.doi.org/10.1155/2020/2360872] [PMID: 33101584]
[218]
Sudha, K.; Rao, A.V.; Rao, S.; Rao, A. Free radical toxicity and antioxidants in Parkinson’s disease. Neurol. India, 2003, 51(1), 60-62.
[PMID: 12865518]
[219]
Etminan, M.; Gill, S.S.; Samii, A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol., 2005, 4(6), 362-365.
[http://dx.doi.org/10.1016/S1474-4422(05)70097-1] [PMID: 15907740]
[220]
Hantikainen, E.; Trolle Lagerros, Y.; Ye, W.; Serafini, M.; Adami, H.O.; Bellocco, R.; Bonn, S. Dietary antioxidants and the risk of Parkinson disease: the Swedish national march cohort. Neurology, 2021, 96(6), e895-e903.
[http://dx.doi.org/10.1212/WNL.0000000000011373] [PMID: 33408141]
[221]
Miyake, Y.; Fukushima, W.; Tanaka, K.; Sasaki, S.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; Kawamura, N.; Sakae, N.; Fukuyama, H.; Hirota, Y.; Nagai, M. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: a case-control study in Japan. Eur. J. Neurol., 2011, 18(1), 106-113.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03088.x] [PMID: 20491891]
[222]
de Rijk, M.C.; Breteler, M.M.; den Breeijen, J.H.; Launer, L.J.; Grobbee, D.E.; van der Meché, F.G.; Hofman, A. Dietary antioxidants and Parkinson disease. The Rotterdam Study. Arch. Neurol., 1997, 54(6), 762-765.
[http://dx.doi.org/10.1001/archneur.1997.00550180070015] [PMID: 9193212]
[223]
Rimmelzwaan, L.M.; van Schoor, N.M.; Lips, P.; Berendse, H.W.; Eekhoff, E.M. Systematic review of the relationship between vitamin D and Parkinson’s disease. J. Parkinsons Dis., 2016, 6(1), 29-37.
[http://dx.doi.org/10.3233/JPD-150615] [PMID: 26756741]
[224]
Schirinzi, T.; Martella, G.; Imbriani, P.; Di Lazzaro, G.; Franco, D.; Colona, V.L.; Alwardat, M.; Sinibaldi Salimei, P.; Mercuri, N.B.; Pierantozzi, M.; Pisani, A. Dietary vitamin E as a protective factor for Parkinson’s disease: clinical and experimental evidence. Front. Neurol., 2019, 10, 148.
[http://dx.doi.org/10.3389/fneur.2019.00148] [PMID: 30863359]
[225]
Yang, F.; Wolk, A.; Håkansson, N.; Pedersen, N.L.; Wirdefeldt, K. Dietary antioxidants and risk of Parkinson’s disease in two population-based cohorts. Mov. Disord., 2017, 32(11), 1631-1636.
[http://dx.doi.org/10.1002/mds.27120] [PMID: 28881039]
[226]
Lee, D.H.; Kim, C.S.; Lee, Y.J. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem. Toxicol., 2011, 49(1), 271-280.
[http://dx.doi.org/10.1016/j.fct.2010.10.029] [PMID: 21056612]
[227]
Lin, T.K.; Chen, S.D.; Chuang, Y.C.; Lin, H.Y.; Huang, C.R.; Chuang, J.H.; Wang, P.W.; Huang, S.T.; Tiao, M.M.; Chen, J.B.; Liou, C.W. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int. J. Mol. Sci., 2014, 15(1), 1625-1646.
[http://dx.doi.org/10.3390/ijms15011625] [PMID: 24451142]
[228]
Öz, A.; Çelik, Ö. Curcumin inhibits oxidative stress-induced TRPM2 channel activation, calcium ion entry and apoptosis values in SH-SY5Y neuroblastoma cells: Involvement of transfection procedure. Mol. Membr. Biol., 2016, 33(3-5), 76-88.
[http://dx.doi.org/10.1080/09687688.2017.1318224] [PMID: 28569571]
[229]
Pandareesh, M.D.; Shrivash, M.K.; Naveen, K.H.N.; Misra, K.; Srinivas, B.M.M. Curcumin monoglucoside shows improved bioavailability and mitigates rotenone induced neurotoxicity in cell and Drosophila models of Parkinson’s disease. Neurochem. Res., 2016, 41(11), 3113-3128.
[http://dx.doi.org/10.1007/s11064-016-2034-6] [PMID: 27535828]
[230]
Shen, D.F.; Qi, H.P.; Ma, C.; Chang, M.X.; Zhang, W.N.; Song, R.R. Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinson’s disease by regulating miR-7/SNCA axis. Neurosci. Res., 2021, 165, 51-60.
[http://dx.doi.org/10.1016/j.neures.2020.04.003] [PMID: 32333925]
[231]
van der Merwe, C.; van Dyk, H.C.; Engelbrecht, L.; van der Westhuizen, F.H.; Kinnear, C.; Loos, B.; Bardien, S. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol. Neurobiol., 2017, 54(4), 2752-2762.
[http://dx.doi.org/10.1007/s12035-016-9843-0] [PMID: 27003823]
[232]
Wu, H.C.; Hu, Q.L.; Zhang, S.J.; Wang, Y.M.; Jin, Z.K.; Lv, L.F.; Zhang, S.; Liu, Z.L.; Wu, H.L.; Cheng, O.M. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regen. Res., 2018, 13(8), 1375-1383.
[http://dx.doi.org/10.4103/1673-5374.235250] [PMID: 30106049]
[233]
Anderson, C.; Checkoway, H.; Franklin, G.M.; Beresford, S.; Smith-Weller, T.; Swanson, P.D. Dietary factors in Parkinson’s disease: the role of food groups and specific foods. Mov. Disord., 1999, 14(1), 21-27.
[http://dx.doi.org/10.1002/1531-8257(199901)14:1<21:AID-MDS1006>3.0.CO;2-Y] [PMID: 9918340]
[234]
Hughes, K.C.; Gao, X.; Kim, I.Y.; Rimm, E.B.; Wang, M.; Weisskopf, M.G.; Schwarzschild, M.A.; Ascherio, A. Intake of antioxidant vitamins and risk of Parkinson’s disease. Mov. Disord., 2016, 31(12), 1909-1914.
[http://dx.doi.org/10.1002/mds.26819] [PMID: 27787934]
[235]
King, D.; Playfer, J.R.; Roberts, N.B. Concentrations of vitamins A, C and E in elderly patients with Parkinson’s disease. Postgrad. Med. J., 1992, 68(802), 634-637.
[http://dx.doi.org/10.1136/pgmj.68.802.634] [PMID: 1448403]
[236]
Morens, D.M.; Grandinetti, A.; Waslien, C.I.; Park, C.B.; Ross, G.W.; White, L.R. Case-control study of idiopathic Parkinson’s disease and dietary vitamin E intake. Neurology, 1996, 46(5), 1270-1274.
[http://dx.doi.org/10.1212/WNL.46.5.1270] [PMID: 8628465]
[237]
Scheider, W.L.; Hershey, L.A.; Vena, J.E.; Holmlund, T.; Marshall, J.R.; Freudenheim, J.L. Dietary antioxidants and other dietary factors in the etiology of Parkinson’s disease. Mov. Disord., 1997, 12(2), 190-196.
[http://dx.doi.org/10.1002/mds.870120209] [PMID: 9087977]
[238]
Takeda, A.; Nyssen, O.P.; Syed, A.; Jansen, E.; Bueno-de-Mesquita, B.; Gallo, V. Vitamin A and carotenoids and the risk of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology, 2014, 42(1), 25-38.
[http://dx.doi.org/10.1159/000355849] [PMID: 24356061]
[239]
Pogačnik, L.; Ota, A.; Ulrih, N.P. An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases. Cells, 2020, 9(3), 576.
[http://dx.doi.org/10.3390/cells9030576] [PMID: 32121302]
[240]
Silva, R.F.M.; Pogačnik, L. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants, 2020, 9(1), 61.
[http://dx.doi.org/10.3390/antiox9010061] [PMID: 31936711]
[241]
Hajieva, P. The effect of polyphenols on protein degradation pathways: implications for neuroprotection. Molecules, 2017, 22(1), 159.
[http://dx.doi.org/10.3390/molecules22010159] [PMID: 28106854]
[242]
Cass, W.A.; Peters, L.E. Reduced ability of calcitriol to promote augmented dopamine release in the lesioned striatum of aged rats. Neurochem. Int., 2017, 108, 222-229.
[http://dx.doi.org/10.1016/j.neuint.2017.04.001] [PMID: 28390950]
[243]
Haeri, P.; Mohammadipour, A.; Heidari, Z.; Ebrahimzadeh-Bideskan, A. Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson’s disease model of mice. Anat. Sci. Int., 2019, 94(1), 119-127.
[http://dx.doi.org/10.1007/s12565-018-0457-7] [PMID: 30159851]
[244]
El Nebrisi, E.; Javed, H.; Ojha, S.K.; Oz, M.; Shehab, S. Neuroprotective effect of curcumin on the nigrostriatal pathway in a 6-hydroxydopmine-induced rat model of Parkinson’s disease is mediated by α7-nicotinic receptors. Int. J. Mol. Sci., 2020, 21(19), 7329.
[http://dx.doi.org/10.3390/ijms21197329] [PMID: 33023066]
[245]
Weng, C.C.; Chen, Z.A.; Chao, K.T.; Ee, T.W.; Lin, K.J.; Chan, M.H.; Hsiao, I.T.; Yen, T.C.; Kung, M.P.; Hsu, C.H.; Wey, S.P. Quantitative analysis of the therapeutic effect of magnolol on MPTP-induced mouse model of Parkinson’s disease using in vivo 18F-9-fluoropropyl-(+)-dihydrotetrabenazine PET imaging. PLoS One, 2017, 12(3)e0173503
[http://dx.doi.org/10.1371/journal.pone.0173503] [PMID: 28257461]
[246]
Li, X.L.; Xu, X.F.; Bu, Q.X.; Jin, W.R.; Sun, Q.R.; Feng, D.P.; Zhang, Q.J.; Wang, L.X. Effect of total flavonoids from Scutellaria baicalensis on dopaminergic neurons in the substantia nigra. Biomed. Rep., 2016, 5(2), 213-216.
[http://dx.doi.org/10.3892/br.2016.713] [PMID: 27446544]
[247]
Bayo-Olugbami, A.; Nafiu, A.B.; Amin, A.; Ogundele, O.M.; Lee, C.C.; Owoyele, B.V. Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice. Nutr. Neurosci., 2020, 1-12. [Epub a head of Print].
[http://dx.doi.org/10.1080/1028415X.2020.1815331] [PMID: 32912107]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy