Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

SphK1 Promotes Cancer Progression through Activating JAK/STAT Pathway and Up-Regulating S1PR1 Expression in Colon Cancer Cells

Author(s): Jianting Long, Zhijia Yao, Yi Sui and Shi Fang*

Volume 22, Issue 2, 2022

Published on: 01 April, 2021

Page: [254 - 260] Pages: 7

DOI: 10.2174/1871520621666210401105344

Price: $65

Abstract

Background: SphK1 is a conserved lipid kinase, which can catalyze the formation of tumorpromoting factor sphingosine phosphate-1 (S1P).

Objective: This study aimed to investigate the effect of SphK1 on the proliferation/migration of colon cancer cells and associated mechanisms.

Methods: Transcription of the SphK1 gene in colon cancer cells was detected. Gene transcription of SphK1 was inhibited by transfecting with the si-SphK1 gene in colon cancer cells. Effects of SphK1 inhibition (si-SphK1) on cell migration/proliferation were detected using the transwell system and MTS. Gene transcription of SIP, S1PR1, S1PR2, S1PR3, and activation of JAK/STAT3 pathway were examined using RT-PCR and western blot assay. S1PR1 over-expressing plasmid was constructed and transfected into cells. Effects of S1PR1 overexpression on migration/proliferation of si-SphK1 transfected colon cancer cells and activation of JAK/STAT3 pathway were determined using RT-PCR and western blotting.

Results: Gene transcription of SphK1 in SW480 and HT-29 colon cancer cells was significantly inhibited by transfection of the si-SphK1 gene. Transwell migration and MTS findings showed that si-SphK1 transfection (si- SphK1 group) could reduce migration quantity and cell viability of colon cancer cells compared to the negative control (NC) (p<0.0001). SphK1 inhibition (si-SphK1 group) significantly down-regulated S1PR1 and S1PR3 gene transcription in SW480 and HT-29 cells (p<0.0001) and decreased activation level of JAKSTAT3 signaling pathway compared to NC group (p<0.05). Over-expression of S1PR1 reversed inhibitory effects of si-SphK1 on migration/proliferation of SW480 and activation of JAK/Stat3.

Conclusion: SphK1 promoted proliferation and migration of colon cancer cells through promoting JAK/STAT activation and up-regulating S1PR1 expression.

Keywords: SphK1, proliferation, colon cancer, JAK/STAT3 pathway, S1PR1, upregulation.

Graphical Abstract

[1]
Hart, P.C.; Chiyoda, T.; Liu, X.; Weigert, M.; Curtis, M.; Chiang, C.Y.; Loth, R.; Lastra, R.; McGregor, S.M.; Locasale, J.W.; Lengyel, E.; Romero, I.L. SPHK1 is a novel target of metformin in ovarian cancer. Mol. Cancer Res., 2019, 17(4), 870-881.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0409] [PMID: 30655321]
[2]
Cuvillier, O.; Ader, I. Hypoxia-inducible factors and sphingosine 1-phosphate signaling. Anticancer. Agents Med. Chem., 2011, 11(9), 854-862.
[http://dx.doi.org/10.2174/187152011797655050] [PMID: 21707486]
[3]
Lu, Z.; Xiao, Z.; Liu, F.; Cui, M.; Li, W.; Yang, Z.; Li, J.; Ye, L.; Zhang, X. Long non-coding RNA HULC promotes tumor angiogenesis in liver cancer by up-regulating sphingosine kinase 1 (SPHK1). Oncotarget, 2016, 7(1), 241-254.
[http://dx.doi.org/10.18632/oncotarget.6280] [PMID: 26540633]
[4]
Napolitano, F.; Rosa, R.; D’Amato, V. Investigating the role of nuclear sphingosine kinase 1 (SphK1) in lung cancer. Ann. Oncol., 2018, 29, iii12.
[http://dx.doi.org/10.1093/annonc/mdy047.009]
[5]
Wang, Y.C.; Tsai, C.F.; Chuang, H.L.; Chang, Y.C.; Chen, H.S.; Lee, J.N.; Tsai, E.M. Benzyl butyl phthalate promotes breast cancer stem cell expansion via SPHK1/S1P/S1PR3 signaling. Oncotarget, 2016, 7(20), 29563-29576.
[http://dx.doi.org/10.18632/oncotarget.9007] [PMID: 27129165]
[6]
Bae, G.E.; Do, S.I.; Kim, K.; Park, J.H.; Cho, S.; Kim, H.S. Increased sphingosine kinase 1 expression predicts distant metastasis and poor outcome in patients with colorectal cancer. Anticancer Res., 2019, 39(2), 663-670.
[http://dx.doi.org/10.21873/anticanres.13161] [PMID: 30711943]
[7]
Shen, Z.; Feng, X.; Fang, Y.; Li, Y.; Li, Z.; Zhan, Y.; Lin, M.; Li, G.; Ding, Y.; Deng, H. POTEE drives colorectal cancer development via regulating SPHK1/p65 signaling. Cell Death Dis., 2019, 10(11), 863.
[http://dx.doi.org/10.1038/s41419-019-2046-7] [PMID: 31723122]
[8]
Sukocheva, O.A.; Furuya, H.; Ng, M.L.; Friedemann, M.; Menschikowski, M.; Tarasov, V.V.; Chubarev, V.N.; Klochkov, S.G.; Neganova, M.E.; Mangoni, A.A.; Aliev, G.; Bishayee, A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol. Ther., 2020, 207107464
[http://dx.doi.org/10.1016/j.pharmthera.2019.107464] [PMID: 31863815]
[9]
Liu, S.Q.; Su, Y.J.; Qin, M.B.; Mao, Y.B.; Huang, J.A.; Tang, G.D. Sphingosine kinase 1 promotes tumor progression and confers malignancy phenotypes of colon cancer by regulating the focal adhesion kinase pathway and adhesion molecules. Int. J. Oncol., 2013, 42(2), 617-626.
[http://dx.doi.org/10.3892/ijo.2012.1733] [PMID: 23232649]
[10]
Liu, X.; Shao, Y.; Zhou, J.; Qian, G.; Ma, Z. Nuclear factor kB signaling and its related non-coding RNAs in cancer therapy. Mol. Ther. Nucleic Acids, 2020, 19(1), 208-217.
[http://dx.doi.org/10.1016/j.omtn.2019.11.007] [PMID: 31841993]
[11]
Jin, W.N.; Ducruet, A.F.; Liu, Q.; Shi, S.X.; Waters, M.; Zou, M.; Sheth, K.N.; Gonzales, R.; Shi, F.D. Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia. FASEB J., 2018, 32(5), 2757-2767.
[http://dx.doi.org/10.1096/fj.201700962R] [PMID: 29401578]
[12]
Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[13]
Xue, X.; Ramakrishnan, S.K.; Weisz, K.; Triner, D.; Xie, L.; Attili, D.; Pant, A.; Győrffy, B.; Zhan, M.; Carter-Su, C.; Hardiman, K.M.; Wang, T.D.; Dame, M.K.; Varani, J.; Brenner, D.; Fearon, E.R.; Shah, Y.M. Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab., 2016, 24(3), 447-461.
[http://dx.doi.org/10.1016/j.cmet.2016.07.015] [PMID: 27546461]
[14]
Ren, W.; Shen, S.; Sun, Z.; Shu, P.; Shen, X.; Bu, C.; Ai, F.; Zhang, X.; Tang, A.; Tian, L.; Li, G.; Li, X.; Ma, J. Jak-STAT3 pathway triggers DICER1 for proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) to promote colon cancer development. Cancer Lett., 2016, 375(2), 209-220.
[http://dx.doi.org/10.1016/j.canlet.2016.02.055] [PMID: 26965998]
[15]
Liang, C.; Zhao, T.; Li, H.; He, F.; Zhao, X.; Zhang, Y.; Chu, X.; Hua, C.; Qu, Y.; Duan, Y.; Ming, L.; Guo, J. Long non-coding RNA ITIH4-AS1 accelerates the proliferation and metastasis of colorectal cancer by activating JAK/STAT3 signaling. Mol. Ther. Nucleic Acids, 2019, 18, 183-193.
[http://dx.doi.org/10.1016/j.omtn.2019.08.009] [PMID: 31557619]
[16]
Zhang, Q.; Di, J.; Ji, Z.; Mi, A.; Li, Q.; Du, X.; Wang, A.; Wang, A.; Qin, C. KIF20A Predicts Poor Survival of Patients and Promotes Colorectal Cancer Tumor Progression through the JAK/STAT3 Signaling Pathway. Dis. Markers, 2020, 20202032679
[http://dx.doi.org/10.1155/2020/2032679] [PMID: 32695240]
[17]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[18]
Lima, S.; Milstien, S.; Spiegel, S. Sphingosine and sphingosine kinase-1 involvement in endocytic membrane trafficking. J. Biol. Chem., 2017, 292(8), 3074-3088.
[http://dx.doi.org/10.1074/jbc.M116.762377] [PMID: 28049734]
[19]
Liu, S.Q.; Xu, C.Y.; Wu, W.H.; Fu, Z.H.; He, S.W.; Qin, M.B.; Huang, J.A. Sphingosine kinase 1 promotes the metastasis of colorectal cancer by inducing the epithelial mesenchymal transition mediated by the FAK/AKT/MMPs axis. Int. J. Oncol., 2019, 54(1), 41-52.
[PMID: 30365116]
[20]
Liu, H.; Ma, Y.; He, H.W.; Zhao, W.L.; Shao, R.G. SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells. Autophagy, 2017, 13(5), 900-913.
[http://dx.doi.org/10.1080/15548627.2017.1291479] [PMID: 28521610]
[21]
Jiang, Z.; Xu, Y.; Cai, S. CXCL10 expression and prognostic significance in stage II and III colorectal cancer. Mol. Biol. Rep., 2010, 37(6), 3029-3036.
[http://dx.doi.org/10.1007/s11033-009-9873-z] [PMID: 19821051]
[22]
Shigeta, K.; Hayashida, T.; Hoshino, Y.; Okabayashi, K.; Endo, T.; Ishii, Y.; Hasegawa, H.; Kitagawa, Y. Expression of epidermal growth factor receptor detected by cetuximab indicates its efficacy to inhibit in vitro and in vivo proliferation of colorectal cancer cells. PLoS One, 2013, 8(6)e66302
[http://dx.doi.org/10.1371/journal.pone.0066302] [PMID: 23824671]
[23]
Aarthi, J.J.; Darendeliler, M.A.; Pushparaj, P.N. Dissecting the role of the S1P/S1PR axis in health and disease. J. Dent. Res., 2011, 90(7), 841-854.
[http://dx.doi.org/10.1177/0022034510389178] [PMID: 21248363]
[24]
Xu, M.; Liu, D.; Ding, L.H.; Ma, K.L.; Wu, M.; Lv, L.L.; Wen, Y.; Liu, H.; Tang, R.N.; Liu, B.C. FTY720 inhibits tubulointerstitial inflammation in albumin overload-induced nephropathy of rats via the Sphk1 pathway. Acta Pharmacol. Sin., 2014, 35(12), 1537-1545.
[http://dx.doi.org/10.1038/aps.2014.100] [PMID: 25399649]
[25]
Chen, L.; Xia, Y.; Lu, J.; Xie, Q.; Ye, A.; Sun, W.A. 50-Hz magnetic-field exposure promotes human amniotic cells proliferation via SphK-S1P-S1PR cascade mediated ERK signaling pathway. Ecotoxicol. Environ. Saf., 2020, 194110407
[http://dx.doi.org/10.1016/j.ecoenv.2020.110407] [PMID: 32146198]
[26]
Kilic-Kurt, Z.; Bakar-Ates, F.; Karakas, B.; Kütük, Ö. Cytotoxic and apoptotic effects of novel Pyrrolo [2,3-d] Pyrimidine derivatives containing urea moieties on cancer cell lines. Anticancer. Agents Med. Chem., 2018, 18(9), 1303-1312.
[http://dx.doi.org/10.2174/1871520618666180605082026] [PMID: 29866023]
[27]
Rui, X.; Pan, H.F.; Shao, S.L.; Xu, X.M. Anti-tumor and anti-angiogenic effects of Fucoidan on prostate cancer: possible JAK-STAT3 pathway. BMC Complement. Altern. Med., 2017, 17(1), 378.
[http://dx.doi.org/10.1186/s12906-017-1885-y] [PMID: 28764703]
[28]
Wen, W.; Wu, J.; Liu, L.; Tian, Y.; Buettner, R.; Hsieh, M.Y.; Horne, D.; Dellinger, T.H.; Han, E.S.; Jove, R.; Yim, J.H. Synergistic anti-tumor effect of combined inhibition of EGFR and JAK/STAT3 pathways in human ovarian cancer. Mol. Cancer, 2015, 14(1), 100.
[http://dx.doi.org/10.1186/s12943-015-0366-5] [PMID: 25928246]
[29]
Lu, R.; Zhang, Y.G.; Sun, J. STAT3 activation in infection and infection-associated cancer. Mol. Cell. Endocrinol., 2017, 451(1), 80-87.
[http://dx.doi.org/10.1016/j.mce.2017.02.023] [PMID: 28223148]
[30]
Villarino, A.V.; Kanno, Y.; O’Shea, J.J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol., 2017, 18(4), 374-384.
[http://dx.doi.org/10.1038/ni.3691] [PMID: 28323260]
[31]
Park, S.B.; Choi, B.I.; Lee, B.J.; Kim, N.J.; Jeong, Y.A.; Joo, M.K.; Kim, H.J.; Park, J.J.; Kim, J.S.; Noh, Y.S.; Lee, H.J. Intestinal epithelial deletion of Sphk1 prevents colitis-associated cancer development by inhbition of epithelial STAT3 activation. Dig. Dis. Sci., 2020, 65(8), 2284-2293.
[http://dx.doi.org/10.1007/s10620-019-05971-2] [PMID: 31776862]
[32]
Liang, J.; Nagahashi, M.; Kim, E.Y.; Harikumar, K.B.; Yamada, A.; Huang, W.C.; Hait, N.C.; Allegood, J.C.; Price, M.M.; Avni, D.; Takabe, K.; Kordula, T.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell, 2013, 23(1), 107-120.
[http://dx.doi.org/10.1016/j.ccr.2012.11.013] [PMID: 23273921]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy