Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

Information Disclosed in Patent Documents being the Source to Address Emergencies: A Strategy to Achieve Technological Developments Addressing COVID-19

Author(s): Tatiana D. Martins * and Diéricon S. Cordeiro

Volume 15, Issue 2, 2021

Published on: 02 April, 2021

Page: [148 - 163] Pages: 16

DOI: 10.2174/1872208315666210402112805

Price: $65

Abstract

Background: Face COVID-19 pandemic, a need for accurate information on SARS-CoV-2 virus is urgent and scientific reports have been published on a daily basis to enable effective technologies to fight the disease progression. However, at the initial occurrence of Pandemic, no information on the matter was known and technologies to fight the Pandemic were not readily available. However, searches in patent databases, if strategically designed, can offer quick responses to new pandemics.

Objective: The objective of this study is aiming to provide existing information in patent documents useful for the developmentof technologies addressing COVID-19. Considering the emergency situation the world was facing and the knowledge of COVID-19 available until April, 2020, this work presents an analysis of the main characteristics of the technological information in patent documents worldwide, related to coronaviruses and the severe acute respiratory syndrome (SARS).

Methods: Regions of concentration of such technologies, the number of available documents and their technological fields are disclosed in three approaches: 1) a wide search, retrieving technologies on SARS or coronaviruses; 2) a targeted search, retrieving documents additionally referring to Angiotensin converting enzyme (ACE2), which is used by SARS- CoV-2 to enter a cell and 3) a punctual search, which retrieved patents disclosing aspects related to SARS- CoV-2 available at that time.

Results: Results show the high-level technology involved in these developments and a monopoly tendency of such technologies, also evidencing that it is possible to find answers to new problems in patent documents.

Conclusion: This work, then, aims to contribute to scientific and technological development by raising the awareness of what should be considered when searching for technologies developed for other matters that could provide solutions for a new problem.

Keywords: Patent documents, SARS-CoV-2, pandemic, ACE2, patent databases, emergencies, technological developments.

Graphical Abstract

[1]
[2]
Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003; 300(5624): 1394-9.
[http://dx.doi.org/10.1126/science.1085952] [PMID: 12730500]
[3]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[4]
Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1953-66.
[http://dx.doi.org/10.1056/NEJMoa030781] [PMID: 12690092]
[5]
Fehr AR, Perlman S. Coronaviruses: methods and protocols. In: Maier HJ, Bickerton E, Britton P, Eds. Methods in molecular biology. New York: Springer 2015; pp. 1-282.
[6]
Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J 2005; 24(11): S223-7.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60]
[7]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[8]
Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: the 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020; 109: 102434.
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[9]
Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses 2020; 12(2): E135.
[10]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[11]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(265): 10.
[http://dx.doi.org/10.1038/s41586-020-2008-3]
[12]
Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348(20): 1986-94.
[http://dx.doi.org/10.1056/NEJMoa030685] [PMID: 12682352]
[13]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[14]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[15]
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010; 84(24): 12658-64.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[16]
Bertram S, Glowacka I, Müller MA, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol 2011; 85(24): 13363-72.
[http://dx.doi.org/10.1128/JVI.05300-11] [PMID: 21994442]
[17]
Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res 2013; 100(3): 605-14.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[18]
Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci 2004; 61(21): 2738-43.
[http://dx.doi.org/10.1007/s00018-004-4242-5] [PMID: 15549175]
[19]
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251-4.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[20]
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503(7477): 535-8.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[21]
Han DP, Penn-Nicholson A, Cho MW. Identification of critical determinants on ACE2 for SARS- CoV entry and development of a potent entry inhibitor. Virology 2006; 350(1): 15-25.
[http://dx.doi.org/10.1016/j.virol.2006.01.029] [PMID: 16510163]
[22]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin- converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[23]
Zhao J, Li K, Wohlford-Lenane C, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci USA 2014; 111(13): 4970-5.
[http://dx.doi.org/10.1073/pnas.1323279111] [PMID: 24599590]
[24]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel Coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[25]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[26]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS- CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[27]
Omrani AS, Saad MM, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 2014; 14(11): 1090-5.
[http://dx.doi.org/10.1016/S1473-3099(14)70920-X] [PMID: 25278221]
[28]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS- CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[29]
Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020; 47(2): 119-21.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[30]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[31]
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14(1): 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[32]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[33]
Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55(4): 105932.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[34]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[35]
Che J, Liu D, Liu L, Liu P, Xu Q, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejian Uni 2020; 49: 215-9.
[36]
Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS- CoV-2 infection. Nature 2020; 584(7819): 115-9.
[http://dx.doi.org/10.1038/s41586-020-2380-z] [PMID: 32454513]
[37]
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS- CoV-2-human protein-protein interaction map reveals drug targets and potential drug repurposing. Nature 2020; 583: 459-68.
[38]
Malle L. A map of SARS- CoV-2 and host cell interactions. Nat Ver Immunol 2020; 20: 351.
[39]
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS- CoV-2. Cell Discov 2020; 6(14): 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[40]
Espacenet: free access to over 120 million patent documents. Available from: https://worldwide.espa cenet.com/
[41]
Tyrrell DA, Bynoe ML. Cultivation of viruses from a high proportion of patients with colds. Lancet 1966; 1(7428): 76-7.
[http://dx.doi.org/10.1016/S0140-6736(66)92364-6] [PMID: 4158999]
[42]
Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol 1967; 1(2): 175-8.
[http://dx.doi.org/10.1099/0022-1317-1-2-175] [PMID: 4293939]
[43]
Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 1966; 121(1): 190-3.
[http://dx.doi.org/10.3181/00379727-121-30734] [PMID: 4285768]
[44]
McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 1967; 57(4): 933-40.
[http://dx.doi.org/10.1073/pnas.57.4.933] [PMID: 5231356]
[45]
Huang Q, Cheng Y, Guo Q, Li Q. Preparation of a chimeric armored RNA as a versatile calibrator for multiple virus assays. Clin Chem 2006; 52(7): 1446-8.
[http://dx.doi.org/10.1373/clinchem.2006.069971] [PMID: 16798980]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy