Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

3-T MRI in Patients who Received Anterior Cervical Discectomy and Fusion Surgery with MAVRIC SL IR Sequence: A Feasibility Study

Author(s): Renjie Yang, Changsheng Liu, Liang Li, Liang Chen, Weiyin Vivian Liu and Yunfei Zha*

Volume 25, Issue 6, 2022

Published on: 22 March, 2021

Page: [1024 - 1030] Pages: 7

DOI: 10.2174/1386207324666210322125827

Abstract

Objective: We aimed to investigate the feasibility of multi-acquisition with variable resonance image combination slab selectivity inversion recovery (MAVRIC SL IR) sequence on 3.0 T MRI in patients with anterior cervical discectomy and fusion (ACDF) surgery compared to bandwidth-optimized short tau inversion recovery (STIR) sequence.

Methods: Paired sagittal MR images of MAVRIC SL IR and bandwidth-optimized STIR sequences were acquired and analyzed for 21 patients after ACDF surgery with PEEK cage-plate construct. Quantitative comparisons were made on the metal artifact areas of paired mid-sagittal images. In qualitative analysis, the consistency of fat suppression and visibility of anatomic structures (bonemetal interface, surrounding soft tissues, and spinal cord) were independently assessed, based on a five-point scale by two musculoskeletal radiologists, who were blind to the images and patient details.

Results: The application of the MAVRIC SL IR sequence resulted in a significant reduction of 48% in the mean area of metal artifacts (t = -7.141, p < 0.001). Based on the comments received from both the reviewers, the MAVRIC SL IR sequence showed greater visibility of the bone-metal interface (p < 0.001), considerable visibility of the surrounding soft tissues (p > 0.05) but worse visibility of the spinal cord (p < 0.001), including the consistency of fat suppression (p < 0.001) relative to the bandwidth-optimized STIR sequence.

Conclusion: With significantly reduced metal artifacts, the MAVRIC SL IR sequence can be implemented in patients undergoing ACDF surgery with PEEK cage-plate construct for 3.0 T MRI, despite the poor visibility of the spinal cord.

Keywords: Magnetic resonance imaging, spine, multi-acquisition with variable resonance image combination slab selectivity, metal artifact, fat suppression, ACDF.

Graphical Abstract

[1]
Fountas, K.N.; Kapsalaki, E.Z.; Nikolakakos, L.G.; Smisson, H.F.; Johnston, K.W.; Grigorian, A.A.; Lee, G.P.; Robinson, J.S., Jr Anterior cervical discectomy and fusion associated complications. Spine, 2007, 32(21), 2310-2317.
[http://dx.doi.org/10.1097/BRS.0b013e318154c57e] [PMID: 17906571]
[2]
Anderson, D.G.; Albert, T.J. Bone grafting, implants, and plating options for anterior cervical fusions. Orthop. Clin. North Am., 2002, 33(2), 317-328.
[http://dx.doi.org/10.1016/S0030-5898(01)00011-6] [PMID: 12389278]
[3]
Chong, E.; Pelletier, M.H.; Mobbs, R.J.; Walsh, W.R. The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review. BMC Musculoskelet. Disord., 2015, 16, 99.
[http://dx.doi.org/10.1186/s12891-015-0546-x] [PMID: 25907826]
[4]
Chen, Y.; Wang, X.; Lu, X.; Yang, L.; Yang, H.; Yuan, W.; Chen, D. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur. Spine J., 2013, 22(7), 1539-1546.
[http://dx.doi.org/10.1007/s00586-013-2772-y] [PMID: 23568254]
[5]
Splendiani, A.; D’Orazio, F.; Patriarca, L.; Arrigoni, F.; Caranci, F.; Fonio, P.; Brunese, L.; Barile, A.; Di Cesare, E.; Masciocchi, C. Imaging of post-operative spine in intervertebral disc pathology. Musculoskelet. Surg., 2017, 101(Suppl. 1), 75-84.
[http://dx.doi.org/10.1007/s12306-017-0453-4] [PMID: 28168634]
[6]
Andrews, C.L. Evaluation of the postoperative spine: spinal instrumentation and fusion. Semin. Musculoskelet. Radiol., 2000, 4(3), 259-279.
[http://dx.doi.org/10.1055/s-2000-9338] [PMID: 11371318]
[7]
Babar, S.; Saifuddin, A. MRI of the post-discectomy lumbar spine. Clin. Radiol., 2002, 57(11), 969-981.
[http://dx.doi.org/10.1053/crad.2002.1071] [PMID: 12409106]
[8]
Rutherford, E.E.; Tarplett, L.J.; Davies, E.M.; Harley, J.M.; King, L.J. Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances. Radiographics, 2007, 27(6), 1737-1749.
[http://dx.doi.org/10.1148/rg.276065205] [PMID: 18025515]
[9]
Dillenseger, J.P.; Molière, S.; Choquet, P.; Goetz, C.; Ehlinger, M.; Bierry, G. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol., 2016, 45(5), 677-688.
[http://dx.doi.org/10.1007/s00256-016-2338-2] [PMID: 26837388]
[10]
Lu, W.; Pauly, K.B.; Gold, G.E.; Pauly, J.M.; Hargreaves, B.A. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn. Reson. Med., 2009, 62(1), 66-76.
[http://dx.doi.org/10.1002/mrm.21967] [PMID: 19267347]
[11]
Susa, M.; Oguro, S.; Kikuta, K.; Nishimoto, K.; Horiuchi, K.; Jinzaki, M.; Nakamura, M.; Matsumoto, M.; Chiba, K.; Morioka, H. Novel MR imaging method--MAVRIC--for metal artifact suppression after joint replacement in musculoskeletal tumor patients. BMC Musculoskelet. Disord., 2015, 16, 377.
[http://dx.doi.org/10.1186/s12891-015-0838-1] [PMID: 26637412]
[12]
Kretzschmar, M.; Nardo, L.; Han, M.M.; Heilmeier, U.; Sam, C.; Joseph, G.B.; Koch, K.M.; Krug, R.; Link, T.M. Metal artefact suppression at 3 T MRI: comparison of MAVRIC-SL with conventional fast spin echo sequences in patients with Hip joint arthroplasty. Eur. Radiol., 2015, 25(8), 2403-2411.
[http://dx.doi.org/10.1007/s00330-015-3628-0] [PMID: 25680728]
[13]
Murakami, M.; Mori, H.; Kunimatsu, A.; Abe, O.; Chikuda, H.; Ono, T.; Kabasawa, H.; Uchiumi, K.; Sato, J.; Amemiya, S.; Komatsu, S.; Ohtomo, K. Postsurgical spinal magnetic resonance imaging with iterative decomposition of water and fat with echo asymmetry and least-squares estimation. J. Comput. Assist. Tomogr., 2011, 35(1), 16-20.
[http://dx.doi.org/10.1097/RCT.0b013e3181f8d30d] [PMID: 21245684]
[14]
Leffler, S.; Disler, D.G. MR imaging of tendon, ligament, and osseous abnormalities of the ankle and hindfoot. Radiol. Clin. North Am., 2002, 40(5), 1147-1170.
[http://dx.doi.org/10.1016/S0033-8389(02)00052-0] [PMID: 12462474]
[15]
Del Grande, F.; Santini, F.; Herzka, D.A.; Aro, M.R.; Dean, C.W.; Gold, G.E.; Carrino, J.A. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics, 2014, 34(1), 217-233.
[http://dx.doi.org/10.1148/rg.341135130] [PMID: 24428292]
[16]
Gutierrez, L.B.; Do, B.H.; Gold, G.E.; Hargreaves, B.A.; Koch, K.M.; Worters, P.W.; Stevens, K.J. MR imaging near metallic implants using MAVRIC SL: initial clinical experience at 3T. Acad. Radiol., 2015, 22(3), 370-379.
[http://dx.doi.org/10.1016/j.acra.2014.09.010] [PMID: 25435186]
[17]
Choi, S.J.; Koch, K.M.; Hargreaves, B.A.; Stevens, K.J.; Gold, G.E. Metal artifact reduction with MAVRIC SL at 3-T MRI in patients with hip arthroplasty. AJR Am. J. Roentgenol., 2015, 204(1), 140-147.
[http://dx.doi.org/10.2214/AJR.13.11785] [PMID: 25539249]
[18]
Baumann, B.C.; Bosch, W.R.; Bahl, A.; Birtle, A.J.; Breau, R.H.; Challapalli, A.; Chang, A.J.; Choudhury, A.; Daneshmand, S.; El-Gayed, A.; Feldman, A.; Finkelstein, S.E.; Guzzo, T.J.; Hilman, S.; Jani, A.; Malkowicz, S.B.; Mantz, C.A.; Master, V.; Mitra, A.V.; Murthy, V.; Porten, S.P.; Richaud, P.M.; Sargos, P.; Efstathiou, J.A.; Eapen, L.J.; Christodouleas, J.P. Development and Validation of Consensus Contouring Guidelines for Adjuvant Radiation Therapy for Bladder Cancer After Radical Cystectomy. Int. J. Radiat. Oncol. Biol. Phys., 2016, 96(1), 78-86.
[http://dx.doi.org/10.1016/j.ijrobp.2016.04.032] [PMID: 27511849]
[19]
Koch, K.M.; Lorbiecki, J.E.; Hinks, R.S.; King, K.F. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn. Reson. Med., 2009, 61(2), 381-390.
[http://dx.doi.org/10.1002/mrm.21856] [PMID: 19165901]
[20]
Suh, J.S.; Jeong, E.K.; Shin, K.H.; Cho, J.H.; Na, J.B.; Kim, D.H.; Han, C.D. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR Am. J. Roentgenol., 1998, 171(5), 1207-1213.
[http://dx.doi.org/10.2214/ajr.171.5.9798849] [PMID: 9798849]
[21]
Koch, K.M.; Brau, A.C.; Chen, W.; Gold, G.E.; Hargreaves, B.A.; Koff, M.; McKinnon, G.C.; Potter, H.G.; King, K.F. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn. Reson. Med., 2011, 65(1), 71-82.
[http://dx.doi.org/10.1002/mrm.22523] [PMID: 20981709]
[22]
Cha, J.G.; Jin, W.; Lee, M.H.; Kim, D.H.; Park, J.S.; Shin, W.H.; Yi, B.H. Reducing metallic artifacts in postoperative spinal imaging: usefulness of IDEAL contrast-enhanced T1- and T2-weighted MR imaging--phantom and clinical studies. Radiology, 2011, 259(3), 885-893.
[http://dx.doi.org/10.1148/radiol.11101856] [PMID: 21386053]
[23]
Cha, J.G.; Hong, H.S.; Park, J.S.; Paik, S.H.; Lee, H.K. Practical application of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging in minimizing metallic artifacts. Korean J. Radiol., 2012, 13(3), 332-341.
[http://dx.doi.org/10.3348/kjr.2012.13.3.332] [PMID: 22563271]
[24]
Keller, P.J.; Hunter, W.W., Jr; Schmalbrock, P. Multisection fat-water imaging with chemical shift selective presaturation. Radiology, 1987, 164(2), 539-541.
[http://dx.doi.org/10.1148/radiology.164.2.3602398] [PMID: 3602398]
[25]
Bydder, G.M.; Young, I.R. Clinical use of the partial saturation and saturation recovery sequences in MR imaging. J. Comput. Assist. Tomogr., 1985, 9(6), 1020-1032.
[http://dx.doi.org/10.1097/00004728-198511000-00004] [PMID: 4056131]
[26]
Bydder, G.M.; Pennock, J.M.; Steiner, R.E.; Khenia, S.; Payne, J.A.; Young, I.R. The short TI inversion recovery sequence--an approach to MR imaging of the abdomen. Magn. Reson. Imaging, 1985, 3(3), 251-254.
[http://dx.doi.org/10.1016/0730-725X(85)90354-6] [PMID: 4079672]

© 2025 Bentham Science Publishers | Privacy Policy