Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Perspective Article

Technological Maturity and Systematic Review of Medicinal Plants with Pharmacological Activity in the Central Nervous System

Author(s): Eduardo M.S. Bastos*, Victor D.A. da Silva, Silvia L. Costa and Samira A. Hanna

Volume 15, Issue 2, 2021

Published on: 16 March, 2021

Page: [89 - 101] Pages: 13

DOI: 10.2174/1872208315666210316110915

Abstract

Background: Medicinal plants present activities against neurodegenerative diseases with potential for the pharmaceutical industries. Therefore, the objective of this study was to investigate the current panorama of patents and articles of Brazilian medicinal plants with pharmacological activities in the Central Nervous System (CNS), regarding such aspects as the number of patents by countries, areas of knowledge, and technological maturity.

Methods: We carry out a technological exploration on the Questel Orbit® platform with the descriptors: Agave sisalana P., Amburana cearenses A., Dimorphandra mollis B., Jatropha curcas L., Poincianella pyramidalis T. and Prosopis juliflora (Sw.) DC. with pharmacological activity and scientific exploration in PubMed and Science Direct associated with the CNS in the title, abstract, and methodology.

Results: A total of 642 patents were identified between the years 1999-2019. India, China, and Brazil are highlighted, 6th place, out of a total of 48 countries. Of these, 30 patents were not in the National Institute of Industrial Property, and 10% are Brazilian in biotechnology and pharmaceutical products. Eleven articles were used in PubMed and Science Direct with scientific domains (anticancer, neuroprotection and anti-inflammatory). The Federal University of Bahia is highlighted, showing Technology Readiness Levels (TRL4), basic skills of pre-clinical research.

Conclusion: Brazilian public universities have a significant role in the scientific, technological and innovative development of therapeutic assets for CNS.

Keywords: Medicinal plants, therapeutic use, central nervous system, patents, technology readiness levels, pharmacological activity.

Graphical Abstract

[1]
Simões CMO, Schenkel EPA. Research and the Brazilian production of medicines from medicinal plants: the necessary interaction of industry with the academy. Rev Bras Pharmacognosy 2002; 12(1): 40-35.
[2]
Tungmunnithum D, Pinthong D, Hano C. Flavonoids from Nelumbo nucifera Gaertn., a medicinal plant: uses in traditional medicine, phytochemistry and pharmacological activities. Medicines (Basel) 2018; 5(4): 127.
[http://dx.doi.org/10.3390/medicines5040127] [PMID: 30477094]
[3]
Hossain MK, Choi HY, Hwang JS, et al. Antiviral activity of 3,4′-dihydroxyflavone on influenza a virus. J Microbiol 2014; 52(6): 521-6.
[http://dx.doi.org/10.1007/s12275-014-4212-z] [PMID: 24871979]
[4]
Li W, Xu C, Hao C, et al. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Res 2020; 177: 104714.
[http://dx.doi.org/10.1016/j.antiviral.2020.104714] [PMID: 32165083]
[5]
Campana PRV, Mansur DS, Gusman GS, Ferreira D, Teixeira MM, Braga FC. Anti-TNF-of activity of Brazilian plants and compounds of Ouratea Semiserrata. Phytother Res 2015; 29(10): 1509-15.
[http://dx.doi.org/10.1002/ptr.5401] [PMID: 26094613]
[6]
Singh PP, Ambika , Chauhan SM. Activity-guided isolation of antioxidant xanthones from Swertia chirayita (Roxb.) H. Karsten (Gentianaceae). Nat Prod Res 2012; 26(18): 1682-6.
[http://dx.doi.org/10.1080/14786419.2011.592836] [PMID: 21985644]
[7]
Coelho PLC, De Freitas SRV, Pitanga BPS, et al. Flavonoids from the Brazilian Plant Croton betulaster inhibit the growth of human glioblastoma cells and induce apoptosis. Rev Bras Pharmacognosy 2016; 26(1): 34-43.
[http://dx.doi.org/10.1016/j.bjp.2015.05.013]
[8]
Massambani O. FINEP strategies and its instruments to support innovation. 2017; Available from: http://www.desenvolvesp.com.br/wpcontent/uploads/2017/05/FINEP_MPI_2017.pdf
[9]
World economic forum technology and innovation for the future of production: accelerating value creation. Cologny/Geneva Switzerland. 2017; Available from: http://www3.weforum.org/docs/WEF_ White_Paper_Technology_Innovation_Future_of_Production_ 2017.pdf
[10]
Oslo manual, guidelines for collection and interpretation data, 3rd ed. 2018; 3: 56. Available from: https://edisciplinas.usp.br/pluginfile.php/4161223/mod_resource/content/1/Manual%20de%20Oslo2%20-%20FINEP%20Inovacao.pdf
[11]
Etzkowitz H, Zhou C. Triple Helix: university-industry-government innovation and entrepreneurship. Estud São Paulo 2017; 31(90): 48-23.
[http://dx.doi.org/10.4324/9781315620183]
[12]
Ipiranga AS, Almeida PC. The kinds of research and the cooperation among university, business and government: an analysis in the northeast biotechnology network. Organ Soc 2012; 19(60): 17-34.
[http://dx.doi.org/10.1590/S1984-92302012000100002]
[13]
Orbit Intelligence System Questel® Company [Database - online]. 2020; Available from: https://www.orbit.com/
[14]
Brazil INPI. National institute of property: industrial [Database - online]. 2020; Available from: http://www.inpi.gov.br
[15]
Espacenet, European patent office 2019 [Database - online]. 2020; Available from: https://worldwide.espacenet.com
[16]
WIPO, World intellectual property organization [Database-online]. 2020; Available from: https://www.wipo.int/portal/en/index.html
[17]
OAPI, African intellectual property organization [Database - online]. 2020; Available from: https://www.adams.africa/works/oapi/
[18]
ARIPO, African regional intellectual property organization for Africa [Database - online]. 2020; Available from: https://www.aripo.org/pt/casa/
[19]
EAPO, Eurasian patent organization [Database - online]. 2020; Available from: https://www.eapo.org/en/
[20]
USPTO, United States patent and trade mark office [Database - online]. 2020; Available from: https://www.uspto.gov/
[21]
PubMed, National Library of Medicine of the United States of America National Biotechnology Information Center (NCB) National Library of Medicine [Database - online]. 2020; Available from: http://www.nlm.nih.gov/citingmedicine
[22]
ScienceDirect Quick reference guide 2020. 2020; Available from: http://www.sciencedirect.com
[23]
Luis Míguez JL, Porteiro J, Pérez-orozco R, Patiño D, Rodríguez S. Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity. Appl Energy 2018; 211: 1296-82.
[http://dx.doi.org/10.1016/j.apenergy.2017.11.107]
[24]
David JPL, Copeland KKPG, Lédo AS, et al. Method to stimulate plants of the leguminosae family (fabaceae) to produce biflavanoids. BR102016008585, 2016.
[25]
World Intellectual Property Organization WIPO. 2020; Available from: https://www.wipo.int/pct/en/
[26]
Sharma AK, Gangwar M, Kumar D, Nath G, Kumar Sinha AS, Tripathi YB. Phytochemical characterization, antimicrobial activity and reducing potential of seed oil, latex, machine oil and presscake of Jatropha curcas. Avicenna J Phytomed 2016; 6(4): 366-75.
[PMID: 27516977]
[27]
Barbosa DB. Introduction to intellectual property. Juris; Lumen: Rio de Janeiro 2010; 295-318.
[28]
Guide to the International patent classification IPCG. version 2020. WIPO - World intellectual property organization. 2020; Available from: https://www.wipo. int/edocs/pubdocs/en/wipo_guide _ipc_2020.pdf
[29]
Almeida JRGS, Antoniolli ÂR, Araújo AAS, et al. Formulations containing hecogenin acetate in the treatment of pain. BR102014018358A, 2014.
[30]
FAO STAT Database Future fibers: Sisal 2020. 2020; Available from: www.fao.org/economic /futurefibres/fibres/sisal/en/
[31]
Dunder RJ, Luiz-Ferreira A, Almeida AC, et al. Applications of the hexane fraction of Agave sisalana Perrine de Engelm ( Asparagaceae ): inflammation control and pain screening. Mem Inst Oswaldo Cruz 2013; 108(3): 271-63.
[http://dx.doi.org/10.1590/S0074-02762013000300002] [PMID: 23778651]
[32]
Gama KB, Quintans JSS, Antoniolli AR, et al. Evidence for the involvement of descending pain-inhibitory mechanisms in the antinociceptive effect of hecogenin acetate. J Nat Prod 2013; 76(4): 559-63.
[http://dx.doi.org/10.1021/np3007342] [PMID: 23437926]
[33]
Quintans JS, Barreto RS, de Lucca W Jr, et al. Evidence for the involvement of spinal cord-inhibitory and cytokines-modulatory mechanisms in the anti-hyperalgesic effect of hecogenin acetate, a steroidal sapogenin-acetylated, in mice. Molecules 2014; 19(6): 8303-16.
[http://dx.doi.org/10.3390/molecules19068303] [PMID: 24950436]
[34]
Bastos EMS, Da Cunha VHM, Costa SL, et al. Pharmaceutical compositions with anti-inflammatory activity containing extracts of Jatropha curcas l., Process of obtaining pharmaceutical compositions with anti-inflammatory activity containing extracts of Jatropha curcas L. and their uses. BR1020160213681, 2016.
[35]
Pinto TLF, Marcos Filho J, Forti VA. Viability assessment of pinhão manso seeds by tetrazolium and X-Ray. Tests Rev Bras Seeds 2009; 31(2): 201-195.
[36]
Sharma SK, Singh H. A review on pharmacological significance of genus Jatropha (Euphorbiaceae). Chin J Integr Med 2012; 18(11): 868-80.
[http://dx.doi.org/10.1007/s11655-012-1267-8] [PMID: 23086490]
[37]
Shetty S, Udupa SL, Udupa AL, et al. Wound healing activities of bark extract of Jatropha curcas Linn in Albino Rats. Saudi Med J 2006; 27(10): 1476-3.
[PMID: 17013466]
[38]
Ayanbimpe GM, Ojo TK, Afolabi E, Opara F, Orsaah S, Ojerinde OS. Evaluation of extracts of Jatropha curcas and Moringa oleifera in culture media for selective inhibition of saprophytic fungal contaminants. J Clin Lab Anal 2009; 23(3): 161-4.
[http://dx.doi.org/10.1002/jcla.20311] [PMID: 19455635]
[39]
Da Cunha VHM, Gonzales ADF, Bitencourt MJC, Bastos EMS. Pharmaceutical compositions with antibacterial activity containing extracts of Jatropha curcas, process of obtaining extracts of Jatropha curcas and their uses. BR1020140101047A2, 2014.
[40]
Mujumdar AM, Misar AV. Anti-inflammatory activity of Jatropha curcas roots in mice and rats. J Ethnopharmacol 2004; 90(1): 11-5.
[http://dx.doi.org/10.1016/j.jep.2003.09.019] [PMID: 14698501]
[41]
Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root. BMC Complement Altern Med 2015; 15: 11.
[http://dx.doi.org/10.1186/s12906-015-0528-4] [PMID: 25652309]
[42]
Paulsen BS, Souza CS, Chicaybam L, et al. Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells. Stem Cells Dev 2011; 20(10): 1711-21.
[http://dx.doi.org/10.1089/scd.2010.0446] [PMID: 21281018]
[43]
Dos Santos Souza C, Grangeiro MS, Lima Pereira EP, et al. Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicology 2018; 65: 85-97.
[http://dx.doi.org/10.1016/j.neuro.2018.02.001] [PMID: 29425760]
[44]
Andrade AWL, Machado KDC, Machado KDC, et al. In vitro antioxidant properties of the biflavonoid agathisflavone. Chem Cent J 2018; 12(1): 75.
[http://dx.doi.org/10.1186/s13065-018-0443-0] [PMID: 29959550]
[45]
Hughes JB, Sousa JS, Barreto RA, et al. Cytotoxic effects of an extract containing alkaloids obtained from Prosopis Juliflora Sw. D.C. (Algaroba) pods on glioblastoma cells. Rev Bras Saúde Prod Anim 2005; 6(1): 41-31.
[46]
Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncology 2015; 17(Suppl. 4): iv1-iv62.
[http://dx.doi.org/10.1093/neuonc/nov189] [PMID: 26511214]
[47]
Silva AM, Silva AR, Pinheiro AM, et al. Alkaloids from Prosopis Juliflora leaves induce glial activation, cytotoxicity and stimulate NO production. Toxicon 2007; 49(5): 601-14.
[http://dx.doi.org/10.1016/j.toxicon.2006.07.037] [PMID: 17241650]
[48]
Mohamed MS, Veeranarayanan S, Baliyan A, et al. Structurally distinct hybrid polymer/lipid nanoconstructs harboring a type-I ribotoxin as cellular imaging and glioblastoma-directed therapeutic vectors. Macromol Biosci 2014; 14(12): 1696-711.
[http://dx.doi.org/10.1002/mabi.201400248] [PMID: 25181322]
[49]
Santos BL, Silva AR, Pitanga BP, et al. Antiproliferative, proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells. Food Chem 2011; 127(2): 404-11.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.131] [PMID: 23140679]
[50]
Santos BL, Oliveira MN, Coelho PL, et al. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chem Biol Interact 2015; 242: 123-38.
[http://dx.doi.org/10.1016/j.cbi.2015.07.014] [PMID: 26408079]
[51]
da Silva AB, Cerqueira Coelho PL, das Neves Oliveira M, et al. The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav Immun 2020; 85: 170-85.
[http://dx.doi.org/10.1016/j.bbi.2019.05.003] [PMID: 31059805]
[52]
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 2012; 3: 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[53]
Bispo da Silva A, Cerqueira Coelho PL, Alves Oliveira Amparo J, et al. The flavonoid rutin modulates microglial/macrophage activation to a CD150/CD206 M2 phenotype. Chem Biol Interact 2017; 274: 89-99.
[http://dx.doi.org/10.1016/j.cbi.2017.07.004] [PMID: 28693884]
[54]
Quintella CM. The prospecting magazine and technology maturity levels (TRL). Cad Prospecção 2017; 10: 1-1.
[55]
Knorr SRV, Simonetti ML, De Souza CRP, Ikegami MY. Technological maturity level: a system for ordering technologies. Parc Estrat Braz DF 2017; 22(45): 140-19.
[56]
Jesus G, Chagas Júnior MF. “Coupled processes” as dynamic capabilities in systems integration. BAM Business Administration Magazine. 2017. Available from: https://ideas.repec.org/a/fgv/eaerae/v57y2017i3a 68558.html
[57]
Quintella CM, Meira M, Guimarães AK, Tanajura AS, Da Silva HRG. Technological prospecting as an applied tool in science and technology to achieve innovation. Rev Virtual Quim 2011; 3(5): 415-06.
[http://dx.doi.org/10.5935/1984-6835.20110044]
[58]
NASA, National Aeronautics and space administration technology readiness level Washington. 2020; Available from: https://www.nasa.gov/directorates/heo/scan/
[59]
Systems Engineering Handbook. National Astronautics and Space Administration NASA establishing technology readiness level TRLs 2007. 2007; Available from: https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook.pdf
[60]
Andrade HD-S, Chimendes VCG, Rosa ACM, et al. Técnicas de prospecção e maturidade tecnológica para suportar atividades de P & D. Espacios 2018; 39: 1-12.
[61]
Gil L, Andrade MH, Costa MdC. TRL (technology readiness levels) as a tool in technological assessment. Ver Ingenium 2014; Available from: https://repositorio.lneg.pt/handle/10400.9/2771

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy