Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Potential Therapeutic Relevance of CRISPR/Cas9 Guided Epigenetic Regulations for Neuropsychiatric Disorders

Author(s): Desh D. Singh*, Ravi Verma, Piyush Parimoo, Ashish Sahu, Vikram Kumar, Era Upadhyay and Dharmendra K. Yadav

Volume 21, Issue 10, 2021

Published on: 17 March, 2021

Page: [878 - 894] Pages: 17

DOI: 10.2174/1568026621666210317154502

Price: $65

Abstract

Brain function activity is regulated by several mechanisms of genetic and epigenetic factors such as histone modelling, DNA methylation, and non-coding RNA. Alterations in these regulatory mechanisms affect the normal development of neurons that causes Neuropsychiatric Disorders (ND). However, it is required to analyse the functional significance of neuropsychiatric disorders associated with a molecular mechanism to bring about therapeutic advances in early diagnosis and treatment of the patients. The CRISPR/Cas 9 (Clustered Regularly Interspaced Short Palindromic Repeats) genome editing tools have revolutionized multiple genome and epigenome manipulation targets the same time. This review discussed the possibilities of using CRISPR/Cas 9 tools during molecular mechanism in the ND as a therapeutic approach to overcome ND that is caused due to genetic and epigenetic abnormalities.

Keywords: Neuropsychiatric Disorders, Epigenetic regulations, Transcription factor, CRISPR/Cas9, Gene editing, Neuronal development, Therapeutic applications.

Graphical Abstract

[1]
Dupont, C.; Armant, D.R.; Brenner, C.A. Epigenetics: definition, mechanisms and clinical perspective. Semin. Reprod. Med., 2009, 27(5), 351-357.
[http://dx.doi.org/10.1055/s-0029-1237423] [PMID: 19711245]
[2]
Ledford, H. Language: Disputed definitions. Nature, 2008, 455(7216), 1023-1028.
[http://dx.doi.org/10.1038/4551023a] [PMID: 18948925]
[3]
Chen, Y.; Garcia, G.E.; Huang, W.; Constantini, S. The involvement of secondary neuronal damage in the development of neuropsychiatric disorders following brain insults. Front. Neurol., 2014, 5, 22.
[http://dx.doi.org/10.3389/fneur.2014.00022] [PMID: 24653712]
[4]
Kuehner, J.N.; Bruggeman, E.C.; Wen, Z.; Yao, B. Epigenetic regulations in neuropsychiatric disorders. Front. Genet., 2019, 10, 268.
[http://dx.doi.org/10.3389/fgene.2019.00268] [PMID: 31019524]
[5]
Pires, D.P.; Cleto, S.; Sillankorva, S.; Azeredo, J.; Lu, T.K. Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev., 2016, 80(3), 523-543.
[http://dx.doi.org/10.1128/MMBR.00069-15] [PMID: 27250768]
[6]
Mohr, S.E.; Smith, J.A.; Shamu, C.E.; Neumüller, R.A.; Perrimon, N. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol., 2014, 15(9), 591-600.
[http://dx.doi.org/10.1038/nrm3860] [PMID: 25145850]
[7]
Agrawal, N.; Dasaradhi, P.V.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 2003, 67(4), 657-685.
[http://dx.doi.org/10.1128/MMBR.67.4.657-685.2003] [PMID: 14665679]
[8]
Myers, J.W.; Chi, J.T.; Gong, D.; Schaner, M.E.; Brown, P.O.; Ferrell, J.E. Minimizing off-target effects by using diced siRNAs for RNA interference. J. RNAi Gene Silencing, 2006, 2(2), 181-194.
[PMID: 19771225]
[9]
Ramirez, C.L.; Foley, J.E.; Wright, D.A.; Müller-Lerch, F.; Rahman, S.H.; Cornu, T.I.; Winfrey, R.J.; Sander, J.D.; Fu, F.; Townsend, J.A.; Cathomen, T.; Voytas, D.F.; Joung, J.K. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat. Methods, 2008, 5(5), 374-375.
[http://dx.doi.org/10.1038/nmeth0508-374] [PMID: 18446154]
[10]
Chandrasegaran, S.; Carroll, D. Origins of Programmable Nucleases for Genome Engineering. J. Mol. Biol., 2016, 428(5 Pt B), 963-989.
[http://dx.doi.org/10.1016/j.jmb.2015.10.014] [PMID: 26506267]
[11]
Bitinaite, J.; Wah, D. A.; Aggarwal, A. K.; Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA, 1998, 95(18), 10570-10575.
[http://dx.doi.org/10.1073/pnas.95.18.10570]
[12]
Wood, A. J.; Lo, T. -W.; Zeitler, B.; Pickle, C. S.; Ralston, E. J.; Lee, A. H.; Amora, R.; Miller, J. C.; Leung, E.; Meng, X.; Zhang, L.; Rebar, E. J.; Gregory, P. D.; Urnov, F. D.; Meyer, B. J. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 33(6040), 307.
[http://dx.doi.org/10.1126/science.1207773]
[13]
Saha, S.K.; Saikot, F.K.; Rahman, M.S.; Jamal, M.A.H.M.; Rahman, S.M.K.; Islam, S.M.R.; Kim, K.H. Programmable molecular scissors: applications of a new tool for genome editing in biotech. Mol. Ther. Nucleic Acids, 2019, 14, 212-238.
[http://dx.doi.org/10.1016/j.omtn.2018.11.016] [PMID: 30641475]
[14]
Gaj, T.; Gersbach, C.A.; Barbas, C.F., III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 2013, 31(7), 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[15]
Joung, J.K.; Sander, J.D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol., 2013, 14(1), 49-55.
[http://dx.doi.org/10.1038/nrm3486] [PMID: 23169466]
[16]
Nemudryi, A.A.; Valetdinova, K.R.; Medvedev, S.P.; Zakian, S.M. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae, 2014, 6(3), 19-40.
[http://dx.doi.org/10.32607/20758251-2014-6-3-19-40] [PMID: 25349712]
[17]
Boch, J. TALEs of genome targeting. Nat. Biotechnol., 2011, 29(2), 135-136.
[http://dx.doi.org/10.1038/nbt.1767] [PMID: 21301438]
[18]
Singh, D.D.; Han, I.; Choi, E.H.; Yadav, D.K. CRISPR/Cas9 based genome editing for targeted transcriptional control in triple-negative breast cancer. Compute. Struct. Biotechnol. J., 2021. https://doi.org/10.1016/j.csbj.2021.04.036. (Ahead of print).
[19]
Singh, D.D.; Hawkins, R.D.; Lahesmaa, R.; Tripathi, S.K. CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases. Semin. Cell Dev. Biol., 96, 32-43.
[20]
Verma, R.; Sahu, R.; Singh, D.D.; Egbo, T.E. A A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections. Semin. Cell Dev. Biol., 2019, 96, 44-52.
[21]
Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, 169(12), 5429-5433.
[http://dx.doi.org/10.1128/JB.169.12.5429-5433.1987] [PMID: 3316184]
[22]
van Soolingen, D.; de Haas, P.E.; Hermans, P.W.; Groenen, P.M.; van Embden, J.D. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J. Clin. Microbiol., 1993, 31(8), 1987-1995.
[http://dx.doi.org/10.1128/JCM.31.8.1987-1995.1993] [PMID: 7690367]
[23]
Groenen, P.M.; Bunschoten, A.E.; van Soolingen, D.; van Embden, J.D. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol., 1993, 10(5), 1057-1065.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb00976.x] [PMID: 7934856]
[24]
Mojica, F.J.; Díez-Villaseñor, C.; Soria, E.; Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol., 2000, 36(1), 244-246.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01838.x] [PMID: 10760181]
[25]
Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 2002, 43(6), 1565-1575.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[26]
Tang, T.H.; Bachellerie, J.P.; Rozhdestvensky, T.; Bortolin, M.L.; Huber, H.; Drungowski, M.; Elge, T.; Brosius, J.; Hüttenhofer, A. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7536-7541.
[http://dx.doi.org/10.1073/pnas.112047299] [PMID: 12032318]
[27]
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819), 1709-1712.
[28]
Barrangou, R.; van der Oost, J. CRISPR-Cas Systems: RNA-mediated adaptive immunity in bacteria and archaea; Springer: Heidelberg, 2013, p. 6.
[http://dx.doi.org/10.1007/978-3-642-34657-6]
[29]
Marraffini, L.A. CRISPR-Cas immunity in prokaryotes. Natur., 2015, 526, 55M.
[http://dx.doi.org/10.1038/nature15386]
[30]
Garneau, J.E.; Dupuis, M.È.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A.H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320), 67-71.
[http://dx.doi.org/10.1038/nature09523] [PMID: 21048762]
[31]
Le Rhun, A.; Escalera-Maurer, A.; Bratovič, M.; Charpentier, E. CRISPR-Cas in Streptococcus pyogenes. RNA Biol., 2019, 16(4), 380-389.
[http://dx.doi.org/10.1080/15476286.2019.1582974] [PMID: 30856357]
[32]
Mir, A.; Edraki, A.; Lee, J.; Sontheimer, E.J. Type II-C CRISPR-Cas9 biology, mechanism, and application. ACS Chem. Biol., 2018, 13(2), 357-365.
[http://dx.doi.org/10.1021/acschembio.7b00855] [PMID: 29202216]
[33]
Lone, B.A.; Karna, S.K.L.; Ahmad, F.; Shahi, N.; Pokharel, Y.R. CRISPR/Cas9 system: A bacterial tailor for genomic engineering. Genet. Res. Int., 2018, 2018, 3797214.
[http://dx.doi.org/10.1155/2018/3797214] [PMID: 30319822]
[34]
Larson, M.H.; Gilbert, L.A.; Wang, X.; Lim, W.A.; Weissman, J.S.; Qi, L.S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc., 2013, 8(11), 2180-2196.
[http://dx.doi.org/10.1038/nprot.2013.132] [PMID: 24136345]
[35]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[36]
Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121), 823-826.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[37]
Liang, P.; Xu, Y.; Zhang, X.; Ding, C.; Huang, R.; Zhang, Z.; Lv, J.; Xie, X.; Chen, Y.; Li, Y.; Sun, Y.; Bai, Y.; Songyang, Z.; Ma, W.; Zhou, C.; Huang, J. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell, 2015, 6(5), 363-372.
[http://dx.doi.org/10.1007/s13238-015-0153-5] [PMID: 25894090]
[38]
Yan, M.Y.; Yan, H.Q.; Ren, G.X.; Zhao, J.P.; Guo, X.P.; Sun, Y.C. CRISPR-Cas12a-assisted recombineering in bacteria. Appl. Environ. Microbiol., 2017, 83(17), e00947-e17.
[http://dx.doi.org/10.1128/AEM.00947-17] [PMID: 28646112]
[39]
Liu, M.; Rehman, S.; Tang, X.; Gu, K.; Fan, Q.; Chen, D.; Ma, W. Methodologies for improving hdr efficiency. Front. Genet., 2019, 9, 691.
[http://dx.doi.org/10.3389/fgene.2018.00691]
[40]
Wu, X.; Kriz, A.J.; Sharp, P.A. Target specificity of the CRISPR-Cas9 system. Quant. Biol., 2014, 2(2), 59-70.
[http://dx.doi.org/10.1007/s40484-014-0030-x] [PMID: 25722925]
[41]
Tsui, T.K.M.; Hand, T.H.; Duboy, E.C.; Li, H. Impact of dna topology and guide length on target selection by a cytosine-specific cas9. ACS Synth. Biol., 2017, 6(6), 1103-1113.
[http://dx.doi.org/10.1021/acssynbio.7b00050] [PMID: 28277645]
[42]
Lim, Y.; Bak, S.Y.; Sung, K.; Jeong, E.; Lee, S.H.; Kim, J.S.; Bae, S.; Kim, S.K. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nat. Commun., 2016, 7, 13350.
[http://dx.doi.org/10.1038/ncomms13350] [PMID: 27804953]
[43]
Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc., 2013, 8(11), 2281-2308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[44]
Hajiahmadi, Z.; Movahedi, A.; Wei, H.; Li, D.; Orooji, Y.; Ruan, H.; Zhuge, Q. Strategies to increase on-target and reduce off-target effects of the crispr/cas9 system in plants. Int. J. Mol. Sci., 2019, 20(15), 3719.
[http://dx.doi.org/10.3390/ijms20153719] [PMID: 31366028]
[45]
Zhang, X.H.; Tee, L.Y.; Wang, X.G.; Huang, Q.S.; Yang, S.H. Off-target effects in crispr/cas9-mediated genome engineering. Mol. Ther. Nucleic Acids, 2015, 4(11), e264.
[http://dx.doi.org/10.1038/mtna.2015.37] [PMID: 26575098]
[46]
Tröder, S.E.; Ebert, L.K.; Butt, L.; Assenmacher, S.; Schermer, B.; Zevnik, B. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS One, 2018, 13(5), e0196891.
[http://dx.doi.org/10.1371/journal.pone.0196891] [PMID: 29723268]
[47]
Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv., 2018, 25(1), 1234-1257.
[http://dx.doi.org/10.1080/10717544.2018.1474964] [PMID: 29801422]
[48]
Zeitelhofer, M.; Vessey, J.P.; Thomas, S.; Kiebler, M.; Dahm, R. Transfection of cultured primary neurons via nucleofection. Curr. Protoc. Neurosci., 2009.
[http://dx.doi.org/10.1002/0471142301.ns0432s47]
[49]
Rohn, T.T.; Kim, N.; Isho, N.F.; Mack, J.M. The potential of crispr/cas9 gene editing as a treatment strategy for alzheimer’s disease. J. Alzheimers Dis. Parkinsonism, 2018, 8(3), 439.
[http://dx.doi.org/10.4172/2161-0460.1000439] [PMID: 30090689]
[50]
Simón-Sánchez, J.; Singleton, A. Genome-wide association studies in neurological disorders. Lancet Neurol., 2008, 7(11), 1067-1072.
[http://dx.doi.org/10.1016/S1474-4422(08)70241-2] [PMID: 18940696]
[51]
Flavell, S.W.; Greenberg, M.E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci., 2008, 31, 563-590.
[http://dx.doi.org/10.1146/annurev.neuro.31.060407.125631] [PMID: 18558867]
[52]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[53]
Blackledge, N.P.; Zhou, J.C.; Tolstorukov, M.Y.; Farcas, A.M.; Park, P.J.; Klose, R.J. CpG islands recruit a histone H3 lysine 36 demethylase. Mol. Cell, 2010, 38(2), 179-190.
[http://dx.doi.org/10.1016/j.molcel.2010.04.009] [PMID: 20417597]
[54]
Feng, J.; Fouse, S.; Fan, G. Epigenetic regulation of neural gene expression and neuronal function. Pediatr. Res., 2007, 61(5 Pt 2), 58R-63R.
[http://dx.doi.org/10.1203/pdr.0b013e3180457635] [PMID: 17413844]
[55]
Cheah, S.Y.; Lawford, B.R.; Young, R.M.; Morris, C.P.; Voisey, J. mRNA expression and dna methylation analysis of serotonin receptor 2a (htr2a) in the human schizophrenic brain. Genes (Basel), 2017, 8(1), 14.
[http://dx.doi.org/10.3390/genes8010014] [PMID: 28054990]
[56]
Savell, K.E.; Gallus, N.V.; Simon, R.C.; Brown, J.A.; Revanna, J.S.; Osborn, M.K.; Song, E.Y.; O’Malley, J.J.; Stackhouse, C.T.; Norvil, A.; Gowher, H.; Sweatt, J.D.; Day, J.J. Extra-coding RNAs regulate neuronal DNA methylation dynamics. Nat. Commun., 2016, 7, 12091.
[http://dx.doi.org/10.1038/ncomms12091] [PMID: 27384705]
[57]
Butler, A.A.; Webb, W.M.; Lubin, F.D. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics, 2016, 8(1), 135-151.
[http://dx.doi.org/10.2217/epi.15.79] [PMID: 26366811]
[58]
Sati, S.; Tanwar, V.S.; Kumar, K.A.; Patowary, A.; Jain, V.; Ghosh, S.; Ahmad, S.; Singh, M.; Reddy, S.U.; Chandak, G.R.; Raghunath, M.; Sivasubbu, S.; Chakraborty, K.; Scaria, V.; Sengupta, S. High resolution methylome map of rat indicates role of intragenic DNA methylation in identification of coding region. PLoS One, 2012, 7(2), e31621.
[http://dx.doi.org/10.1371/journal.pone.0031621] [PMID: 22355382]
[59]
Suarez, N.A.; Macia, A.; Muotri, A.R. LINE-1 retrotransposons in healthy and diseased human brain. Dev. Neurobiol., 2018, 78(5), 434-455.
[http://dx.doi.org/10.1002/dneu.22567] [PMID: 29239145]
[60]
Doherty, J.L.; Owen, M.J. Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med., 2014, 6(4), 29.
[http://dx.doi.org/10.1186/gm546] [PMID: 24944580]
[61]
Blum, K.; Febo, M.; Badgaiyan, R.D.; Demetrovics, Z.; Simpatico, T.; Fahlke, C.; M, O.B.; Li, M.; Dushaj, K.; Gold, M.S. Common neurogenetic diagnosis and meso-limbic manipulation of hypodopaminergic function in reward deficiency syndrome (rds): changing the recovery landscape. Curr. Neuropharmacol., 2017, 15(1), 184-194.
[http://dx.doi.org/10.2174/1570159X13666160512150918] [PMID: 27174576]
[62]
Wu, Y.; Dissing-Olesen, L.; MacVicar, B.A.; Stevens, B. Dynamic mediators of synapse development and plasticity. Trends Immunol., 2015, 36(10), 605-613.
[http://dx.doi.org/10.1016/j.it.2015.08.008] [PMID: 26431938]
[63]
Wilkinson, L.S.; Davies, W.; Isles, A.R. Genomic imprinting effects on brain development and function. Nat. Rev. Neurosci., 2007, 8(11), 832-843.
[http://dx.doi.org/10.1038/nrn2235] [PMID: 17925812]
[64]
Aizawa, H.; Sekine, Y.; Takemura, R.; Zhang, Z.; Nangaku, M.; Hirokawa, N. Kinesin family in murine central nervous system. J. Cell Biol., 1992, 119(5), 1287-1296.
[http://dx.doi.org/10.1083/jcb.119.5.1287] [PMID: 1447303]
[65]
Millership, S.J.; Tunster, S.J.; Van de Pette, M.; Choudhury, A.I.; Irvine, E.E.; Christian, M.; Fisher, A.G.; John, R.M.; Scott, J.; Withers, D.J. Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Mol. Metab., 2018, 18, 97-106.
[http://dx.doi.org/10.1016/j.molmet.2018.09.001] [PMID: 30279096]
[66]
Pensold, D.; Symmank, J.; Hahn, A.; Lingner, T.; Salinas-Riester, G.; Downie, B.R.; Ludewig, F.; Rotzsch, A.; Haag, N.; Andreas, N.; Schubert, K.; Hübner, C.A.; Pieler, T.; Zimmer, G. The DNA methyltransferase 1 (DNMT1) controls the shape and dynamics of migrating POAderived interneurons fated for the murine cerebral cortex. Cereb. Cortex, 2017, 27(12), 5696-5714.
[http://dx.doi.org/10.1093/cercor/bhw341] [PMID: 29117290]
[67]
Symmank, J.; Bayer, C.; Schmidt, C.; Hahn, A.; Pensold, D.; Zimmer-Bensch, G. DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications. Epigenetics, 2018, 13(5), 536-556.
[http://dx.doi.org/10.1080/15592294.2018.1475980] [PMID: 29912614]
[68]
Zovkic, I.B.; Guzman-Karlsson, M.C.; Sweatt, J.D. Epigenetic regulation of memory formation and maintenance. Learn. Mem., 2013, 20(2), 61-74.
[http://dx.doi.org/10.1101/lm.026575.112] [PMID: 23322554]
[69]
Rieusset, A.; Schaller, F.; Unmehopa, U.; Matarazzo, V.; Watrin, F.; Linke, M.; Georges, B.; Bischof, J.; Dijkstra, F.; Bloemsma, M.; Corby, S.; Michel, F.J.; Wevrick, R.; Zechner, U.; Swaab, D.; Dudley, K.; Bezin, L.; Muscatelli, F. Stochastic loss of silencing of the imprinted Ndn/NDN allele, in a mouse model and humans with prader-willi syndrome, has functional consequences. PLoS Genet., 2013, 9(9), e1003752.
[http://dx.doi.org/10.1371/journal.pgen.1003752] [PMID: 24039599]
[70]
Miller, N.L.; Wevrick, R.; Mellon, P.L. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum. Mol. Genet., 2009, 18(2), 248-260.
[http://dx.doi.org/10.1093/hmg/ddn344] [PMID: 18930956]
[71]
Ehrenhofer-Murray, A.E. Cross-talk between Dnmt2-dependent tRNA methylation and queuosine modification. Biomolecules, 2017, 7(1), 14.
[http://dx.doi.org/10.3390/biom7010014] [PMID: 28208632]
[72]
Xu, T.; Wang, C.; Shen, J.; Tong, P.; O'Keefe, R. Ablation of Dnmt3b in chondrocytes suppresses cell maturation during embryonic development. J. Cell Biochem., 2018, 119(7), 5852-5863.
[http://dx.doi.org/10.1002/jcb.26775]
[73]
Feng, J.; Zhou, Y.; Campbell, S.L.; Le, T.; Li, E.; Sweatt, J.D.; Silva, A.J.; Fan, G. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci., 2010, 13(4), 423-430.
[http://dx.doi.org/10.1038/nn.2514] [PMID: 20228804]
[74]
Corso-Díaz, X.; Jaeger, C.; Chaitankar, V.; Swaroop, A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog. Retin. Eye Res., 2018, 65, 1-27.
[http://dx.doi.org/10.1016/j.preteyeres.2018.03.002] [PMID: 29544768]
[75]
Dvoriantchikova, G.; Seemungal, R.J.; Ivanov, D. DNA methylation dynamics during the differentiation of retinal progenitor cells into retinal neurons reveal a role for the DNA demethylation pathway. Front. Mol. Neurosci., 2019, 12, 182.
[http://dx.doi.org/10.3389/fnmol.2019.00182] [PMID: 31396051]
[76]
Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 11(6), 1164-1178.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[77]
Shrivastava, A.; De Sousa, A.; Rao, G.P. Brain-derived neurotrophic factor and suicide in schizophrenia: Critical role of neuroprotective mechanisms as an emerging hypothesis. Indian J. Psychol. Med., 2016, 38(6), 499-504.
[http://dx.doi.org/10.4103/0253-7176.194913] [PMID: 28031582]
[78]
Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 2014, 32(4), 347-355.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[79]
Thakore, P.I.; Black, J.B.; Hilton, I.B.; Gersbach, C.A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods, 2016, 13(2), 127-137.
[http://dx.doi.org/10.1038/nmeth.3733] [PMID: 26820547]
[80]
Dominguez, A.A.; Lim, W.A.; Qi, L.S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol., 2016, 17(1), 5-15.
[http://dx.doi.org/10.1038/nrm.2015.2] [PMID: 26670017]
[81]
Fan, G.; Hutnick, L. Methyl-CpG binding proteins in the nervous system. Cell Res., 2005, 15(4), 255-261.
[http://dx.doi.org/10.1038/sj.cr.7290294] [PMID: 15857580]
[82]
Fasolino, M.; Zhou, Z. The crucial role of dna methylation and mecp2 in neuronal function. Genes (Basel), 2017, 8(5), 141.
[http://dx.doi.org/10.3390/genes8050141] [PMID: 28505093]
[83]
Bellini, E.; Pavesi, G.; Barbiero, I.; Bergo, A.; Chandola, C.; Nawaz, M.S.; Rusconi, L.; Stefanelli, G.; Strollo, M.; Valente, M.M.; Kilstrup-Nielsen, C.; Landsberger, N. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Front. Cell. Neurosci., 2014, 8, 236.
[http://dx.doi.org/10.3389/fncel.2014.00236] [PMID: 25165434]
[84]
Menafra, R.; Stunnenberg, H.G. MBD2 and MBD3: elusive functions and mechanisms. Front. Genet., 2014, 5, 428.
[http://dx.doi.org/10.3389/fgene.2014.00428] [PMID: 25538734]
[85]
Pulecio, J.; Verma, N.; Mejía-Ramírez, E.; Huangfu, D.; Raya, A. CRISPR/Cas9-based engineering of the epigenome. Cell. Stem. Cell., 2017, 21(4), 431-447.
[86]
Cortázar, D.; Kunz, C.; Selfridge, J.; Lettieri, T.; Saito, Y.; MacDougall, E.; Wirz, A.; Schuermann, D.; Jacobs, A.L.; Siegrist, F.; Steinacher, R.; Jiricny, J.; Bird, A.; Schär, P. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature, 2011, 470(7334), 419-423.
[http://dx.doi.org/10.1038/nature09672] [PMID: 21278727]
[87]
Spruijt, C.G.; Gnerlich, F.; Smits, A.H.; Pfaffeneder, T.; Jansen, P.W.; Bauer, C.; Münzel, M.; Wagner, M.; Müller, M.; Khan, F.; Eberl, H.C.; Mensinga, A.; Brinkman, A.B.; Lephikov, K.; Müller, U.; Walter, J.; Boelens, R.; van Ingen, H.; Leonhardt, H.; Carell, T.; Vermeulen, M. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell, 2013, 152(5), 1146-1159.
[http://dx.doi.org/10.1016/j.cell.2013.02.004] [PMID: 23434322]
[88]
Kalashnikova, A.A.; Rogge, R.A.; Hansen, J.C. Linker histone H1 and protein-protein interactions. Biochim. Biophys. Acta, 2016, 1859(3), 455-461.
[http://dx.doi.org/10.1016/j.bbagrm.2015.10.004] [PMID: 26455956]
[89]
Kim, S.; Kaang, B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med., 2017, 49(1), e281.
[http://dx.doi.org/10.1038/emm.2016.140] [PMID: 28082740]
[90]
Kingston, R.E.; Tamkun, J.W. Transcriptional regulation by trithorax-group proteins. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a019349.
[http://dx.doi.org/10.1101/cshperspect.a019349] [PMID: 25274705]
[91]
Sobhan, P.K.; Funa, K. TLX-Its emerging role for neurogenesis in health and disease. Mol. Neurobiol., 2017, 54(1), 272-280.
[http://dx.doi.org/10.1007/s12035-015-9608-1] [PMID: 26738856]
[92]
Copur, Ö.; Müller, J. Histone demethylase activity of utx is essential for viability and regulation of hox gene expression in drosophila. Genetics, 2018, 208(2), 633-637.
[http://dx.doi.org/10.1534/genetics.117.300421] [PMID: 29247011]
[93]
Margueron, R.; Li, G.; Sarma, K.; Blais, A.; Zavadil, J.; Woodcock, C.L.; Dynlacht, B.D.; Reinberg, D. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell, 2008, 32(4), 503-518.
[http://dx.doi.org/10.1016/j.molcel.2008.11.004] [PMID: 19026781]
[94]
Corley, M.; Kroll, K.L. The roles and regulation of Polycomb complexes in neural development. Cell Tissue Res., 2015, 359(1), 65-85.
[http://dx.doi.org/10.1007/s00441-014-2011-9] [PMID: 25367430]
[95]
Zhang, W.; Chronis, C.; Chen, X.; Zhang, H.; Spalinskas, R.; Pardo, M.; Chen, L.; Wu, G.; Zhu, Z.; Yu, Y.; Yu, L.; Choudhary, J.; Nichols, J.; Parast, M.M.; Greber, B.; Sahlén, P.; Plath, K. The baf and prc2 complex subunits dpf2 and eed antagonistically converge on tbx3 to control esc differentiation. Cell Stem Cell, 2019, 24(1), 138-152.e8.
[http://dx.doi.org/10.1016/j.stem.2018.12.001] [PMID: 30609396]
[96]
Seto, E.; Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol., 2014, 6(4), a018713.
[http://dx.doi.org/10.1101/cshperspect.a018713] [PMID: 24691964]
[97]
Sokpor, G.; Xie, Y.; Rosenbusch, J.; Tuoc, T. Chromatin remodeling baf (swi/snf) complexes in neural development and disorders. Front. Mol. Neurosci., 2017, 10, 243.
[http://dx.doi.org/10.3389/fnmol.2017.00243] [PMID: 28824374]
[98]
Nie, J.H.; Li, T.X.; Zhang, X.Q.; Liu, J. Roles of non-coding rnas in normal human brain development, brain tumor, and neuropsychiatric disorders. Noncoding RNA, 2019, 5(2), 36.
[http://dx.doi.org/10.3390/ncrna5020036] [PMID: 31052326]
[99]
Shivdasani, R.A. MicroRNAs: regulators of gene expression and cell differentiation. Blood, 2006, 108(12), 3646-3653.
[http://dx.doi.org/10.1182/blood-2006-01-030015] [PMID: 16882713]
[100]
Zehir, A.; Hua, L.L.; Maska, E.L.; Morikawa, Y.; Cserjesi, P. Dicer is required for survival of differentiating neural crest cells. Dev. Biol., 2010, 340(2), 459-467.
[http://dx.doi.org/10.1016/j.ydbio.2010.01.039] [PMID: 20144605]
[101]
Sekar, S.; Liang, W.S. Circular RNA expression and function in the brain. Noncoding RNA Res., 2019, 4(1), 23-29.
[http://dx.doi.org/10.1016/j.ncrna.2019.01.001] [PMID: 30891534]
[102]
Driessen, E.; Hollon, S.D. Cognitive behavioral therapy for mood disorders: efficacy, moderators and mediators. Psychiatr. Clin. North Am., 2010, 33(3), 537-555.
[http://dx.doi.org/10.1016/j.psc.2010.04.005] [PMID: 20599132]
[103]
Yang, C.; Hu, G.; Li, Z.; Wang, Q.; Wang, X.; Yuan, C.; Wang, Z.; Hong, W.; Lu, W.; Cao, L.; Chen, J.; Wang, Y.; Yu, S.; Zhou, Y.; Yi, Z.; Fang, Y. Differential gene expression in patients with subsyndromal symptomatic depression and major depressive disorder. PLoS One, 2017, 12(3), e0172692.
[http://dx.doi.org/10.1371/journal.pone.0172692] [PMID: 28333931]
[104]
Garafola, C.S.; Henn, F.A. A change in hippocampal protocadherin gamma expression in a learned helpless rat. Brain Res., 2014, 1593, 55-64.
[http://dx.doi.org/10.1016/j.brainres.2014.08.071] [PMID: 25446008]
[105]
Machado-Vieira, R.; Ibrahim, L.; Zarate, C.A., Jr Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci. Ther., 2011, 17(6), 699-704.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00203.x] [PMID: 20961400]
[106]
Cota-Coronado, A.; Díaz-Martínez, N.F.; Padilla-Camberos, E.; Díaz-Martínez, N.E. Editing the central nervous system through crispr/cas9 systems. Front. Mol. Neurosci., 2019, 12, 110.
[http://dx.doi.org/10.3389/fnmol.2019.00110] [PMID: 31191241]
[107]
Porcelli, S.; Drago, A.; Fabbri, C.; Gibiino, S.; Calati, R.; Serretti, A. Pharmacogenetics of antidepressant response. J. Psychiatry Neurosci., 2011, 36(2), 87-113.
[http://dx.doi.org/10.1503/jpn.100059] [PMID: 21172166]
[108]
Seeman, M.V. Women who suffer from schizophrenia: Critical issues. World J. Psychiatry, 2018, 8(5), 125-136.
[http://dx.doi.org/10.5498/wjp.v8.i5.125] [PMID: 30425943]
[109]
Grayson, D.R.; Guidotti, A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology, 2013, 38(1), 138-166.
[http://dx.doi.org/10.1038/npp.2012.125] [PMID: 22948975]
[110]
Gejman, P.V.; Sanders, A.R.; Duan, J. The role of genetics in the etiology of schizophrenia. Psychiatr. Clin. North Am., 2010, 33(1), 35-66.
[http://dx.doi.org/10.1016/j.psc.2009.12.003] [PMID: 20159339]
[111]
Guidotti, A.; Grayson, D.R.; Caruncho, H.J. Epigenetic RELN dysfunction in schizophrenia and related neuropsychiatric disorders. Front. Cell. Neurosci., 2016, 10, 89.
[http://dx.doi.org/10.3389/fncel.2016.00089] [PMID: 27092053]
[112]
Gregório, S.P.; Sallet, P.C.; Do, K.A.; Lin, E.; Gattaz, W.F.; Dias-Neto, E. Polymorphisms in genes involved in neurodevelopment may be associated with altered brain morphology in schizophrenia: preliminary evidence. Psychiatry Res., 2009, 165(1-2), 1-9.
[http://dx.doi.org/10.1016/j.psychres.2007.08.011] [PMID: 19054571]
[113]
Guidotti, A.; Auta, J.; Davis, J.M.; Dong, E.; Gavin, D.P.; Grayson, D.R.; Sharma, R.P.; Smith, R.C.; Tueting, P.; Zhubi, A. Toward the identification of peripheral epigenetic biomarkers of schizophrenia. J. Neurogenet., 2014, 28(1-2), 41-52.
[http://dx.doi.org/10.3109/01677063.2014.892485] [PMID: 24702539]
[114]
Schulte, J.; Littleton, J.T. The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr. Trends Neurol., 2011, 5, 65-78.
[PMID: 22180703]
[115]
Kay, C.; Collins, J.A.; Skotte, N.H.; Southwell, A.L.; Warby, S.C.; Caron, N.S.; Doty, C.N.; Nguyen, B.; Griguoli, A.; Ross, C.J.; Squitieri, F.; Hayden, M.R. Huntingtin Haplotypes provide prioritized target panels for allele-specific silencing in huntington disease patients of european ancestry. Mol. Ther., 2015, 23(11), 1759-1771.
[http://dx.doi.org/10.1038/mt.2015.128] [PMID: 26201449]
[116]
Kolli, N.; Lu, M.; Maiti, P.; Rossignol, J.; Dunbar, G.L. CRISPR-Cas9 mediated gene-silencing of the mutant huntingtin gene in an in vitro model of huntington’s disease. Int. J. Mol. Sci., 2017, 18(4), 754.
[http://dx.doi.org/10.3390/ijms18040754] [PMID: 28368337]
[117]
Vachey, G.; Déglon, N. CRISPR/Cas9-mediated genome editing for Huntington’s disease. Methods Mol. Biol., 2018, 1780, 463-481.
[http://dx.doi.org/10.1007/978-1-4939-7825-0_21] [PMID: 29856031]
[118]
Ekman, F.K.; Ojala, D.S.; Adil, M.M.; Lopez, P.A.; Schaffer, D.V.; Gaj, T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a huntington’s disease mouse model. Mol. Ther. Nucleic Acids, 2019, 17, 829-839.
[http://dx.doi.org/10.1016/j.omtn.2019.07.009] [PMID: 31465962]
[119]
Butland, S.L.; Devon, R.S.; Huang, Y.; Mead, C.L.; Meynert, A.M.; Neal, S.J.; Lee, S.S.; Wilkinson, A.; Yang, G.S.; Yuen, M.M.; Hayden, M.R.; Holt, R.A.; Leavitt, B.R.; Ouellette, B.F. CAG-encoded polyglutamine length polymorphism in the human genome. BMC Genomics, 2007, 8, 126.
[http://dx.doi.org/10.1186/1471-2164-8-126] [PMID: 17519034]
[120]
Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240.
[http://dx.doi.org/10.1101/cshperspect.a024240] [PMID: 27940602]
[121]
Arrasate, M.; Finkbeiner, S. Protein aggregates in Huntington’s disease. Exp. Neurol., 2012, 238(1), 1-11.
[http://dx.doi.org/10.1016/j.expneurol.2011.12.013] [PMID: 22200539]
[122]
Nath, S.; Munsie, L.N.; Truant, R. A huntingtin-mediated fast stress response halting endosomal trafficking is defective in Huntington’s disease. Hum. Mol. Genet., 2015, 24(2), 450-462.
[http://dx.doi.org/10.1093/hmg/ddu460] [PMID: 25205111]
[123]
Rousseau, F.; Labelle, Y.; Bussières, J.; Lindsay, C. The fragile x mental retardation syndrome 20 years after the FMR1 gene discovery: an expanding universe of knowledge. Clin. Biochem. Rev., 2011, 32(3), 135-162.
[PMID: 21912443]
[124]
Kenny, P.; Ceman, S. RNA secondary structure modulates fmrp’s bi-functional role in the microrna pathway. Int. J. Mol. Sci., 2016, 17(6), 985.
[http://dx.doi.org/10.3390/ijms17060985] [PMID: 27338369]
[125]
Li, Y.; Lin, L.; Jin, P. The microRNA pathway and fragile X mental retardation protein. Biochim. Biophys. Acta, 2008, 1779(11), 702-705.
[http://dx.doi.org/10.1016/j.bbagrm.2008.07.003] [PMID: 18687414]
[126]
Gao, F.; Qi, L.; Yang, Z.; Yang, T.; Zhang, Y.; Xu, H.; Zhao, H. Impaired GABA neural circuits are critical for fragile x syndrome. Neural Plast., 2018, 2018, 8423420.
[http://dx.doi.org/10.1155/2018/8423420] [PMID: 30402088]
[127]
Bölte, S.; Girdler, S.; Marschik, P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci., 2019, 76(7), 1275-1297.
[http://dx.doi.org/10.1007/s00018-018-2988-4] [PMID: 30570672]
[128]
Soler, J.; Fañanás, L.; Parellada, M.; Krebs, M.O.; Rouleau, G.A.; Fatjó-Vilas, M. Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: a systematic review. J. Psychiatry Neurosci., 2018, 43(4), 223-244.
[http://dx.doi.org/10.1503/jpn.170066] [PMID: 29947605]
[129]
Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet, 2018, 392(10146), 508-520.
[http://dx.doi.org/10.1016/S0140-6736(18)31129-2] [PMID: 30078460]
[130]
DC. Signs & Symptoms - Autism Spectrum Disorder (ASD) - NCBDDD - CDC. Centre for Disease Control and Prevention, 2015.
[131]
Gao, Z.; Lee, P.; Stafford, J.M.; von Schimmelmann, M.; Schaefer, A.; Reinberg, D. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature, 2014, 516(7531), 349-354.
[http://dx.doi.org/10.1038/nature13921] [PMID: 25519132]
[132]
Basnet, H.; Su, X.B.; Tan, Y.; Meisenhelder, J.; Merkurjev, D.; Ohgi, K.A.; Hunter, T.; Pillus, L.; Rosenfeld, M.G. Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature, 2014, 516(7530), 267-271.
[http://dx.doi.org/10.1038/nature13736] [PMID: 25252977]
[133]
Kyle, S.M.; Vashi, N.; Justice, M.J. Rett syndrome: a neurological disorder with metabolic components. Open Biol., 2018, 8(2), 170216.
[http://dx.doi.org/10.1098/rsob.170216] [PMID: 29445033]
[134]
Alexandrou, A.; Papaevripidou, I.; Alexandrou, I.M.; Theodosiou, A.; Evangelidou, P.; Kousoulidou, L.; Tanteles, G.; Christophidou-Anastasiadou, V.; Sismani, C. De novo mosaic MECP2 mutation in a female with Rett syndrome. Clin. Case Rep., 2019, 7(2), 366-370.
[http://dx.doi.org/10.1002/ccr3.1985] [PMID: 30847208]
[135]
Bianciardi, L.; Fichera, M.; Failla, P.; Di Marco, C.; Grozeva, D.; Mencarelli, M.A.; Spiga, O.; Mari, F.; Meloni, I.; Raymond, L.; Renieri, A.; Romano, C.; Ariani, F. MECP2 missense mutations outside the canonical MBD and TRD domains in males with intellectual disability. J. Hum. Genet., 2016, 61(2), 95-101.
[http://dx.doi.org/10.1038/jhg.2015.118] [PMID: 26490184]
[136]
Miyake, K.; Hirasawa, T.; Soutome, M.; Itoh, M.; Goto, Y.; Endoh, K.; Takahashi, K.; Kudo, S.; Nakagawa, T.; Yokoi, S.; Taira, T.; Inazawa, J.; Kubota, T. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome. BMC Neurosci., 2011, 12, 81.
[http://dx.doi.org/10.1186/1471-2202-12-81] [PMID: 21824415]
[137]
Chen, L.; Chen, K.; Lavery, L.A.; Baker, S.A.; Shaw, C.A.; Li, W.; Zoghbi, H.Y. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc. Natl. Acad. Sci. USA, 2015, 112(17), 5509-5514.
[http://dx.doi.org/10.1073/pnas.1505909112] [PMID: 25870282]
[138]
Baliou, S.; Adamaki, M.; Kyriakopoulos, A.M.; Spandidos, D.A.; Panayiotidis, M.; Christodoulou, I.; Zoumpourlis, V. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int. J. Oncol., 2018, 53(2), 443-468.
[http://dx.doi.org/10.3892/ijo.2018.4434] [PMID: 29901119]
[139]
Giau, V.V.; Lee, H.; Shim, K.H.; Bagyinszky, E.; An, S.S.A. Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer’s disease. Clin. Interv. Aging, 2018, 13, 221-233.
[http://dx.doi.org/10.2147/CIA.S155145] [PMID: 29445268]
[140]
Gao, Y.; Li, J.; Li, J.; Hu, C.; Zhang, L.; Yan, J.; Li, L.; Zhang, L. Tetrahydroxy stilbene glycoside alleviated inflammatory damage by mitophagy via AMPK related PINK1/Parkin signaling pathway. Biochem. Pharmacol., 2020, 177, 113997.
[http://dx.doi.org/10.1016/j.bcp.2020.113997] [PMID: 32353422]
[141]
González-Romero, E.; Martínez-Valiente, C.; García-Ruiz, C.; Vázquez-Manrique, R.P.; Cervera, J.; Sanjuan-Pla, A. CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica, 2019, 104(5), 881-893.
[http://dx.doi.org/10.3324/haematol.2018.211359] [PMID: 30923099]
[142]
Duarte, F.; Déglon, N. Genome editing for cns disorders. Front. Neurosci., 2020, 14, 579062.
[http://dx.doi.org/10.3389/fnins.2020.579062] [PMID: 33192264]
[143]
Madigan, N.N.; Staff, N.P.; Windebank, A.J.; Benarroch, E.E. Genome editing technologies and their potential to treat neurologic disease. Neurology, 2017, 89(16), 1739-1748.
[http://dx.doi.org/10.1212/WNL.0000000000004558] [PMID: 28931646]
[144]
An, M.C.; O’Brien, R.N.; Zhang, N.; Patra, B.N.; De La Cruz, M.; Ray, A.; Ellerby, L.M. Polyglutamine disease modeling: epitope based screen for homologous recombination using crispr/cas9 system. PLoS Curr., 2014, 6, ecurrents.hd.0242d2e7ad72225efa72f6964589369a.
[http://dx.doi.org/10.1371/currents.hd.0242d2e7ad72225efa72f6964589369a] [PMID: 24761311]
[145]
Yao, Y.; Cui, X.; Al-Ramahi, I.; Sun, X.; Li, B.; Hou, J.; Difiglia, M.; Palacino, J.; Wu, Z.Y.; Ma, L.; Botas, J.; Lu, B. A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity. eLife, 2015, 4, e05449.
[http://dx.doi.org/10.7554/eLife.05449] [PMID: 25738228]
[146]
Garriga-Canut, M.; Agustín-Pavón, C.; Herrmann, F.; Sánchez, A.; Dierssen, M.; Fillat, C.; Isalan, M. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc. Natl. Acad. Sci. USA, 2012, 109(45), E3136-E3145.
[http://dx.doi.org/10.1073/pnas.1206506109] [PMID: 23054839]
[147]
Srikanth, P.; Han, K.; Callahan, D.G.; Makovkina, E.; Muratore, C.R.; Lalli, M.A.; Zhou, H.; Boyd, J.D.; Kosik, K.S.; Selkoe, D.J.; Young-Pearse, T.L. Genomic disc1 disruption in hipscs alters wnt signaling and neural cell fate. Cell Rep., 2015, 12(9), 1414-1429.
[http://dx.doi.org/10.1016/j.celrep.2015.07.061] [PMID: 26299970]
[148]
Incontro, S.; Asensio, C.S.; Edwards, R.H.; Nicoll, R.A. Efficient, complete deletion of synaptic proteins using CRISPR. Neuron, 2014, 83(5), 1051-1057.
[http://dx.doi.org/10.1016/j.neuron.2014.07.043] [PMID: 25155957]
[149]
Wang, P.; Lin, M.; Pedrosa, E.; Hrabovsky, A.; Zhang, Z.; Guo, W.; Lachman, H.M.; Zheng, D. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol. Autism, 2015, 6, 55.
[http://dx.doi.org/10.1186/s13229-015-0048-6] [PMID: 26491539]
[150]
Park, C.Y.; Halevy, T.; Lee, D.R.; Sung, J.J.; Lee, J.S.; Yanuka, O.; Benvenisty, N.; Kim, D.W. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep., 2015, 13(2), 234-241.
[http://dx.doi.org/10.1016/j.celrep.2015.08.084] [PMID: 26440889]
[151]
Huang, W.; Zheng, J.; He, Y.; Luo, C. Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome. PLoS One, 2013, 8(12), e84176.
[http://dx.doi.org/10.1371/journal.pone.0084176] [PMID: 24386347]
[152]
Swiech, L.; Heidenreich, M.; Banerjee, A.; Habib, N.; Li, Y.; Trombetta, J.; Sur, M.; Zhang, F. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol., 2015, 33(1), 102-106.
[http://dx.doi.org/10.1038/nbt.3055] [PMID: 25326897]
[153]
Konermann, S.; Brigham, M.D.; Trevino, A.E.; Joung, J.; Abudayyeh, O.O.; Barcena, C.; Hsu, P.D.; Habib, N.; Gootenberg, J.S.; Nishimasu, H.; Nureki, O.; Zhang, F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517(7536), 583-588.
[http://dx.doi.org/10.1038/nature14136] [PMID: 25494202]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy